view src/share/vm/gc/g1/g1EvacFailure.cpp @ 8544:46850a050b8b

8042668: GC Support for shared heap ranges in CDS Summary: Added "Archive Region" support to the G1 GC Reviewed-by: tschatzl, brutisso Contributed-by:
author jiangli
date Fri, 12 Jun 2015 19:49:54 -0400
parents 23cc50392e04
children 9690cc21ec74
line wrap: on
line source
 * Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights reserved.
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit if you need additional information or have any
 * questions.

#include "precompiled.hpp"
#include "gc/g1/concurrentMark.inline.hpp"
#include "gc/g1/dirtyCardQueue.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1CollectorState.hpp"
#include "gc/g1/g1EvacFailure.hpp"
#include "gc/g1/g1OopClosures.inline.hpp"
#include "gc/g1/g1_globals.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/g1/heapRegionRemSet.hpp"

class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  G1CollectedHeap* _g1;
  DirtyCardQueue *_dcq;
  G1SATBCardTableModRefBS* _ct_bs;

  UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
    _g1(g1), _ct_bs(_g1->g1_barrier_set()), _dcq(dcq) {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
  template <class T> void do_oop_work(T* p) {
    assert(_from->is_in_reserved(p), "paranoia");
    if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
        !_from->is_survivor()) {
      size_t card_index = _ct_bs->index_for(p);
      if (_ct_bs->mark_card_deferred(card_index)) {

class RemoveSelfForwardPtrObjClosure: public ObjectClosure {
  G1CollectedHeap* _g1;
  ConcurrentMark* _cm;
  HeapRegion* _hr;
  size_t _marked_bytes;
  OopsInHeapRegionClosure *_update_rset_cl;
  bool _during_initial_mark;
  bool _during_conc_mark;
  uint _worker_id;
  HeapWord* _end_of_last_gap;
  HeapWord* _last_gap_threshold;
  HeapWord* _last_obj_threshold;

  RemoveSelfForwardPtrObjClosure(G1CollectedHeap* g1, ConcurrentMark* cm,
                                 HeapRegion* hr,
                                 OopsInHeapRegionClosure* update_rset_cl,
                                 bool during_initial_mark,
                                 bool during_conc_mark,
                                 uint worker_id) :
    _g1(g1), _cm(cm), _hr(hr), _marked_bytes(0),
    _last_obj_threshold(hr->bottom()) { }

  size_t marked_bytes() { return _marked_bytes; }

  // <original comment>
  // The original idea here was to coalesce evacuated and dead objects.
  // However that caused complications with the block offset table (BOT).
  // In particular if there were two TLABs, one of them partially refined.
  // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  // The BOT entries of the unrefined part of TLAB_2 point to the start
  // of TLAB_2. If the last object of the TLAB_1 and the first object
  // of TLAB_2 are coalesced, then the cards of the unrefined part
  // would point into middle of the filler object.
  // The current approach is to not coalesce and leave the BOT contents intact.
  // </original comment>
  // We now reset the BOT when we start the object iteration over the
  // region and refine its entries for every object we come across. So
  // the above comment is not really relevant and we should be able
  // to coalesce dead objects if we want to.
  void do_object(oop obj) {
    HeapWord* obj_addr = (HeapWord*) obj;
    assert(_hr->is_in(obj_addr), "sanity");
    size_t obj_size = obj->size();
    HeapWord* obj_end = obj_addr + obj_size;

    if (_end_of_last_gap != obj_addr) {
      // there was a gap before obj_addr
      _last_gap_threshold = _hr->cross_threshold(_end_of_last_gap, obj_addr);

    if (obj->is_forwarded() && obj->forwardee() == obj) {
      // The object failed to move.

      // We consider all objects that we find self-forwarded to be
      // live. What we'll do is that we'll update the prev marking
      // info so that they are all under PTAMS and explicitly marked.
      if (!_cm->isPrevMarked(obj)) {
      if (_during_initial_mark) {
        // For the next marking info we'll only mark the
        // self-forwarded objects explicitly if we are during
        // initial-mark (since, normally, we only mark objects pointed
        // to by roots if we succeed in copying them). By marking all
        // self-forwarded objects we ensure that we mark any that are
        // still pointed to be roots. During concurrent marking, and
        // after initial-mark, we don't need to mark any objects
        // explicitly and all objects in the CSet are considered
        // (implicitly) live. So, we won't mark them explicitly and
        // we'll leave them over NTAMS.
        _cm->grayRoot(obj, obj_size, _worker_id, _hr);
      _marked_bytes += (obj_size * HeapWordSize);

      // While we were processing RSet buffers during the collection,
      // we actually didn't scan any cards on the collection set,
      // since we didn't want to update remembered sets with entries
      // that point into the collection set, given that live objects
      // from the collection set are about to move and such entries
      // will be stale very soon.
      // This change also dealt with a reliability issue which
      // involved scanning a card in the collection set and coming
      // across an array that was being chunked and looking malformed.
      // The problem is that, if evacuation fails, we might have
      // remembered set entries missing given that we skipped cards on
      // the collection set. So, we'll recreate such entries now.
    } else {

      // The object has been either evacuated or is dead. Fill it with a
      // dummy object.
      MemRegion mr(obj_addr, obj_size);

      // must nuke all dead objects which we skipped when iterating over the region
      _cm->clearRangePrevBitmap(MemRegion(_end_of_last_gap, obj_end));
    _end_of_last_gap = obj_end;
    _last_obj_threshold = _hr->cross_threshold(obj_addr, obj_end);

class RemoveSelfForwardPtrHRClosure: public HeapRegionClosure {
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  uint _worker_id;
  HeapRegionClaimer* _hrclaimer;

  DirtyCardQueue _dcq;
  UpdateRSetDeferred _update_rset_cl;

  RemoveSelfForwardPtrHRClosure(G1CollectedHeap* g1h,
                                uint worker_id,
                                HeapRegionClaimer* hrclaimer) :
      _g1h(g1h), _dcq(&g1h->dirty_card_queue_set()), _update_rset_cl(g1h, &_dcq),
      _worker_id(worker_id), _cm(_g1h->concurrent_mark()), _hrclaimer(hrclaimer) {

  bool doHeapRegion(HeapRegion *hr) {
    bool during_initial_mark = _g1h->collector_state()->during_initial_mark_pause();
    bool during_conc_mark = _g1h->collector_state()->mark_in_progress();

    assert(!hr->is_pinned(), err_msg("Unexpected pinned region at index %u", hr->hrm_index()));
    assert(hr->in_collection_set(), "bad CS");

    if (_hrclaimer->claim_region(hr->hrm_index())) {
      if (hr->evacuation_failed()) {
        RemoveSelfForwardPtrObjClosure rspc(_g1h, _cm, hr, &_update_rset_cl,

        _g1h->check_bitmaps("Self-Forwarding Ptr Removal", hr);

        // In the common case (i.e. when there is no evacuation
        // failure) we make sure that the following is done when
        // the region is freed so that it is "ready-to-go" when it's
        // re-allocated. However, when evacuation failure happens, a
        // region will remain in the heap and might ultimately be added
        // to a CSet in the future. So we have to be careful here and
        // make sure the region's RSet is ready for parallel iteration
        // whenever this might be required in the future.


    return false;

G1ParRemoveSelfForwardPtrsTask::G1ParRemoveSelfForwardPtrsTask(G1CollectedHeap* g1h) :
    AbstractGangTask("G1 Remove Self-forwarding Pointers"), _g1h(g1h),
    _hrclaimer(g1h->workers()->active_workers()) {}

void G1ParRemoveSelfForwardPtrsTask::work(uint worker_id) {
  RemoveSelfForwardPtrHRClosure rsfp_cl(_g1h, worker_id, &_hrclaimer);

  HeapRegion* hr = _g1h->start_cset_region_for_worker(worker_id);
  _g1h->collection_set_iterate_from(hr, &rsfp_cl);