view src/share/vm/utilities/taskqueue.cpp @ 6000:58c34ffeff58

7102489: RFE: cleanup jlong typedef on __APPLE__and _LLP64 systems. Summary: Define jlong as long on all LP64 platforms and add JLONG_FORMAT macro. Reviewed-by: dholmes, coleenp, mikael, kvn
author hseigel
date Wed, 19 Apr 2017 06:00:00 +0100
parents de5e8c8a9b87
children 72453885979f
line wrap: on
line source
/*
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/os.hpp"
#include "utilities/debug.hpp"
#include "utilities/stack.inline.hpp"
#include "utilities/taskqueue.hpp"
#ifdef TARGET_OS_FAMILY_linux
# include "thread_linux.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_solaris
# include "thread_solaris.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_windows
# include "thread_windows.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_aix
# include "thread_aix.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_bsd
# include "thread_bsd.inline.hpp"
#endif

#ifdef TRACESPINNING
uint ParallelTaskTerminator::_total_yields = 0;
uint ParallelTaskTerminator::_total_spins = 0;
uint ParallelTaskTerminator::_total_peeks = 0;
#endif

#if TASKQUEUE_STATS
const char * const TaskQueueStats::_names[last_stat_id] = {
  "qpush", "qpop", "qpop-s", "qattempt", "qsteal", "opush", "omax"
};

TaskQueueStats & TaskQueueStats::operator +=(const TaskQueueStats & addend)
{
  for (unsigned int i = 0; i < last_stat_id; ++i) {
    _stats[i] += addend._stats[i];
  }
  return *this;
}

void TaskQueueStats::print_header(unsigned int line, outputStream* const stream,
                                  unsigned int width)
{
  // Use a width w: 1 <= w <= max_width
  const unsigned int max_width = 40;
  const unsigned int w = MAX2(MIN2(width, max_width), 1U);

  if (line == 0) { // spaces equal in width to the header
    const unsigned int hdr_width = w * last_stat_id + last_stat_id - 1;
    stream->print("%*s", hdr_width, " ");
  } else if (line == 1) { // labels
    stream->print("%*s", w, _names[0]);
    for (unsigned int i = 1; i < last_stat_id; ++i) {
      stream->print(" %*s", w, _names[i]);
    }
  } else if (line == 2) { // dashed lines
    char dashes[max_width + 1];
    memset(dashes, '-', w);
    dashes[w] = '\0';
    stream->print("%s", dashes);
    for (unsigned int i = 1; i < last_stat_id; ++i) {
      stream->print(" %s", dashes);
    }
  }
}

void TaskQueueStats::print(outputStream* stream, unsigned int width) const
{
  #define FMT SIZE_FORMAT_W(*)
  stream->print(FMT, width, _stats[0]);
  for (unsigned int i = 1; i < last_stat_id; ++i) {
    stream->print(" " FMT, width, _stats[i]);
  }
  #undef FMT
}

#ifdef ASSERT
// Invariants which should hold after a TaskQueue has been emptied and is
// quiescent; they do not hold at arbitrary times.
void TaskQueueStats::verify() const
{
  assert(get(push) == get(pop) + get(steal),
         err_msg("push=" SIZE_FORMAT " pop=" SIZE_FORMAT " steal=" SIZE_FORMAT,
                 get(push), get(pop), get(steal)));
  assert(get(pop_slow) <= get(pop),
         err_msg("pop_slow=" SIZE_FORMAT " pop=" SIZE_FORMAT,
                 get(pop_slow), get(pop)));
  assert(get(steal) <= get(steal_attempt),
         err_msg("steal=" SIZE_FORMAT " steal_attempt=" SIZE_FORMAT,
                 get(steal), get(steal_attempt)));
  assert(get(overflow) == 0 || get(push) != 0,
         err_msg("overflow=" SIZE_FORMAT " push=" SIZE_FORMAT,
                 get(overflow), get(push)));
  assert(get(overflow_max_len) == 0 || get(overflow) != 0,
         err_msg("overflow_max_len=" SIZE_FORMAT " overflow=" SIZE_FORMAT,
                 get(overflow_max_len), get(overflow)));
}
#endif // ASSERT
#endif // TASKQUEUE_STATS

int TaskQueueSetSuper::randomParkAndMiller(int *seed0) {
  const int a =      16807;
  const int m = 2147483647;
  const int q =     127773;  /* m div a */
  const int r =       2836;  /* m mod a */
  assert(sizeof(int) == 4, "I think this relies on that");
  int seed = *seed0;
  int hi   = seed / q;
  int lo   = seed % q;
  int test = a * lo - r * hi;
  if (test > 0)
    seed = test;
  else
    seed = test + m;
  *seed0 = seed;
  return seed;
}

ParallelTaskTerminator::
ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set) :
  _n_threads(n_threads),
  _queue_set(queue_set),
  _offered_termination(0) {}

bool ParallelTaskTerminator::peek_in_queue_set() {
  return _queue_set->peek();
}

void ParallelTaskTerminator::yield() {
  assert(_offered_termination <= _n_threads, "Invariant");
  os::yield();
}

void ParallelTaskTerminator::sleep(uint millis) {
  assert(_offered_termination <= _n_threads, "Invariant");
  os::sleep(Thread::current(), millis, false);
}

bool
ParallelTaskTerminator::offer_termination(TerminatorTerminator* terminator) {
  assert(_n_threads > 0, "Initialization is incorrect");
  assert(_offered_termination < _n_threads, "Invariant");
  Atomic::inc(&_offered_termination);

  uint yield_count = 0;
  // Number of hard spin loops done since last yield
  uint hard_spin_count = 0;
  // Number of iterations in the hard spin loop.
  uint hard_spin_limit = WorkStealingHardSpins;

  // If WorkStealingSpinToYieldRatio is 0, no hard spinning is done.
  // If it is greater than 0, then start with a small number
  // of spins and increase number with each turn at spinning until
  // the count of hard spins exceeds WorkStealingSpinToYieldRatio.
  // Then do a yield() call and start spinning afresh.
  if (WorkStealingSpinToYieldRatio > 0) {
    hard_spin_limit = WorkStealingHardSpins >> WorkStealingSpinToYieldRatio;
    hard_spin_limit = MAX2(hard_spin_limit, 1U);
  }
  // Remember the initial spin limit.
  uint hard_spin_start = hard_spin_limit;

  // Loop waiting for all threads to offer termination or
  // more work.
  while (true) {
    assert(_offered_termination <= _n_threads, "Invariant");
    // Are all threads offering termination?
    if (_offered_termination == _n_threads) {
      return true;
    } else {
      // Look for more work.
      // Periodically sleep() instead of yield() to give threads
      // waiting on the cores the chance to grab this code
      if (yield_count <= WorkStealingYieldsBeforeSleep) {
        // Do a yield or hardspin.  For purposes of deciding whether
        // to sleep, count this as a yield.
        yield_count++;

        // Periodically call yield() instead spinning
        // After WorkStealingSpinToYieldRatio spins, do a yield() call
        // and reset the counts and starting limit.
        if (hard_spin_count > WorkStealingSpinToYieldRatio) {
          yield();
          hard_spin_count = 0;
          hard_spin_limit = hard_spin_start;
#ifdef TRACESPINNING
          _total_yields++;
#endif
        } else {
          // Hard spin this time
          // Increase the hard spinning period but only up to a limit.
          hard_spin_limit = MIN2(2*hard_spin_limit,
                                 (uint) WorkStealingHardSpins);
          for (uint j = 0; j < hard_spin_limit; j++) {
            SpinPause();
          }
          hard_spin_count++;
#ifdef TRACESPINNING
          _total_spins++;
#endif
        }
      } else {
        if (PrintGCDetails && Verbose) {
         gclog_or_tty->print_cr("ParallelTaskTerminator::offer_termination() "
           "thread %d sleeps after %d yields",
           Thread::current(), yield_count);
        }
        yield_count = 0;
        // A sleep will cause this processor to seek work on another processor's
        // runqueue, if it has nothing else to run (as opposed to the yield
        // which may only move the thread to the end of the this processor's
        // runqueue).
        sleep(WorkStealingSleepMillis);
      }

#ifdef TRACESPINNING
      _total_peeks++;
#endif
      if (peek_in_queue_set() ||
          (terminator != NULL && terminator->should_exit_termination())) {
        Atomic::dec(&_offered_termination);
        assert(_offered_termination < _n_threads, "Invariant");
        return false;
      }
    }
  }
}

#ifdef TRACESPINNING
void ParallelTaskTerminator::print_termination_counts() {
  gclog_or_tty->print_cr("ParallelTaskTerminator Total yields: " UINT32_FORMAT
    " Total spins: " UINT32_FORMAT " Total peeks: " UINT32_FORMAT,
    total_yields(),
    total_spins(),
    total_peeks());
}
#endif

void ParallelTaskTerminator::reset_for_reuse() {
  if (_offered_termination != 0) {
    assert(_offered_termination == _n_threads,
           "Terminator may still be in use");
    _offered_termination = 0;
  }
}

#ifdef ASSERT
bool ObjArrayTask::is_valid() const {
  return _obj != NULL && _obj->is_objArray() && _index > 0 &&
    _index < objArrayOop(_obj)->length();
}
#endif // ASSERT

void ParallelTaskTerminator::reset_for_reuse(int n_threads) {
  reset_for_reuse();
  _n_threads = n_threads;
}