annotate hotspot/src/share/vm/runtime/safepoint.cpp @ 7397:5b173b4ca846

6989984: Use standard include model for Hospot Summary: Replaced MakeDeps and the includeDB files with more standardized solutions. Reviewed-by: coleenp, kvn, kamg
author stefank
date Tue, 23 Nov 2010 13:22:55 -0800
parents 867c9d296c6b
children 96d498ec7ae1
rev   line source
duke@1 1 /*
stefank@7397 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation.
duke@1 8 *
duke@1 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 13 * accompanied this code).
duke@1 14 *
duke@1 15 * You should have received a copy of the GNU General Public License version
duke@1 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 18 *
trims@5547 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@5547 20 * or visit www.oracle.com if you need additional information or have any
trims@5547 21 * questions.
duke@1 22 *
duke@1 23 */
duke@1 24
stefank@7397 25 #include "precompiled.hpp"
stefank@7397 26 #include "classfile/systemDictionary.hpp"
stefank@7397 27 #include "code/codeCache.hpp"
stefank@7397 28 #include "code/icBuffer.hpp"
stefank@7397 29 #include "code/nmethod.hpp"
stefank@7397 30 #include "code/pcDesc.hpp"
stefank@7397 31 #include "code/scopeDesc.hpp"
stefank@7397 32 #include "gc_interface/collectedHeap.hpp"
stefank@7397 33 #include "interpreter/interpreter.hpp"
stefank@7397 34 #include "memory/resourceArea.hpp"
stefank@7397 35 #include "memory/universe.inline.hpp"
stefank@7397 36 #include "oops/oop.inline.hpp"
stefank@7397 37 #include "oops/symbolOop.hpp"
stefank@7397 38 #include "runtime/compilationPolicy.hpp"
stefank@7397 39 #include "runtime/deoptimization.hpp"
stefank@7397 40 #include "runtime/frame.inline.hpp"
stefank@7397 41 #include "runtime/interfaceSupport.hpp"
stefank@7397 42 #include "runtime/mutexLocker.hpp"
stefank@7397 43 #include "runtime/osThread.hpp"
stefank@7397 44 #include "runtime/safepoint.hpp"
stefank@7397 45 #include "runtime/signature.hpp"
stefank@7397 46 #include "runtime/stubCodeGenerator.hpp"
stefank@7397 47 #include "runtime/stubRoutines.hpp"
stefank@7397 48 #include "runtime/sweeper.hpp"
stefank@7397 49 #include "runtime/synchronizer.hpp"
stefank@7397 50 #include "services/runtimeService.hpp"
stefank@7397 51 #include "utilities/events.hpp"
stefank@7397 52 #ifdef TARGET_ARCH_x86
stefank@7397 53 # include "nativeInst_x86.hpp"
stefank@7397 54 # include "vmreg_x86.inline.hpp"
stefank@7397 55 #endif
stefank@7397 56 #ifdef TARGET_ARCH_sparc
stefank@7397 57 # include "nativeInst_sparc.hpp"
stefank@7397 58 # include "vmreg_sparc.inline.hpp"
stefank@7397 59 #endif
stefank@7397 60 #ifdef TARGET_ARCH_zero
stefank@7397 61 # include "nativeInst_zero.hpp"
stefank@7397 62 # include "vmreg_zero.inline.hpp"
stefank@7397 63 #endif
stefank@7397 64 #ifdef TARGET_OS_FAMILY_linux
stefank@7397 65 # include "thread_linux.inline.hpp"
stefank@7397 66 #endif
stefank@7397 67 #ifdef TARGET_OS_FAMILY_solaris
stefank@7397 68 # include "thread_solaris.inline.hpp"
stefank@7397 69 #endif
stefank@7397 70 #ifdef TARGET_OS_FAMILY_windows
stefank@7397 71 # include "thread_windows.inline.hpp"
stefank@7397 72 #endif
stefank@7397 73 #ifndef SERIALGC
stefank@7397 74 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
stefank@7397 75 #include "gc_implementation/shared/concurrentGCThread.hpp"
stefank@7397 76 #endif
stefank@7397 77 #ifdef COMPILER1
stefank@7397 78 #include "c1/c1_globals.hpp"
stefank@7397 79 #endif
duke@1 80
duke@1 81 // --------------------------------------------------------------------------------------------------
duke@1 82 // Implementation of Safepoint begin/end
duke@1 83
duke@1 84 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
duke@1 85 volatile int SafepointSynchronize::_waiting_to_block = 0;
duke@1 86 volatile int SafepointSynchronize::_safepoint_counter = 0;
xlu@5042 87 long SafepointSynchronize::_end_of_last_safepoint = 0;
duke@1 88 static volatile int PageArmed = 0 ; // safepoint polling page is RO|RW vs PROT_NONE
duke@1 89 static volatile int TryingToBlock = 0 ; // proximate value -- for advisory use only
duke@1 90 static bool timeout_error_printed = false;
duke@1 91
duke@1 92 // Roll all threads forward to a safepoint and suspend them all
duke@1 93 void SafepointSynchronize::begin() {
duke@1 94
duke@1 95 Thread* myThread = Thread::current();
duke@1 96 assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
duke@1 97
xlu@5042 98 if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
xlu@5042 99 _safepoint_begin_time = os::javaTimeNanos();
xlu@5042 100 _ts_of_current_safepoint = tty->time_stamp().seconds();
xlu@5042 101 }
duke@1 102
duke@1 103 #ifndef SERIALGC
duke@1 104 if (UseConcMarkSweepGC) {
duke@1 105 // In the future we should investigate whether CMS can use the
duke@1 106 // more-general mechanism below. DLD (01/05).
duke@1 107 ConcurrentMarkSweepThread::synchronize(false);
ysr@3262 108 } else if (UseG1GC) {
duke@1 109 ConcurrentGCThread::safepoint_synchronize();
duke@1 110 }
duke@1 111 #endif // SERIALGC
duke@1 112
duke@1 113 // By getting the Threads_lock, we assure that no threads are about to start or
duke@1 114 // exit. It is released again in SafepointSynchronize::end().
duke@1 115 Threads_lock->lock();
duke@1 116
duke@1 117 assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
duke@1 118
duke@1 119 int nof_threads = Threads::number_of_threads();
duke@1 120
duke@1 121 if (TraceSafepoint) {
duke@1 122 tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
duke@1 123 }
duke@1 124
duke@1 125 RuntimeService::record_safepoint_begin();
duke@1 126
duke@1 127 {
duke@1 128 MutexLocker mu(Safepoint_lock);
duke@1 129
duke@1 130 // Set number of threads to wait for, before we initiate the callbacks
duke@1 131 _waiting_to_block = nof_threads;
duke@1 132 TryingToBlock = 0 ;
duke@1 133 int still_running = nof_threads;
duke@1 134
duke@1 135 // Save the starting time, so that it can be compared to see if this has taken
duke@1 136 // too long to complete.
duke@1 137 jlong safepoint_limit_time;
duke@1 138 timeout_error_printed = false;
duke@1 139
xlu@4006 140 // PrintSafepointStatisticsTimeout can be specified separately. When
xlu@4006 141 // specified, PrintSafepointStatistics will be set to true in
xlu@4006 142 // deferred_initialize_stat method. The initialization has to be done
xlu@4006 143 // early enough to avoid any races. See bug 6880029 for details.
xlu@4006 144 if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
xlu@4006 145 deferred_initialize_stat();
xlu@4006 146 }
xlu@4006 147
duke@1 148 // Begin the process of bringing the system to a safepoint.
duke@1 149 // Java threads can be in several different states and are
duke@1 150 // stopped by different mechanisms:
duke@1 151 //
duke@1 152 // 1. Running interpreted
duke@1 153 // The interpeter dispatch table is changed to force it to
duke@1 154 // check for a safepoint condition between bytecodes.
duke@1 155 // 2. Running in native code
duke@1 156 // When returning from the native code, a Java thread must check
duke@1 157 // the safepoint _state to see if we must block. If the
duke@1 158 // VM thread sees a Java thread in native, it does
duke@1 159 // not wait for this thread to block. The order of the memory
duke@1 160 // writes and reads of both the safepoint state and the Java
duke@1 161 // threads state is critical. In order to guarantee that the
duke@1 162 // memory writes are serialized with respect to each other,
duke@1 163 // the VM thread issues a memory barrier instruction
duke@1 164 // (on MP systems). In order to avoid the overhead of issuing
duke@1 165 // a memory barrier for each Java thread making native calls, each Java
duke@1 166 // thread performs a write to a single memory page after changing
duke@1 167 // the thread state. The VM thread performs a sequence of
duke@1 168 // mprotect OS calls which forces all previous writes from all
duke@1 169 // Java threads to be serialized. This is done in the
duke@1 170 // os::serialize_thread_states() call. This has proven to be
duke@1 171 // much more efficient than executing a membar instruction
duke@1 172 // on every call to native code.
duke@1 173 // 3. Running compiled Code
duke@1 174 // Compiled code reads a global (Safepoint Polling) page that
duke@1 175 // is set to fault if we are trying to get to a safepoint.
duke@1 176 // 4. Blocked
duke@1 177 // A thread which is blocked will not be allowed to return from the
duke@1 178 // block condition until the safepoint operation is complete.
duke@1 179 // 5. In VM or Transitioning between states
duke@1 180 // If a Java thread is currently running in the VM or transitioning
duke@1 181 // between states, the safepointing code will wait for the thread to
duke@1 182 // block itself when it attempts transitions to a new state.
duke@1 183 //
duke@1 184 _state = _synchronizing;
duke@1 185 OrderAccess::fence();
duke@1 186
duke@1 187 // Flush all thread states to memory
duke@1 188 if (!UseMembar) {
duke@1 189 os::serialize_thread_states();
duke@1 190 }
duke@1 191
duke@1 192 // Make interpreter safepoint aware
duke@1 193 Interpreter::notice_safepoints();
duke@1 194
duke@1 195 if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
duke@1 196 // Make polling safepoint aware
duke@1 197 guarantee (PageArmed == 0, "invariant") ;
duke@1 198 PageArmed = 1 ;
duke@1 199 os::make_polling_page_unreadable();
duke@1 200 }
duke@1 201
duke@1 202 // Consider using active_processor_count() ... but that call is expensive.
duke@1 203 int ncpus = os::processor_count() ;
duke@1 204
duke@1 205 #ifdef ASSERT
duke@1 206 for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
duke@1 207 assert(cur->safepoint_state()->is_running(), "Illegal initial state");
duke@1 208 }
duke@1 209 #endif // ASSERT
duke@1 210
duke@1 211 if (SafepointTimeout)
duke@1 212 safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
duke@1 213
duke@1 214 // Iterate through all threads until it have been determined how to stop them all at a safepoint
duke@1 215 unsigned int iterations = 0;
duke@1 216 int steps = 0 ;
duke@1 217 while(still_running > 0) {
duke@1 218 for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
duke@1 219 assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
duke@1 220 ThreadSafepointState *cur_state = cur->safepoint_state();
duke@1 221 if (cur_state->is_running()) {
duke@1 222 cur_state->examine_state_of_thread();
duke@1 223 if (!cur_state->is_running()) {
duke@1 224 still_running--;
duke@1 225 // consider adjusting steps downward:
duke@1 226 // steps = 0
duke@1 227 // steps -= NNN
duke@1 228 // steps >>= 1
duke@1 229 // steps = MIN(steps, 2000-100)
duke@1 230 // if (iterations != 0) steps -= NNN
duke@1 231 }
duke@1 232 if (TraceSafepoint && Verbose) cur_state->print();
duke@1 233 }
duke@1 234 }
duke@1 235
xlu@4006 236 if (PrintSafepointStatistics && iterations == 0) {
duke@1 237 begin_statistics(nof_threads, still_running);
duke@1 238 }
duke@1 239
duke@1 240 if (still_running > 0) {
duke@1 241 // Check for if it takes to long
duke@1 242 if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
duke@1 243 print_safepoint_timeout(_spinning_timeout);
duke@1 244 }
duke@1 245
duke@1 246 // Spin to avoid context switching.
duke@1 247 // There's a tension between allowing the mutators to run (and rendezvous)
duke@1 248 // vs spinning. As the VM thread spins, wasting cycles, it consumes CPU that
duke@1 249 // a mutator might otherwise use profitably to reach a safepoint. Excessive
duke@1 250 // spinning by the VM thread on a saturated system can increase rendezvous latency.
duke@1 251 // Blocking or yielding incur their own penalties in the form of context switching
duke@1 252 // and the resultant loss of $ residency.
duke@1 253 //
duke@1 254 // Further complicating matters is that yield() does not work as naively expected
duke@1 255 // on many platforms -- yield() does not guarantee that any other ready threads
duke@1 256 // will run. As such we revert yield_all() after some number of iterations.
duke@1 257 // Yield_all() is implemented as a short unconditional sleep on some platforms.
duke@1 258 // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
duke@1 259 // can actually increase the time it takes the VM thread to detect that a system-wide
duke@1 260 // stop-the-world safepoint has been reached. In a pathological scenario such as that
duke@1 261 // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
duke@1 262 // In that case the mutators will be stalled waiting for the safepoint to complete and the
duke@1 263 // the VMthread will be sleeping, waiting for the mutators to rendezvous. The VMthread
duke@1 264 // will eventually wake up and detect that all mutators are safe, at which point
duke@1 265 // we'll again make progress.
duke@1 266 //
duke@1 267 // Beware too that that the VMThread typically runs at elevated priority.
duke@1 268 // Its default priority is higher than the default mutator priority.
duke@1 269 // Obviously, this complicates spinning.
duke@1 270 //
duke@1 271 // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
duke@1 272 // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
duke@1 273 //
duke@1 274 // See the comments in synchronizer.cpp for additional remarks on spinning.
duke@1 275 //
duke@1 276 // In the future we might:
duke@1 277 // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
duke@1 278 // This is tricky as the path used by a thread exiting the JVM (say on
duke@1 279 // on JNI call-out) simply stores into its state field. The burden
duke@1 280 // is placed on the VM thread, which must poll (spin).
duke@1 281 // 2. Find something useful to do while spinning. If the safepoint is GC-related
duke@1 282 // we might aggressively scan the stacks of threads that are already safe.
duke@1 283 // 3. Use Solaris schedctl to examine the state of the still-running mutators.
duke@1 284 // If all the mutators are ONPROC there's no reason to sleep or yield.
duke@1 285 // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
duke@1 286 // 5. Check system saturation. If the system is not fully saturated then
duke@1 287 // simply spin and avoid sleep/yield.
duke@1 288 // 6. As still-running mutators rendezvous they could unpark the sleeping
duke@1 289 // VMthread. This works well for still-running mutators that become
duke@1 290 // safe. The VMthread must still poll for mutators that call-out.
duke@1 291 // 7. Drive the policy on time-since-begin instead of iterations.
duke@1 292 // 8. Consider making the spin duration a function of the # of CPUs:
duke@1 293 // Spin = (((ncpus-1) * M) + K) + F(still_running)
duke@1 294 // Alternately, instead of counting iterations of the outer loop
duke@1 295 // we could count the # of threads visited in the inner loop, above.
duke@1 296 // 9. On windows consider using the return value from SwitchThreadTo()
duke@1 297 // to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
duke@1 298
duke@1 299 if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
duke@1 300 guarantee (PageArmed == 0, "invariant") ;
duke@1 301 PageArmed = 1 ;
duke@1 302 os::make_polling_page_unreadable();
duke@1 303 }
duke@1 304
duke@1 305 // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
duke@1 306 // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
duke@1 307 ++steps ;
duke@1 308 if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
duke@1 309 SpinPause() ; // MP-Polite spin
duke@1 310 } else
duke@1 311 if (steps < DeferThrSuspendLoopCount) {
duke@1 312 os::NakedYield() ;
duke@1 313 } else {
duke@1 314 os::yield_all(steps) ;
duke@1 315 // Alternately, the VM thread could transiently depress its scheduling priority or
duke@1 316 // transiently increase the priority of the tardy mutator(s).
duke@1 317 }
duke@1 318
duke@1 319 iterations ++ ;
duke@1 320 }
duke@1 321 assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
duke@1 322 }
duke@1 323 assert(still_running == 0, "sanity check");
duke@1 324
duke@1 325 if (PrintSafepointStatistics) {
duke@1 326 update_statistics_on_spin_end();
duke@1 327 }
duke@1 328
duke@1 329 // wait until all threads are stopped
duke@1 330 while (_waiting_to_block > 0) {
duke@1 331 if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
duke@1 332 if (!SafepointTimeout || timeout_error_printed) {
duke@1 333 Safepoint_lock->wait(true); // true, means with no safepoint checks
duke@1 334 } else {
duke@1 335 // Compute remaining time
duke@1 336 jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
duke@1 337
duke@1 338 // If there is no remaining time, then there is an error
duke@1 339 if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
duke@1 340 print_safepoint_timeout(_blocking_timeout);
duke@1 341 }
duke@1 342 }
duke@1 343 }
duke@1 344 assert(_waiting_to_block == 0, "sanity check");
duke@1 345
duke@1 346 #ifndef PRODUCT
duke@1 347 if (SafepointTimeout) {
duke@1 348 jlong current_time = os::javaTimeNanos();
duke@1 349 if (safepoint_limit_time < current_time) {
duke@1 350 tty->print_cr("# SafepointSynchronize: Finished after "
duke@1 351 INT64_FORMAT_W(6) " ms",
duke@1 352 ((current_time - safepoint_limit_time) / MICROUNITS +
duke@1 353 SafepointTimeoutDelay));
duke@1 354 }
duke@1 355 }
duke@1 356 #endif
duke@1 357
duke@1 358 assert((_safepoint_counter & 0x1) == 0, "must be even");
duke@1 359 assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
duke@1 360 _safepoint_counter ++;
duke@1 361
duke@1 362 // Record state
duke@1 363 _state = _synchronized;
duke@1 364
duke@1 365 OrderAccess::fence();
duke@1 366
duke@1 367 if (TraceSafepoint) {
duke@1 368 VM_Operation *op = VMThread::vm_operation();
duke@1 369 tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
duke@1 370 }
duke@1 371
duke@1 372 RuntimeService::record_safepoint_synchronized();
duke@1 373 if (PrintSafepointStatistics) {
duke@1 374 update_statistics_on_sync_end(os::javaTimeNanos());
duke@1 375 }
duke@1 376
duke@1 377 // Call stuff that needs to be run when a safepoint is just about to be completed
duke@1 378 do_cleanup_tasks();
xlu@5042 379
xlu@5042 380 if (PrintSafepointStatistics) {
xlu@5042 381 // Record how much time spend on the above cleanup tasks
xlu@5042 382 update_statistics_on_cleanup_end(os::javaTimeNanos());
xlu@5042 383 }
duke@1 384 }
duke@1 385 }
duke@1 386
duke@1 387 // Wake up all threads, so they are ready to resume execution after the safepoint
duke@1 388 // operation has been carried out
duke@1 389 void SafepointSynchronize::end() {
duke@1 390
duke@1 391 assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
duke@1 392 assert((_safepoint_counter & 0x1) == 1, "must be odd");
duke@1 393 _safepoint_counter ++;
duke@1 394 // memory fence isn't required here since an odd _safepoint_counter
duke@1 395 // value can do no harm and a fence is issued below anyway.
duke@1 396
duke@1 397 DEBUG_ONLY(Thread* myThread = Thread::current();)
duke@1 398 assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
duke@1 399
duke@1 400 if (PrintSafepointStatistics) {
duke@1 401 end_statistics(os::javaTimeNanos());
duke@1 402 }
duke@1 403
duke@1 404 #ifdef ASSERT
duke@1 405 // A pending_exception cannot be installed during a safepoint. The threads
duke@1 406 // may install an async exception after they come back from a safepoint into
duke@1 407 // pending_exception after they unblock. But that should happen later.
duke@1 408 for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
duke@1 409 assert (!(cur->has_pending_exception() &&
duke@1 410 cur->safepoint_state()->is_at_poll_safepoint()),
duke@1 411 "safepoint installed a pending exception");
duke@1 412 }
duke@1 413 #endif // ASSERT
duke@1 414
duke@1 415 if (PageArmed) {
duke@1 416 // Make polling safepoint aware
duke@1 417 os::make_polling_page_readable();
duke@1 418 PageArmed = 0 ;
duke@1 419 }
duke@1 420
duke@1 421 // Remove safepoint check from interpreter
duke@1 422 Interpreter::ignore_safepoints();
duke@1 423
duke@1 424 {
duke@1 425 MutexLocker mu(Safepoint_lock);
duke@1 426
duke@1 427 assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
duke@1 428
duke@1 429 // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
duke@1 430 // when they get restarted.
duke@1 431 _state = _not_synchronized;
duke@1 432 OrderAccess::fence();
duke@1 433
duke@1 434 if (TraceSafepoint) {
duke@1 435 tty->print_cr("Leaving safepoint region");
duke@1 436 }
duke@1 437
duke@1 438 // Start suspended threads
duke@1 439 for(JavaThread *current = Threads::first(); current; current = current->next()) {
twisti@2131 440 // A problem occurring on Solaris is when attempting to restart threads
duke@1 441 // the first #cpus - 1 go well, but then the VMThread is preempted when we get
duke@1 442 // to the next one (since it has been running the longest). We then have
duke@1 443 // to wait for a cpu to become available before we can continue restarting
duke@1 444 // threads.
duke@1 445 // FIXME: This causes the performance of the VM to degrade when active and with
duke@1 446 // large numbers of threads. Apparently this is due to the synchronous nature
duke@1 447 // of suspending threads.
duke@1 448 //
duke@1 449 // TODO-FIXME: the comments above are vestigial and no longer apply.
duke@1 450 // Furthermore, using solaris' schedctl in this particular context confers no benefit
duke@1 451 if (VMThreadHintNoPreempt) {
duke@1 452 os::hint_no_preempt();
duke@1 453 }
duke@1 454 ThreadSafepointState* cur_state = current->safepoint_state();
duke@1 455 assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
duke@1 456 cur_state->restart();
duke@1 457 assert(cur_state->is_running(), "safepoint state has not been reset");
duke@1 458 }
duke@1 459
duke@1 460 RuntimeService::record_safepoint_end();
duke@1 461
duke@1 462 // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
duke@1 463 // blocked in signal_thread_blocked
duke@1 464 Threads_lock->unlock();
duke@1 465
duke@1 466 }
duke@1 467 #ifndef SERIALGC
duke@1 468 // If there are any concurrent GC threads resume them.
duke@1 469 if (UseConcMarkSweepGC) {
duke@1 470 ConcurrentMarkSweepThread::desynchronize(false);
ysr@3262 471 } else if (UseG1GC) {
duke@1 472 ConcurrentGCThread::safepoint_desynchronize();
duke@1 473 }
duke@1 474 #endif // SERIALGC
xlu@5042 475 // record this time so VMThread can keep track how much time has elasped
xlu@5042 476 // since last safepoint.
xlu@5042 477 _end_of_last_safepoint = os::javaTimeMillis();
duke@1 478 }
duke@1 479
duke@1 480 bool SafepointSynchronize::is_cleanup_needed() {
duke@1 481 // Need a safepoint if some inline cache buffers is non-empty
duke@1 482 if (!InlineCacheBuffer::is_empty()) return true;
duke@1 483 return false;
duke@1 484 }
duke@1 485
duke@1 486
duke@1 487
duke@1 488 // Various cleaning tasks that should be done periodically at safepoints
duke@1 489 void SafepointSynchronize::do_cleanup_tasks() {
xlu@5042 490 {
xlu@5086 491 TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
xlu@5042 492 ObjectSynchronizer::deflate_idle_monitors();
duke@1 493 }
duke@1 494
xlu@5042 495 {
xlu@5086 496 TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
xlu@5042 497 InlineCacheBuffer::update_inline_caches();
xlu@5042 498 }
iveresov@6453 499 {
iveresov@6453 500 TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
iveresov@6453 501 CompilationPolicy::policy()->do_safepoint_work();
duke@1 502 }
xlu@5042 503
xlu@5086 504 TraceTime t4("sweeping nmethods", TraceSafepointCleanupTime);
never@5533 505 NMethodSweeper::scan_stacks();
duke@1 506 }
duke@1 507
duke@1 508
duke@1 509 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
duke@1 510 switch(state) {
duke@1 511 case _thread_in_native:
duke@1 512 // native threads are safe if they have no java stack or have walkable stack
duke@1 513 return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
duke@1 514
duke@1 515 // blocked threads should have already have walkable stack
duke@1 516 case _thread_blocked:
duke@1 517 assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
duke@1 518 return true;
duke@1 519
duke@1 520 default:
duke@1 521 return false;
duke@1 522 }
duke@1 523 }
duke@1 524
duke@1 525
duke@1 526 // -------------------------------------------------------------------------------------------------------
duke@1 527 // Implementation of Safepoint callback point
duke@1 528
duke@1 529 void SafepointSynchronize::block(JavaThread *thread) {
duke@1 530 assert(thread != NULL, "thread must be set");
duke@1 531 assert(thread->is_Java_thread(), "not a Java thread");
duke@1 532
duke@1 533 // Threads shouldn't block if they are in the middle of printing, but...
duke@1 534 ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
duke@1 535
duke@1 536 // Only bail from the block() call if the thread is gone from the
duke@1 537 // thread list; starting to exit should still block.
duke@1 538 if (thread->is_terminated()) {
duke@1 539 // block current thread if we come here from native code when VM is gone
duke@1 540 thread->block_if_vm_exited();
duke@1 541
duke@1 542 // otherwise do nothing
duke@1 543 return;
duke@1 544 }
duke@1 545
duke@1 546 JavaThreadState state = thread->thread_state();
duke@1 547 thread->frame_anchor()->make_walkable(thread);
duke@1 548
duke@1 549 // Check that we have a valid thread_state at this point
duke@1 550 switch(state) {
duke@1 551 case _thread_in_vm_trans:
duke@1 552 case _thread_in_Java: // From compiled code
duke@1 553
duke@1 554 // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
duke@1 555 // we pretend we are still in the VM.
duke@1 556 thread->set_thread_state(_thread_in_vm);
duke@1 557
duke@1 558 if (is_synchronizing()) {
duke@1 559 Atomic::inc (&TryingToBlock) ;
duke@1 560 }
duke@1 561
duke@1 562 // We will always be holding the Safepoint_lock when we are examine the state
duke@1 563 // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
duke@1 564 // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
duke@1 565 Safepoint_lock->lock_without_safepoint_check();
duke@1 566 if (is_synchronizing()) {
duke@1 567 // Decrement the number of threads to wait for and signal vm thread
duke@1 568 assert(_waiting_to_block > 0, "sanity check");
duke@1 569 _waiting_to_block--;
duke@1 570 thread->safepoint_state()->set_has_called_back(true);
duke@1 571
duke@1 572 // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
duke@1 573 if (_waiting_to_block == 0) {
duke@1 574 Safepoint_lock->notify_all();
duke@1 575 }
duke@1 576 }
duke@1 577
duke@1 578 // We transition the thread to state _thread_blocked here, but
duke@1 579 // we can't do our usual check for external suspension and then
duke@1 580 // self-suspend after the lock_without_safepoint_check() call
duke@1 581 // below because we are often called during transitions while
duke@1 582 // we hold different locks. That would leave us suspended while
duke@1 583 // holding a resource which results in deadlocks.
duke@1 584 thread->set_thread_state(_thread_blocked);
duke@1 585 Safepoint_lock->unlock();
duke@1 586
duke@1 587 // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
duke@1 588 // the entire safepoint, the threads will all line up here during the safepoint.
duke@1 589 Threads_lock->lock_without_safepoint_check();
duke@1 590 // restore original state. This is important if the thread comes from compiled code, so it
duke@1 591 // will continue to execute with the _thread_in_Java state.
duke@1 592 thread->set_thread_state(state);
duke@1 593 Threads_lock->unlock();
duke@1 594 break;
duke@1 595
duke@1 596 case _thread_in_native_trans:
duke@1 597 case _thread_blocked_trans:
duke@1 598 case _thread_new_trans:
duke@1 599 if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
duke@1 600 thread->print_thread_state();
duke@1 601 fatal("Deadlock in safepoint code. "
duke@1 602 "Should have called back to the VM before blocking.");
duke@1 603 }
duke@1 604
duke@1 605 // We transition the thread to state _thread_blocked here, but
duke@1 606 // we can't do our usual check for external suspension and then
duke@1 607 // self-suspend after the lock_without_safepoint_check() call
duke@1 608 // below because we are often called during transitions while
duke@1 609 // we hold different locks. That would leave us suspended while
duke@1 610 // holding a resource which results in deadlocks.
duke@1 611 thread->set_thread_state(_thread_blocked);
duke@1 612
duke@1 613 // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
duke@1 614 // the safepoint code might still be waiting for it to block. We need to change the state here,
duke@1 615 // so it can see that it is at a safepoint.
duke@1 616
duke@1 617 // Block until the safepoint operation is completed.
duke@1 618 Threads_lock->lock_without_safepoint_check();
duke@1 619
duke@1 620 // Restore state
duke@1 621 thread->set_thread_state(state);
duke@1 622
duke@1 623 Threads_lock->unlock();
duke@1 624 break;
duke@1 625
duke@1 626 default:
jcoomes@5403 627 fatal(err_msg("Illegal threadstate encountered: %d", state));
duke@1 628 }
duke@1 629
duke@1 630 // Check for pending. async. exceptions or suspends - except if the
duke@1 631 // thread was blocked inside the VM. has_special_runtime_exit_condition()
duke@1 632 // is called last since it grabs a lock and we only want to do that when
duke@1 633 // we must.
duke@1 634 //
duke@1 635 // Note: we never deliver an async exception at a polling point as the
duke@1 636 // compiler may not have an exception handler for it. The polling
duke@1 637 // code will notice the async and deoptimize and the exception will
duke@1 638 // be delivered. (Polling at a return point is ok though). Sure is
duke@1 639 // a lot of bother for a deprecated feature...
duke@1 640 //
duke@1 641 // We don't deliver an async exception if the thread state is
duke@1 642 // _thread_in_native_trans so JNI functions won't be called with
duke@1 643 // a surprising pending exception. If the thread state is going back to java,
duke@1 644 // async exception is checked in check_special_condition_for_native_trans().
duke@1 645
duke@1 646 if (state != _thread_blocked_trans &&
duke@1 647 state != _thread_in_vm_trans &&
duke@1 648 thread->has_special_runtime_exit_condition()) {
duke@1 649 thread->handle_special_runtime_exit_condition(
duke@1 650 !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
duke@1 651 }
duke@1 652 }
duke@1 653
duke@1 654 // ------------------------------------------------------------------------------------------------------
duke@1 655 // Exception handlers
duke@1 656
duke@1 657 #ifndef PRODUCT
duke@1 658 #ifdef _LP64
duke@1 659 #define PTR_PAD ""
duke@1 660 #else
duke@1 661 #define PTR_PAD " "
duke@1 662 #endif
duke@1 663
duke@1 664 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
duke@1 665 bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
duke@1 666 tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
duke@1 667 oldptr, wasoop?"oop":" ", oldptr == newptr ? ' ' : '!',
duke@1 668 newptr, is_oop?"oop":" ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":" "));
duke@1 669 }
duke@1 670
duke@1 671 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
duke@1 672 bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
duke@1 673 tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
duke@1 674 oldptr, wasoop?"oop":" ", oldptr == newptr ? ' ' : '!',
duke@1 675 newptr, is_oop?"oop":" ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":" "));
duke@1 676 }
duke@1 677
duke@1 678 #ifdef SPARC
duke@1 679 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
duke@1 680 #ifdef _LP64
duke@1 681 tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
duke@1 682 const int incr = 1; // Increment to skip a long, in units of intptr_t
duke@1 683 #else
duke@1 684 tty->print_cr("--------+--address-+------before-----------+-------after----------+");
duke@1 685 const int incr = 2; // Increment to skip a long, in units of intptr_t
duke@1 686 #endif
duke@1 687 tty->print_cr("---SP---|");
duke@1 688 for( int i=0; i<16; i++ ) {
duke@1 689 tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
duke@1 690 tty->print_cr("--------|");
duke@1 691 for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
duke@1 692 tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
duke@1 693 tty->print(" pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
duke@1 694 tty->print_cr("--------|");
duke@1 695 tty->print(" G1 |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
duke@1 696 tty->print(" G3 |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
duke@1 697 tty->print(" G4 |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
duke@1 698 tty->print(" G5 |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
duke@1 699 tty->print_cr(" FSR |"PTR_FORMAT" "PTR64_FORMAT" "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
duke@1 700 old_sp += incr; new_sp += incr; was_oops += incr;
duke@1 701 // Skip the floats
duke@1 702 tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
duke@1 703 tty->print_cr("---FP---|");
duke@1 704 old_sp += incr*32; new_sp += incr*32; was_oops += incr*32;
duke@1 705 for( int i2=0; i2<16; i2++ ) {
duke@1 706 tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
duke@1 707 tty->print_cr("");
duke@1 708 }
duke@1 709 #endif // SPARC
duke@1 710 #endif // PRODUCT
duke@1 711
duke@1 712
duke@1 713 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
duke@1 714 assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
duke@1 715 assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
duke@1 716 assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
duke@1 717
duke@1 718 // Uncomment this to get some serious before/after printing of the
duke@1 719 // Sparc safepoint-blob frame structure.
duke@1 720 /*
duke@1 721 intptr_t* sp = thread->last_Java_sp();
duke@1 722 intptr_t stack_copy[150];
duke@1 723 for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
duke@1 724 bool was_oops[150];
duke@1 725 for( int i=0; i<150; i++ )
duke@1 726 was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
duke@1 727 */
duke@1 728
duke@1 729 if (ShowSafepointMsgs) {
duke@1 730 tty->print("handle_polling_page_exception: ");
duke@1 731 }
duke@1 732
duke@1 733 if (PrintSafepointStatistics) {
duke@1 734 inc_page_trap_count();
duke@1 735 }
duke@1 736
duke@1 737 ThreadSafepointState* state = thread->safepoint_state();
duke@1 738
duke@1 739 state->handle_polling_page_exception();
duke@1 740 // print_me(sp,stack_copy,was_oops);
duke@1 741 }
duke@1 742
duke@1 743
duke@1 744 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
duke@1 745 if (!timeout_error_printed) {
duke@1 746 timeout_error_printed = true;
duke@1 747 // Print out the thread infor which didn't reach the safepoint for debugging
duke@1 748 // purposes (useful when there are lots of threads in the debugger).
duke@1 749 tty->print_cr("");
duke@1 750 tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
duke@1 751 if (reason == _spinning_timeout) {
duke@1 752 tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
duke@1 753 } else if (reason == _blocking_timeout) {
duke@1 754 tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
duke@1 755 }
duke@1 756
duke@1 757 tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
duke@1 758 ThreadSafepointState *cur_state;
duke@1 759 ResourceMark rm;
duke@1 760 for(JavaThread *cur_thread = Threads::first(); cur_thread;
duke@1 761 cur_thread = cur_thread->next()) {
duke@1 762 cur_state = cur_thread->safepoint_state();
duke@1 763
duke@1 764 if (cur_thread->thread_state() != _thread_blocked &&
duke@1 765 ((reason == _spinning_timeout && cur_state->is_running()) ||
duke@1 766 (reason == _blocking_timeout && !cur_state->has_called_back()))) {
duke@1 767 tty->print("# ");
duke@1 768 cur_thread->print();
duke@1 769 tty->print_cr("");
duke@1 770 }
duke@1 771 }
duke@1 772 tty->print_cr("# SafepointSynchronize::begin: (End of list)");
duke@1 773 }
duke@1 774
duke@1 775 // To debug the long safepoint, specify both DieOnSafepointTimeout &
duke@1 776 // ShowMessageBoxOnError.
duke@1 777 if (DieOnSafepointTimeout) {
duke@1 778 char msg[1024];
duke@1 779 VM_Operation *op = VMThread::vm_operation();
xlu@1889 780 sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
duke@1 781 SafepointTimeoutDelay,
duke@1 782 op != NULL ? op->name() : "no vm operation");
duke@1 783 fatal(msg);
duke@1 784 }
duke@1 785 }
duke@1 786
duke@1 787
duke@1 788 // -------------------------------------------------------------------------------------------------------
duke@1 789 // Implementation of ThreadSafepointState
duke@1 790
duke@1 791 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
duke@1 792 _thread = thread;
duke@1 793 _type = _running;
duke@1 794 _has_called_back = false;
duke@1 795 _at_poll_safepoint = false;
duke@1 796 }
duke@1 797
duke@1 798 void ThreadSafepointState::create(JavaThread *thread) {
duke@1 799 ThreadSafepointState *state = new ThreadSafepointState(thread);
duke@1 800 thread->set_safepoint_state(state);
duke@1 801 }
duke@1 802
duke@1 803 void ThreadSafepointState::destroy(JavaThread *thread) {
duke@1 804 if (thread->safepoint_state()) {
duke@1 805 delete(thread->safepoint_state());
duke@1 806 thread->set_safepoint_state(NULL);
duke@1 807 }
duke@1 808 }
duke@1 809
duke@1 810 void ThreadSafepointState::examine_state_of_thread() {
duke@1 811 assert(is_running(), "better be running or just have hit safepoint poll");
duke@1 812
duke@1 813 JavaThreadState state = _thread->thread_state();
duke@1 814
never@6269 815 // Save the state at the start of safepoint processing.
never@6269 816 _orig_thread_state = state;
never@6269 817
duke@1 818 // Check for a thread that is suspended. Note that thread resume tries
duke@1 819 // to grab the Threads_lock which we own here, so a thread cannot be
duke@1 820 // resumed during safepoint synchronization.
duke@1 821
dcubed@3826 822 // We check to see if this thread is suspended without locking to
dcubed@3826 823 // avoid deadlocking with a third thread that is waiting for this
dcubed@3826 824 // thread to be suspended. The third thread can notice the safepoint
dcubed@3826 825 // that we're trying to start at the beginning of its SR_lock->wait()
dcubed@3826 826 // call. If that happens, then the third thread will block on the
dcubed@3826 827 // safepoint while still holding the underlying SR_lock. We won't be
dcubed@3826 828 // able to get the SR_lock and we'll deadlock.
dcubed@3826 829 //
dcubed@3826 830 // We don't need to grab the SR_lock here for two reasons:
dcubed@3826 831 // 1) The suspend flags are both volatile and are set with an
dcubed@3826 832 // Atomic::cmpxchg() call so we should see the suspended
dcubed@3826 833 // state right away.
dcubed@3826 834 // 2) We're being called from the safepoint polling loop; if
dcubed@3826 835 // we don't see the suspended state on this iteration, then
dcubed@3826 836 // we'll come around again.
dcubed@3826 837 //
dcubed@3826 838 bool is_suspended = _thread->is_ext_suspended();
duke@1 839 if (is_suspended) {
duke@1 840 roll_forward(_at_safepoint);
duke@1 841 return;
duke@1 842 }
duke@1 843
duke@1 844 // Some JavaThread states have an initial safepoint state of
duke@1 845 // running, but are actually at a safepoint. We will happily
duke@1 846 // agree and update the safepoint state here.
duke@1 847 if (SafepointSynchronize::safepoint_safe(_thread, state)) {
duke@1 848 roll_forward(_at_safepoint);
duke@1 849 return;
duke@1 850 }
duke@1 851
duke@1 852 if (state == _thread_in_vm) {
duke@1 853 roll_forward(_call_back);
duke@1 854 return;
duke@1 855 }
duke@1 856
duke@1 857 // All other thread states will continue to run until they
duke@1 858 // transition and self-block in state _blocked
duke@1 859 // Safepoint polling in compiled code causes the Java threads to do the same.
duke@1 860 // Note: new threads may require a malloc so they must be allowed to finish
duke@1 861
duke@1 862 assert(is_running(), "examine_state_of_thread on non-running thread");
duke@1 863 return;
duke@1 864 }
duke@1 865
duke@1 866 // Returns true is thread could not be rolled forward at present position.
duke@1 867 void ThreadSafepointState::roll_forward(suspend_type type) {
duke@1 868 _type = type;
duke@1 869
duke@1 870 switch(_type) {
duke@1 871 case _at_safepoint:
duke@1 872 SafepointSynchronize::signal_thread_at_safepoint();
duke@1 873 break;
duke@1 874
duke@1 875 case _call_back:
duke@1 876 set_has_called_back(false);
duke@1 877 break;
duke@1 878
duke@1 879 case _running:
duke@1 880 default:
duke@1 881 ShouldNotReachHere();
duke@1 882 }
duke@1 883 }
duke@1 884
duke@1 885 void ThreadSafepointState::restart() {
duke@1 886 switch(type()) {
duke@1 887 case _at_safepoint:
duke@1 888 case _call_back:
duke@1 889 break;
duke@1 890
duke@1 891 case _running:
duke@1 892 default:
duke@1 893 tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
duke@1 894 _thread, _type);
duke@1 895 _thread->print();
duke@1 896 ShouldNotReachHere();
duke@1 897 }
duke@1 898 _type = _running;
duke@1 899 set_has_called_back(false);
duke@1 900 }
duke@1 901
duke@1 902
duke@1 903 void ThreadSafepointState::print_on(outputStream *st) const {
duke@1 904 const char *s;
duke@1 905
duke@1 906 switch(_type) {
duke@1 907 case _running : s = "_running"; break;
duke@1 908 case _at_safepoint : s = "_at_safepoint"; break;
duke@1 909 case _call_back : s = "_call_back"; break;
duke@1 910 default:
duke@1 911 ShouldNotReachHere();
duke@1 912 }
duke@1 913
duke@1 914 st->print_cr("Thread: " INTPTR_FORMAT
duke@1 915 " [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
duke@1 916 _thread, _thread->osthread()->thread_id(), s, _has_called_back,
duke@1 917 _at_poll_safepoint);
duke@1 918
duke@1 919 _thread->print_thread_state_on(st);
duke@1 920 }
duke@1 921
duke@1 922
duke@1 923 // ---------------------------------------------------------------------------------------------------------------------
duke@1 924
duke@1 925 // Block the thread at the safepoint poll or poll return.
duke@1 926 void ThreadSafepointState::handle_polling_page_exception() {
duke@1 927
duke@1 928 // Check state. block() will set thread state to thread_in_vm which will
duke@1 929 // cause the safepoint state _type to become _call_back.
duke@1 930 assert(type() == ThreadSafepointState::_running,
duke@1 931 "polling page exception on thread not running state");
duke@1 932
duke@1 933 // Step 1: Find the nmethod from the return address
duke@1 934 if (ShowSafepointMsgs && Verbose) {
duke@1 935 tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
duke@1 936 }
duke@1 937 address real_return_addr = thread()->saved_exception_pc();
duke@1 938
duke@1 939 CodeBlob *cb = CodeCache::find_blob(real_return_addr);
duke@1 940 assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
duke@1 941 nmethod* nm = (nmethod*)cb;
duke@1 942
duke@1 943 // Find frame of caller
duke@1 944 frame stub_fr = thread()->last_frame();
duke@1 945 CodeBlob* stub_cb = stub_fr.cb();
duke@1 946 assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
duke@1 947 RegisterMap map(thread(), true);
duke@1 948 frame caller_fr = stub_fr.sender(&map);
duke@1 949
duke@1 950 // Should only be poll_return or poll
duke@1 951 assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
duke@1 952
duke@1 953 // This is a poll immediately before a return. The exception handling code
duke@1 954 // has already had the effect of causing the return to occur, so the execution
duke@1 955 // will continue immediately after the call. In addition, the oopmap at the
duke@1 956 // return point does not mark the return value as an oop (if it is), so
duke@1 957 // it needs a handle here to be updated.
duke@1 958 if( nm->is_at_poll_return(real_return_addr) ) {
duke@1 959 // See if return type is an oop.
duke@1 960 bool return_oop = nm->method()->is_returning_oop();
duke@1 961 Handle return_value;
duke@1 962 if (return_oop) {
duke@1 963 // The oop result has been saved on the stack together with all
duke@1 964 // the other registers. In order to preserve it over GCs we need
duke@1 965 // to keep it in a handle.
duke@1 966 oop result = caller_fr.saved_oop_result(&map);
duke@1 967 assert(result == NULL || result->is_oop(), "must be oop");
duke@1 968 return_value = Handle(thread(), result);
duke@1 969 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
duke@1 970 }
duke@1 971
duke@1 972 // Block the thread
duke@1 973 SafepointSynchronize::block(thread());
duke@1 974
duke@1 975 // restore oop result, if any
duke@1 976 if (return_oop) {
duke@1 977 caller_fr.set_saved_oop_result(&map, return_value());
duke@1 978 }
duke@1 979 }
duke@1 980
duke@1 981 // This is a safepoint poll. Verify the return address and block.
duke@1 982 else {
duke@1 983 set_at_poll_safepoint(true);
duke@1 984
duke@1 985 // verify the blob built the "return address" correctly
duke@1 986 assert(real_return_addr == caller_fr.pc(), "must match");
duke@1 987
duke@1 988 // Block the thread
duke@1 989 SafepointSynchronize::block(thread());
duke@1 990 set_at_poll_safepoint(false);
duke@1 991
duke@1 992 // If we have a pending async exception deoptimize the frame
duke@1 993 // as otherwise we may never deliver it.
duke@1 994 if (thread()->has_async_condition()) {
duke@1 995 ThreadInVMfromJavaNoAsyncException __tiv(thread());
never@7106 996 Deoptimization::deoptimize_frame(thread(), caller_fr.id());
duke@1 997 }
duke@1 998
duke@1 999 // If an exception has been installed we must check for a pending deoptimization
duke@1 1000 // Deoptimize frame if exception has been thrown.
duke@1 1001
duke@1 1002 if (thread()->has_pending_exception() ) {
duke@1 1003 RegisterMap map(thread(), true);
duke@1 1004 frame caller_fr = stub_fr.sender(&map);
duke@1 1005 if (caller_fr.is_deoptimized_frame()) {
duke@1 1006 // The exception patch will destroy registers that are still
duke@1 1007 // live and will be needed during deoptimization. Defer the
duke@1 1008 // Async exception should have defered the exception until the
duke@1 1009 // next safepoint which will be detected when we get into
duke@1 1010 // the interpreter so if we have an exception now things
duke@1 1011 // are messed up.
duke@1 1012
duke@1 1013 fatal("Exception installed and deoptimization is pending");
duke@1 1014 }
duke@1 1015 }
duke@1 1016 }
duke@1 1017 }
duke@1 1018
duke@1 1019
duke@1 1020 //
duke@1 1021 // Statistics & Instrumentations
duke@1 1022 //
duke@1 1023 SafepointSynchronize::SafepointStats* SafepointSynchronize::_safepoint_stats = NULL;
xlu@5042 1024 jlong SafepointSynchronize::_safepoint_begin_time = 0;
duke@1 1025 int SafepointSynchronize::_cur_stat_index = 0;
duke@1 1026 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
duke@1 1027 julong SafepointSynchronize::_coalesced_vmop_count = 0;
duke@1 1028 jlong SafepointSynchronize::_max_sync_time = 0;
xlu@5042 1029 jlong SafepointSynchronize::_max_vmop_time = 0;
xlu@5042 1030 float SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
duke@1 1031
xlu@5042 1032 static jlong cleanup_end_time = 0;
duke@1 1033 static bool need_to_track_page_armed_status = false;
duke@1 1034 static bool init_done = false;
duke@1 1035
xlu@5042 1036 // Helper method to print the header.
xlu@5042 1037 static void print_header() {
xlu@5042 1038 tty->print(" vmop "
xlu@5042 1039 "[threads: total initially_running wait_to_block] ");
xlu@5042 1040 tty->print("[time: spin block sync cleanup vmop] ");
xlu@5042 1041
xlu@5042 1042 // no page armed status printed out if it is always armed.
xlu@5042 1043 if (need_to_track_page_armed_status) {
xlu@5042 1044 tty->print("page_armed ");
xlu@5042 1045 }
xlu@5042 1046
xlu@5042 1047 tty->print_cr("page_trap_count");
xlu@5042 1048 }
xlu@5042 1049
duke@1 1050 void SafepointSynchronize::deferred_initialize_stat() {
duke@1 1051 if (init_done) return;
duke@1 1052
duke@1 1053 if (PrintSafepointStatisticsCount <= 0) {
duke@1 1054 fatal("Wrong PrintSafepointStatisticsCount");
duke@1 1055 }
duke@1 1056
duke@1 1057 // If PrintSafepointStatisticsTimeout is specified, the statistics data will
duke@1 1058 // be printed right away, in which case, _safepoint_stats will regress to
duke@1 1059 // a single element array. Otherwise, it is a circular ring buffer with default
duke@1 1060 // size of PrintSafepointStatisticsCount.
duke@1 1061 int stats_array_size;
duke@1 1062 if (PrintSafepointStatisticsTimeout > 0) {
duke@1 1063 stats_array_size = 1;
duke@1 1064 PrintSafepointStatistics = true;
duke@1 1065 } else {
duke@1 1066 stats_array_size = PrintSafepointStatisticsCount;
duke@1 1067 }
duke@1 1068 _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
duke@1 1069 * sizeof(SafepointStats));
duke@1 1070 guarantee(_safepoint_stats != NULL,
duke@1 1071 "not enough memory for safepoint instrumentation data");
duke@1 1072
duke@1 1073 if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
duke@1 1074 need_to_track_page_armed_status = true;
duke@1 1075 }
duke@1 1076 init_done = true;
duke@1 1077 }
duke@1 1078
duke@1 1079 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
xlu@4006 1080 assert(init_done, "safepoint statistics array hasn't been initialized");
duke@1 1081 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
duke@1 1082
xlu@5042 1083 spstat->_time_stamp = _ts_of_current_safepoint;
xlu@5042 1084
duke@1 1085 VM_Operation *op = VMThread::vm_operation();
duke@1 1086 spstat->_vmop_type = (op != NULL ? op->type() : -1);
duke@1 1087 if (op != NULL) {
duke@1 1088 _safepoint_reasons[spstat->_vmop_type]++;
duke@1 1089 }
duke@1 1090
duke@1 1091 spstat->_nof_total_threads = nof_threads;
duke@1 1092 spstat->_nof_initial_running_threads = nof_running;
duke@1 1093 spstat->_nof_threads_hit_page_trap = 0;
duke@1 1094
duke@1 1095 // Records the start time of spinning. The real time spent on spinning
duke@1 1096 // will be adjusted when spin is done. Same trick is applied for time
duke@1 1097 // spent on waiting for threads to block.
duke@1 1098 if (nof_running != 0) {
duke@1 1099 spstat->_time_to_spin = os::javaTimeNanos();
duke@1 1100 } else {
duke@1 1101 spstat->_time_to_spin = 0;
duke@1 1102 }
duke@1 1103 }
duke@1 1104
duke@1 1105 void SafepointSynchronize::update_statistics_on_spin_end() {
duke@1 1106 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
duke@1 1107
duke@1 1108 jlong cur_time = os::javaTimeNanos();
duke@1 1109
duke@1 1110 spstat->_nof_threads_wait_to_block = _waiting_to_block;
duke@1 1111 if (spstat->_nof_initial_running_threads != 0) {
duke@1 1112 spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
duke@1 1113 }
duke@1 1114
duke@1 1115 if (need_to_track_page_armed_status) {
duke@1 1116 spstat->_page_armed = (PageArmed == 1);
duke@1 1117 }
duke@1 1118
duke@1 1119 // Records the start time of waiting for to block. Updated when block is done.
duke@1 1120 if (_waiting_to_block != 0) {
duke@1 1121 spstat->_time_to_wait_to_block = cur_time;
duke@1 1122 } else {
duke@1 1123 spstat->_time_to_wait_to_block = 0;
duke@1 1124 }
duke@1 1125 }
duke@1 1126
duke@1 1127 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
duke@1 1128 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
duke@1 1129
duke@1 1130 if (spstat->_nof_threads_wait_to_block != 0) {
duke@1 1131 spstat->_time_to_wait_to_block = end_time -
duke@1 1132 spstat->_time_to_wait_to_block;
duke@1 1133 }
duke@1 1134
duke@1 1135 // Records the end time of sync which will be used to calculate the total
duke@1 1136 // vm operation time. Again, the real time spending in syncing will be deducted
duke@1 1137 // from the start of the sync time later when end_statistics is called.
xlu@5042 1138 spstat->_time_to_sync = end_time - _safepoint_begin_time;
duke@1 1139 if (spstat->_time_to_sync > _max_sync_time) {
duke@1 1140 _max_sync_time = spstat->_time_to_sync;
duke@1 1141 }
xlu@5042 1142
xlu@5042 1143 spstat->_time_to_do_cleanups = end_time;
xlu@5042 1144 }
xlu@5042 1145
xlu@5042 1146 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
xlu@5042 1147 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
xlu@5042 1148
xlu@5042 1149 // Record how long spent in cleanup tasks.
xlu@5042 1150 spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
xlu@5042 1151
xlu@5042 1152 cleanup_end_time = end_time;
duke@1 1153 }
duke@1 1154
duke@1 1155 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
duke@1 1156 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
duke@1 1157
duke@1 1158 // Update the vm operation time.
xlu@5042 1159 spstat->_time_to_exec_vmop = vmop_end_time - cleanup_end_time;
xlu@5042 1160 if (spstat->_time_to_exec_vmop > _max_vmop_time) {
xlu@5042 1161 _max_vmop_time = spstat->_time_to_exec_vmop;
xlu@5042 1162 }
duke@1 1163 // Only the sync time longer than the specified
duke@1 1164 // PrintSafepointStatisticsTimeout will be printed out right away.
duke@1 1165 // By default, it is -1 meaning all samples will be put into the list.
duke@1 1166 if ( PrintSafepointStatisticsTimeout > 0) {
duke@1 1167 if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
duke@1 1168 print_statistics();
duke@1 1169 }
duke@1 1170 } else {
duke@1 1171 // The safepoint statistics will be printed out when the _safepoin_stats
duke@1 1172 // array fills up.
xlu@5042 1173 if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
duke@1 1174 print_statistics();
duke@1 1175 _cur_stat_index = 0;
xlu@5042 1176 } else {
xlu@5042 1177 _cur_stat_index++;
duke@1 1178 }
duke@1 1179 }
duke@1 1180 }
duke@1 1181
duke@1 1182 void SafepointSynchronize::print_statistics() {
duke@1 1183 SafepointStats* sstats = _safepoint_stats;
duke@1 1184
xlu@5042 1185 for (int index = 0; index <= _cur_stat_index; index++) {
xlu@5042 1186 if (index % 30 == 0) {
xlu@5042 1187 print_header();
xlu@5042 1188 }
duke@1 1189 sstats = &_safepoint_stats[index];
xlu@5042 1190 tty->print("%.3f: ", sstats->_time_stamp);
xlu@5042 1191 tty->print("%-26s ["
duke@1 1192 INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
xlu@5042 1193 " ] ",
duke@1 1194 sstats->_vmop_type == -1 ? "no vm operation" :
duke@1 1195 VM_Operation::name(sstats->_vmop_type),
duke@1 1196 sstats->_nof_total_threads,
duke@1 1197 sstats->_nof_initial_running_threads,
duke@1 1198 sstats->_nof_threads_wait_to_block);
duke@1 1199 // "/ MICROUNITS " is to convert the unit from nanos to millis.
xlu@5042 1200 tty->print(" ["
xlu@5042 1201 INT64_FORMAT_W(6)INT64_FORMAT_W(6)
xlu@5042 1202 INT64_FORMAT_W(6)INT64_FORMAT_W(6)
xlu@5042 1203 INT64_FORMAT_W(6)" ] ",
duke@1 1204 sstats->_time_to_spin / MICROUNITS,
duke@1 1205 sstats->_time_to_wait_to_block / MICROUNITS,
duke@1 1206 sstats->_time_to_sync / MICROUNITS,
xlu@5042 1207 sstats->_time_to_do_cleanups / MICROUNITS,
xlu@5042 1208 sstats->_time_to_exec_vmop / MICROUNITS);
duke@1 1209
duke@1 1210 if (need_to_track_page_armed_status) {
duke@1 1211 tty->print(INT32_FORMAT" ", sstats->_page_armed);
duke@1 1212 }
duke@1 1213 tty->print_cr(INT32_FORMAT" ", sstats->_nof_threads_hit_page_trap);
duke@1 1214 }
duke@1 1215 }
duke@1 1216
duke@1 1217 // This method will be called when VM exits. It will first call
duke@1 1218 // print_statistics to print out the rest of the sampling. Then
duke@1 1219 // it tries to summarize the sampling.
duke@1 1220 void SafepointSynchronize::print_stat_on_exit() {
duke@1 1221 if (_safepoint_stats == NULL) return;
duke@1 1222
duke@1 1223 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
duke@1 1224
duke@1 1225 // During VM exit, end_statistics may not get called and in that
duke@1 1226 // case, if the sync time is less than PrintSafepointStatisticsTimeout,
duke@1 1227 // don't print it out.
duke@1 1228 // Approximate the vm op time.
duke@1 1229 _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
xlu@5042 1230 os::javaTimeNanos() - cleanup_end_time;
duke@1 1231
duke@1 1232 if ( PrintSafepointStatisticsTimeout < 0 ||
duke@1 1233 spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
duke@1 1234 print_statistics();
duke@1 1235 }
duke@1 1236 tty->print_cr("");
duke@1 1237
duke@1 1238 // Print out polling page sampling status.
duke@1 1239 if (!need_to_track_page_armed_status) {
duke@1 1240 if (UseCompilerSafepoints) {
duke@1 1241 tty->print_cr("Polling page always armed");
duke@1 1242 }
duke@1 1243 } else {
duke@1 1244 tty->print_cr("Defer polling page loop count = %d\n",
duke@1 1245 DeferPollingPageLoopCount);
duke@1 1246 }
duke@1 1247
duke@1 1248 for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
duke@1 1249 if (_safepoint_reasons[index] != 0) {
duke@1 1250 tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
duke@1 1251 _safepoint_reasons[index]);
duke@1 1252 }
duke@1 1253 }
duke@1 1254
duke@1 1255 tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
duke@1 1256 _coalesced_vmop_count);
duke@1 1257 tty->print_cr("Maximum sync time "INT64_FORMAT_W(5)" ms",
duke@1 1258 _max_sync_time / MICROUNITS);
xlu@5042 1259 tty->print_cr("Maximum vm operation time (except for Exit VM operation) "
xlu@5042 1260 INT64_FORMAT_W(5)" ms",
xlu@5042 1261 _max_vmop_time / MICROUNITS);
duke@1 1262 }
duke@1 1263
duke@1 1264 // ------------------------------------------------------------------------------------------------
duke@1 1265 // Non-product code
duke@1 1266
duke@1 1267 #ifndef PRODUCT
duke@1 1268
duke@1 1269 void SafepointSynchronize::print_state() {
duke@1 1270 if (_state == _not_synchronized) {
duke@1 1271 tty->print_cr("not synchronized");
duke@1 1272 } else if (_state == _synchronizing || _state == _synchronized) {
duke@1 1273 tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
duke@1 1274 "synchronized");
duke@1 1275
duke@1 1276 for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
duke@1 1277 cur->safepoint_state()->print();
duke@1 1278 }
duke@1 1279 }
duke@1 1280 }
duke@1 1281
duke@1 1282 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
duke@1 1283 if (ShowSafepointMsgs) {
duke@1 1284 va_list ap;
duke@1 1285 va_start(ap, format);
duke@1 1286 tty->vprint_cr(format, ap);
duke@1 1287 va_end(ap);
duke@1 1288 }
duke@1 1289 }
duke@1 1290
duke@1 1291 #endif // !PRODUCT