changeset 13024:bd9ffb2bd98f

8139891: Prepare Unsafe for true encapsulation Reviewed-by: alanb, dholmes, jrose, psandoz, twisti
author chegar
date Tue, 27 Oct 2015 14:19:55 +0000
parents f267778b0caa
children 31d0181ac7af 5153d05ef8fa
files src/java.base/share/classes/java/nio/Bits.java src/java.base/share/classes/java/nio/Direct-X-Buffer.java.template src/java.base/share/classes/java/nio/Heap-X-Buffer.java.template src/java.base/share/classes/jdk/internal/misc/Unsafe.java src/java.base/share/classes/sun/misc/Unsafe.java src/java.base/share/classes/sun/security/provider/ByteArrayAccess.java
diffstat 6 files changed, 1395 insertions(+), 351 deletions(-) [+]
line wrap: on
line diff
--- a/src/java.base/share/classes/java/nio/Bits.java	Wed Oct 21 16:39:02 2015 -0400
+++ b/src/java.base/share/classes/java/nio/Bits.java	Tue Oct 27 14:19:55 2015 +0000
@@ -32,7 +32,7 @@
 import jdk.internal.misc.JavaNioAccess;
 import jdk.internal.misc.JavaLangRefAccess;
 import jdk.internal.misc.SharedSecrets;
-import sun.misc.Unsafe;
+import jdk.internal.misc.Unsafe;
 import sun.misc.VM;
 
 /**
--- a/src/java.base/share/classes/java/nio/Direct-X-Buffer.java.template	Wed Oct 21 16:39:02 2015 -0400
+++ b/src/java.base/share/classes/java/nio/Direct-X-Buffer.java.template	Tue Oct 27 14:19:55 2015 +0000
@@ -29,7 +29,7 @@
 
 import java.io.FileDescriptor;
 import sun.misc.Cleaner;
-import sun.misc.Unsafe;
+import jdk.internal.misc.Unsafe;
 import sun.misc.VM;
 import sun.nio.ch.DirectBuffer;
 
--- a/src/java.base/share/classes/java/nio/Heap-X-Buffer.java.template	Wed Oct 21 16:39:02 2015 -0400
+++ b/src/java.base/share/classes/java/nio/Heap-X-Buffer.java.template	Tue Oct 27 14:19:55 2015 +0000
@@ -27,7 +27,7 @@
 
 package java.nio;
 
-import sun.misc.Unsafe;
+import jdk.internal.misc.Unsafe;
 
 /**
 #if[rw]
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/java.base/share/classes/jdk/internal/misc/Unsafe.java	Tue Oct 27 14:19:55 2015 +0000
@@ -0,0 +1,1391 @@
+/*
+ * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package jdk.internal.misc;
+
+import java.lang.reflect.Field;
+import java.security.ProtectionDomain;
+
+import sun.reflect.CallerSensitive;
+import sun.reflect.Reflection;
+import sun.misc.VM;
+
+import jdk.internal.HotSpotIntrinsicCandidate;
+
+
+/**
+ * A collection of methods for performing low-level, unsafe operations.
+ * Although the class and all methods are public, use of this class is
+ * limited because only trusted code can obtain instances of it.
+ *
+ * @author John R. Rose
+ * @see #getUnsafe
+ */
+
+public final class Unsafe {
+
+    private static native void registerNatives();
+    static {
+        registerNatives();
+        sun.reflect.Reflection.registerMethodsToFilter(Unsafe.class, "getUnsafe");
+    }
+
+    private Unsafe() {}
+
+    private static final Unsafe theUnsafe = new Unsafe();
+
+    /**
+     * Provides the caller with the capability of performing unsafe
+     * operations.
+     *
+     * <p>The returned {@code Unsafe} object should be carefully guarded
+     * by the caller, since it can be used to read and write data at arbitrary
+     * memory addresses.  It must never be passed to untrusted code.
+     *
+     * <p>Most methods in this class are very low-level, and correspond to a
+     * small number of hardware instructions (on typical machines).  Compilers
+     * are encouraged to optimize these methods accordingly.
+     *
+     * <p>Here is a suggested idiom for using unsafe operations:
+     *
+     * <pre> {@code
+     * class MyTrustedClass {
+     *   private static final Unsafe unsafe = Unsafe.getUnsafe();
+     *   ...
+     *   private long myCountAddress = ...;
+     *   public int getCount() { return unsafe.getByte(myCountAddress); }
+     * }}</pre>
+     *
+     * (It may assist compilers to make the local variable {@code final}.)
+     *
+     * @throws  SecurityException  if a security manager exists and its
+     *          {@code checkPropertiesAccess} method doesn't allow
+     *          access to the system properties.
+     */
+    @CallerSensitive
+    public static Unsafe getUnsafe() {
+        Class<?> caller = Reflection.getCallerClass();
+        if (!VM.isSystemDomainLoader(caller.getClassLoader()))
+            throw new SecurityException("Unsafe");
+        return theUnsafe;
+    }
+
+    /// peek and poke operations
+    /// (compilers should optimize these to memory ops)
+
+    // These work on object fields in the Java heap.
+    // They will not work on elements of packed arrays.
+
+    /**
+     * Fetches a value from a given Java variable.
+     * More specifically, fetches a field or array element within the given
+     * object {@code o} at the given offset, or (if {@code o} is null)
+     * from the memory address whose numerical value is the given offset.
+     * <p>
+     * The results are undefined unless one of the following cases is true:
+     * <ul>
+     * <li>The offset was obtained from {@link #objectFieldOffset} on
+     * the {@link java.lang.reflect.Field} of some Java field and the object
+     * referred to by {@code o} is of a class compatible with that
+     * field's class.
+     *
+     * <li>The offset and object reference {@code o} (either null or
+     * non-null) were both obtained via {@link #staticFieldOffset}
+     * and {@link #staticFieldBase} (respectively) from the
+     * reflective {@link Field} representation of some Java field.
+     *
+     * <li>The object referred to by {@code o} is an array, and the offset
+     * is an integer of the form {@code B+N*S}, where {@code N} is
+     * a valid index into the array, and {@code B} and {@code S} are
+     * the values obtained by {@link #arrayBaseOffset} and {@link
+     * #arrayIndexScale} (respectively) from the array's class.  The value
+     * referred to is the {@code N}<em>th</em> element of the array.
+     *
+     * </ul>
+     * <p>
+     * If one of the above cases is true, the call references a specific Java
+     * variable (field or array element).  However, the results are undefined
+     * if that variable is not in fact of the type returned by this method.
+     * <p>
+     * This method refers to a variable by means of two parameters, and so
+     * it provides (in effect) a <em>double-register</em> addressing mode
+     * for Java variables.  When the object reference is null, this method
+     * uses its offset as an absolute address.  This is similar in operation
+     * to methods such as {@link #getInt(long)}, which provide (in effect) a
+     * <em>single-register</em> addressing mode for non-Java variables.
+     * However, because Java variables may have a different layout in memory
+     * from non-Java variables, programmers should not assume that these
+     * two addressing modes are ever equivalent.  Also, programmers should
+     * remember that offsets from the double-register addressing mode cannot
+     * be portably confused with longs used in the single-register addressing
+     * mode.
+     *
+     * @param o Java heap object in which the variable resides, if any, else
+     *        null
+     * @param offset indication of where the variable resides in a Java heap
+     *        object, if any, else a memory address locating the variable
+     *        statically
+     * @return the value fetched from the indicated Java variable
+     * @throws RuntimeException No defined exceptions are thrown, not even
+     *         {@link NullPointerException}
+     */
+    @HotSpotIntrinsicCandidate
+    public native int getInt(Object o, long offset);
+
+    /**
+     * Stores a value into a given Java variable.
+     * <p>
+     * The first two parameters are interpreted exactly as with
+     * {@link #getInt(Object, long)} to refer to a specific
+     * Java variable (field or array element).  The given value
+     * is stored into that variable.
+     * <p>
+     * The variable must be of the same type as the method
+     * parameter {@code x}.
+     *
+     * @param o Java heap object in which the variable resides, if any, else
+     *        null
+     * @param offset indication of where the variable resides in a Java heap
+     *        object, if any, else a memory address locating the variable
+     *        statically
+     * @param x the value to store into the indicated Java variable
+     * @throws RuntimeException No defined exceptions are thrown, not even
+     *         {@link NullPointerException}
+     */
+    @HotSpotIntrinsicCandidate
+    public native void putInt(Object o, long offset, int x);
+
+    /**
+     * Fetches a reference value from a given Java variable.
+     * @see #getInt(Object, long)
+     */
+    @HotSpotIntrinsicCandidate
+    public native Object getObject(Object o, long offset);
+
+    /**
+     * Stores a reference value into a given Java variable.
+     * <p>
+     * Unless the reference {@code x} being stored is either null
+     * or matches the field type, the results are undefined.
+     * If the reference {@code o} is non-null, card marks or
+     * other store barriers for that object (if the VM requires them)
+     * are updated.
+     * @see #putInt(Object, long, int)
+     */
+    @HotSpotIntrinsicCandidate
+    public native void putObject(Object o, long offset, Object x);
+
+    /** @see #getInt(Object, long) */
+    @HotSpotIntrinsicCandidate
+    public native boolean getBoolean(Object o, long offset);
+    /** @see #putInt(Object, long, int) */
+    @HotSpotIntrinsicCandidate
+    public native void    putBoolean(Object o, long offset, boolean x);
+    /** @see #getInt(Object, long) */
+    @HotSpotIntrinsicCandidate
+    public native byte    getByte(Object o, long offset);
+    /** @see #putInt(Object, long, int) */
+    @HotSpotIntrinsicCandidate
+    public native void    putByte(Object o, long offset, byte x);
+    /** @see #getInt(Object, long) */
+    @HotSpotIntrinsicCandidate
+    public native short   getShort(Object o, long offset);
+    /** @see #putInt(Object, long, int) */
+    @HotSpotIntrinsicCandidate
+    public native void    putShort(Object o, long offset, short x);
+    /** @see #getInt(Object, long) */
+    @HotSpotIntrinsicCandidate
+    public native char    getChar(Object o, long offset);
+    /** @see #putInt(Object, long, int) */
+    @HotSpotIntrinsicCandidate
+    public native void    putChar(Object o, long offset, char x);
+    /** @see #getInt(Object, long) */
+    @HotSpotIntrinsicCandidate
+    public native long    getLong(Object o, long offset);
+    /** @see #putInt(Object, long, int) */
+    @HotSpotIntrinsicCandidate
+    public native void    putLong(Object o, long offset, long x);
+    /** @see #getInt(Object, long) */
+    @HotSpotIntrinsicCandidate
+    public native float   getFloat(Object o, long offset);
+    /** @see #putInt(Object, long, int) */
+    @HotSpotIntrinsicCandidate
+    public native void    putFloat(Object o, long offset, float x);
+    /** @see #getInt(Object, long) */
+    @HotSpotIntrinsicCandidate
+    public native double  getDouble(Object o, long offset);
+    /** @see #putInt(Object, long, int) */
+    @HotSpotIntrinsicCandidate
+    public native void    putDouble(Object o, long offset, double x);
+
+    // These read VM internal data.
+
+    /**
+     * Fetches an uncompressed reference value from a given native variable
+     * ignoring the VM's compressed references mode.
+     *
+     * @param address a memory address locating the variable
+     * @return the value fetched from the indicated native variable
+     */
+    public native Object getUncompressedObject(long address);
+
+    /**
+     * Fetches the {@link java.lang.Class} Java mirror for the given native
+     * metaspace {@code Klass} pointer.
+     *
+     * @param metaspaceKlass a native metaspace {@code Klass} pointer
+     * @return the {@link java.lang.Class} Java mirror
+     */
+    public native Class<?> getJavaMirror(long metaspaceKlass);
+
+    /**
+     * Fetches a native metaspace {@code Klass} pointer for the given Java
+     * object.
+     *
+     * @param o Java heap object for which to fetch the class pointer
+     * @return a native metaspace {@code Klass} pointer
+     */
+    public native long getKlassPointer(Object o);
+
+    // These work on values in the C heap.
+
+    /**
+     * Fetches a value from a given memory address.  If the address is zero, or
+     * does not point into a block obtained from {@link #allocateMemory}, the
+     * results are undefined.
+     *
+     * @see #allocateMemory
+     */
+    @HotSpotIntrinsicCandidate
+    public native byte    getByte(long address);
+
+    /**
+     * Stores a value into a given memory address.  If the address is zero, or
+     * does not point into a block obtained from {@link #allocateMemory}, the
+     * results are undefined.
+     *
+     * @see #getByte(long)
+     */
+    @HotSpotIntrinsicCandidate
+    public native void    putByte(long address, byte x);
+
+    /** @see #getByte(long) */
+    @HotSpotIntrinsicCandidate
+    public native short   getShort(long address);
+    /** @see #putByte(long, byte) */
+    @HotSpotIntrinsicCandidate
+    public native void    putShort(long address, short x);
+    /** @see #getByte(long) */
+    @HotSpotIntrinsicCandidate
+    public native char    getChar(long address);
+    /** @see #putByte(long, byte) */
+    @HotSpotIntrinsicCandidate
+    public native void    putChar(long address, char x);
+    /** @see #getByte(long) */
+    @HotSpotIntrinsicCandidate
+    public native int     getInt(long address);
+    /** @see #putByte(long, byte) */
+    @HotSpotIntrinsicCandidate
+    public native void    putInt(long address, int x);
+    /** @see #getByte(long) */
+    @HotSpotIntrinsicCandidate
+    public native long    getLong(long address);
+    /** @see #putByte(long, byte) */
+    @HotSpotIntrinsicCandidate
+    public native void    putLong(long address, long x);
+    /** @see #getByte(long) */
+    @HotSpotIntrinsicCandidate
+    public native float   getFloat(long address);
+    /** @see #putByte(long, byte) */
+    @HotSpotIntrinsicCandidate
+    public native void    putFloat(long address, float x);
+    /** @see #getByte(long) */
+    @HotSpotIntrinsicCandidate
+    public native double  getDouble(long address);
+    /** @see #putByte(long, byte) */
+    @HotSpotIntrinsicCandidate
+    public native void    putDouble(long address, double x);
+
+    /**
+     * Fetches a native pointer from a given memory address.  If the address is
+     * zero, or does not point into a block obtained from {@link
+     * #allocateMemory}, the results are undefined.
+     *
+     * <p>If the native pointer is less than 64 bits wide, it is extended as
+     * an unsigned number to a Java long.  The pointer may be indexed by any
+     * given byte offset, simply by adding that offset (as a simple integer) to
+     * the long representing the pointer.  The number of bytes actually read
+     * from the target address may be determined by consulting {@link
+     * #addressSize}.
+     *
+     * @see #allocateMemory
+     */
+    @HotSpotIntrinsicCandidate
+    public native long getAddress(long address);
+
+    /**
+     * Stores a native pointer into a given memory address.  If the address is
+     * zero, or does not point into a block obtained from {@link
+     * #allocateMemory}, the results are undefined.
+     *
+     * <p>The number of bytes actually written at the target address may be
+     * determined by consulting {@link #addressSize}.
+     *
+     * @see #getAddress(long)
+     */
+    @HotSpotIntrinsicCandidate
+    public native void putAddress(long address, long x);
+
+    /// wrappers for malloc, realloc, free:
+
+    /**
+     * Allocates a new block of native memory, of the given size in bytes.  The
+     * contents of the memory are uninitialized; they will generally be
+     * garbage.  The resulting native pointer will never be zero, and will be
+     * aligned for all value types.  Dispose of this memory by calling {@link
+     * #freeMemory}, or resize it with {@link #reallocateMemory}.
+     *
+     * @throws IllegalArgumentException if the size is negative or too large
+     *         for the native size_t type
+     *
+     * @throws OutOfMemoryError if the allocation is refused by the system
+     *
+     * @see #getByte(long)
+     * @see #putByte(long, byte)
+     */
+    public native long allocateMemory(long bytes);
+
+    /**
+     * Resizes a new block of native memory, to the given size in bytes.  The
+     * contents of the new block past the size of the old block are
+     * uninitialized; they will generally be garbage.  The resulting native
+     * pointer will be zero if and only if the requested size is zero.  The
+     * resulting native pointer will be aligned for all value types.  Dispose
+     * of this memory by calling {@link #freeMemory}, or resize it with {@link
+     * #reallocateMemory}.  The address passed to this method may be null, in
+     * which case an allocation will be performed.
+     *
+     * @throws IllegalArgumentException if the size is negative or too large
+     *         for the native size_t type
+     *
+     * @throws OutOfMemoryError if the allocation is refused by the system
+     *
+     * @see #allocateMemory
+     */
+    public native long reallocateMemory(long address, long bytes);
+
+    /**
+     * Sets all bytes in a given block of memory to a fixed value
+     * (usually zero).
+     *
+     * <p>This method determines a block's base address by means of two parameters,
+     * and so it provides (in effect) a <em>double-register</em> addressing mode,
+     * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
+     * the offset supplies an absolute base address.
+     *
+     * <p>The stores are in coherent (atomic) units of a size determined
+     * by the address and length parameters.  If the effective address and
+     * length are all even modulo 8, the stores take place in 'long' units.
+     * If the effective address and length are (resp.) even modulo 4 or 2,
+     * the stores take place in units of 'int' or 'short'.
+     *
+     * @since 1.7
+     */
+    public native void setMemory(Object o, long offset, long bytes, byte value);
+
+    /**
+     * Sets all bytes in a given block of memory to a fixed value
+     * (usually zero).  This provides a <em>single-register</em> addressing mode,
+     * as discussed in {@link #getInt(Object,long)}.
+     *
+     * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
+     */
+    public void setMemory(long address, long bytes, byte value) {
+        setMemory(null, address, bytes, value);
+    }
+
+    /**
+     * Sets all bytes in a given block of memory to a copy of another
+     * block.
+     *
+     * <p>This method determines each block's base address by means of two parameters,
+     * and so it provides (in effect) a <em>double-register</em> addressing mode,
+     * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
+     * the offset supplies an absolute base address.
+     *
+     * <p>The transfers are in coherent (atomic) units of a size determined
+     * by the address and length parameters.  If the effective addresses and
+     * length are all even modulo 8, the transfer takes place in 'long' units.
+     * If the effective addresses and length are (resp.) even modulo 4 or 2,
+     * the transfer takes place in units of 'int' or 'short'.
+     *
+     * @since 1.7
+     */
+    @HotSpotIntrinsicCandidate
+    public native void copyMemory(Object srcBase, long srcOffset,
+                                  Object destBase, long destOffset,
+                                  long bytes);
+    /**
+     * Sets all bytes in a given block of memory to a copy of another
+     * block.  This provides a <em>single-register</em> addressing mode,
+     * as discussed in {@link #getInt(Object,long)}.
+     *
+     * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
+     */
+    public void copyMemory(long srcAddress, long destAddress, long bytes) {
+        copyMemory(null, srcAddress, null, destAddress, bytes);
+    }
+
+    /**
+     * Disposes of a block of native memory, as obtained from {@link
+     * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
+     * this method may be null, in which case no action is taken.
+     *
+     * @see #allocateMemory
+     */
+    public native void freeMemory(long address);
+
+    /// random queries
+
+    /**
+     * This constant differs from all results that will ever be returned from
+     * {@link #staticFieldOffset}, {@link #objectFieldOffset},
+     * or {@link #arrayBaseOffset}.
+     */
+    public static final int INVALID_FIELD_OFFSET   = -1;
+
+    /**
+     * Reports the location of a given field in the storage allocation of its
+     * class.  Do not expect to perform any sort of arithmetic on this offset;
+     * it is just a cookie which is passed to the unsafe heap memory accessors.
+     *
+     * <p>Any given field will always have the same offset and base, and no
+     * two distinct fields of the same class will ever have the same offset
+     * and base.
+     *
+     * <p>As of 1.4.1, offsets for fields are represented as long values,
+     * although the Sun JVM does not use the most significant 32 bits.
+     * However, JVM implementations which store static fields at absolute
+     * addresses can use long offsets and null base pointers to express
+     * the field locations in a form usable by {@link #getInt(Object,long)}.
+     * Therefore, code which will be ported to such JVMs on 64-bit platforms
+     * must preserve all bits of static field offsets.
+     * @see #getInt(Object, long)
+     */
+    public native long objectFieldOffset(Field f);
+
+    /**
+     * Reports the location of a given static field, in conjunction with {@link
+     * #staticFieldBase}.
+     * <p>Do not expect to perform any sort of arithmetic on this offset;
+     * it is just a cookie which is passed to the unsafe heap memory accessors.
+     *
+     * <p>Any given field will always have the same offset, and no two distinct
+     * fields of the same class will ever have the same offset.
+     *
+     * <p>As of 1.4.1, offsets for fields are represented as long values,
+     * although the Sun JVM does not use the most significant 32 bits.
+     * It is hard to imagine a JVM technology which needs more than
+     * a few bits to encode an offset within a non-array object,
+     * However, for consistency with other methods in this class,
+     * this method reports its result as a long value.
+     * @see #getInt(Object, long)
+     */
+    public native long staticFieldOffset(Field f);
+
+    /**
+     * Reports the location of a given static field, in conjunction with {@link
+     * #staticFieldOffset}.
+     * <p>Fetch the base "Object", if any, with which static fields of the
+     * given class can be accessed via methods like {@link #getInt(Object,
+     * long)}.  This value may be null.  This value may refer to an object
+     * which is a "cookie", not guaranteed to be a real Object, and it should
+     * not be used in any way except as argument to the get and put routines in
+     * this class.
+     */
+    public native Object staticFieldBase(Field f);
+
+    /**
+     * Detects if the given class may need to be initialized. This is often
+     * needed in conjunction with obtaining the static field base of a
+     * class.
+     * @return false only if a call to {@code ensureClassInitialized} would have no effect
+     */
+    public native boolean shouldBeInitialized(Class<?> c);
+
+    /**
+     * Ensures the given class has been initialized. This is often
+     * needed in conjunction with obtaining the static field base of a
+     * class.
+     */
+    public native void ensureClassInitialized(Class<?> c);
+
+    /**
+     * Reports the offset of the first element in the storage allocation of a
+     * given array class.  If {@link #arrayIndexScale} returns a non-zero value
+     * for the same class, you may use that scale factor, together with this
+     * base offset, to form new offsets to access elements of arrays of the
+     * given class.
+     *
+     * @see #getInt(Object, long)
+     * @see #putInt(Object, long, int)
+     */
+    public native int arrayBaseOffset(Class<?> arrayClass);
+
+    /** The value of {@code arrayBaseOffset(boolean[].class)} */
+    public static final int ARRAY_BOOLEAN_BASE_OFFSET
+            = theUnsafe.arrayBaseOffset(boolean[].class);
+
+    /** The value of {@code arrayBaseOffset(byte[].class)} */
+    public static final int ARRAY_BYTE_BASE_OFFSET
+            = theUnsafe.arrayBaseOffset(byte[].class);
+
+    /** The value of {@code arrayBaseOffset(short[].class)} */
+    public static final int ARRAY_SHORT_BASE_OFFSET
+            = theUnsafe.arrayBaseOffset(short[].class);
+
+    /** The value of {@code arrayBaseOffset(char[].class)} */
+    public static final int ARRAY_CHAR_BASE_OFFSET
+            = theUnsafe.arrayBaseOffset(char[].class);
+
+    /** The value of {@code arrayBaseOffset(int[].class)} */
+    public static final int ARRAY_INT_BASE_OFFSET
+            = theUnsafe.arrayBaseOffset(int[].class);
+
+    /** The value of {@code arrayBaseOffset(long[].class)} */
+    public static final int ARRAY_LONG_BASE_OFFSET
+            = theUnsafe.arrayBaseOffset(long[].class);
+
+    /** The value of {@code arrayBaseOffset(float[].class)} */
+    public static final int ARRAY_FLOAT_BASE_OFFSET
+            = theUnsafe.arrayBaseOffset(float[].class);
+
+    /** The value of {@code arrayBaseOffset(double[].class)} */
+    public static final int ARRAY_DOUBLE_BASE_OFFSET
+            = theUnsafe.arrayBaseOffset(double[].class);
+
+    /** The value of {@code arrayBaseOffset(Object[].class)} */
+    public static final int ARRAY_OBJECT_BASE_OFFSET
+            = theUnsafe.arrayBaseOffset(Object[].class);
+
+    /**
+     * Reports the scale factor for addressing elements in the storage
+     * allocation of a given array class.  However, arrays of "narrow" types
+     * will generally not work properly with accessors like {@link
+     * #getByte(Object, long)}, so the scale factor for such classes is reported
+     * as zero.
+     *
+     * @see #arrayBaseOffset
+     * @see #getInt(Object, long)
+     * @see #putInt(Object, long, int)
+     */
+    public native int arrayIndexScale(Class<?> arrayClass);
+
+    /** The value of {@code arrayIndexScale(boolean[].class)} */
+    public static final int ARRAY_BOOLEAN_INDEX_SCALE
+            = theUnsafe.arrayIndexScale(boolean[].class);
+
+    /** The value of {@code arrayIndexScale(byte[].class)} */
+    public static final int ARRAY_BYTE_INDEX_SCALE
+            = theUnsafe.arrayIndexScale(byte[].class);
+
+    /** The value of {@code arrayIndexScale(short[].class)} */
+    public static final int ARRAY_SHORT_INDEX_SCALE
+            = theUnsafe.arrayIndexScale(short[].class);
+
+    /** The value of {@code arrayIndexScale(char[].class)} */
+    public static final int ARRAY_CHAR_INDEX_SCALE
+            = theUnsafe.arrayIndexScale(char[].class);
+
+    /** The value of {@code arrayIndexScale(int[].class)} */
+    public static final int ARRAY_INT_INDEX_SCALE
+            = theUnsafe.arrayIndexScale(int[].class);
+
+    /** The value of {@code arrayIndexScale(long[].class)} */
+    public static final int ARRAY_LONG_INDEX_SCALE
+            = theUnsafe.arrayIndexScale(long[].class);
+
+    /** The value of {@code arrayIndexScale(float[].class)} */
+    public static final int ARRAY_FLOAT_INDEX_SCALE
+            = theUnsafe.arrayIndexScale(float[].class);
+
+    /** The value of {@code arrayIndexScale(double[].class)} */
+    public static final int ARRAY_DOUBLE_INDEX_SCALE
+            = theUnsafe.arrayIndexScale(double[].class);
+
+    /** The value of {@code arrayIndexScale(Object[].class)} */
+    public static final int ARRAY_OBJECT_INDEX_SCALE
+            = theUnsafe.arrayIndexScale(Object[].class);
+
+    /**
+     * Reports the size in bytes of a native pointer, as stored via {@link
+     * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
+     * other primitive types (as stored in native memory blocks) is determined
+     * fully by their information content.
+     */
+    public native int addressSize();
+
+    /** The value of {@code addressSize()} */
+    public static final int ADDRESS_SIZE = theUnsafe.addressSize();
+
+    /**
+     * Reports the size in bytes of a native memory page (whatever that is).
+     * This value will always be a power of two.
+     */
+    public native int pageSize();
+
+
+    /// random trusted operations from JNI:
+
+    /**
+     * Tells the VM to define a class, without security checks.  By default, the
+     * class loader and protection domain come from the caller's class.
+     */
+    public native Class<?> defineClass(String name, byte[] b, int off, int len,
+                                       ClassLoader loader,
+                                       ProtectionDomain protectionDomain);
+
+    /**
+     * Defines a class but does not make it known to the class loader or system dictionary.
+     * <p>
+     * For each CP entry, the corresponding CP patch must either be null or have
+     * the a format that matches its tag:
+     * <ul>
+     * <li>Integer, Long, Float, Double: the corresponding wrapper object type from java.lang
+     * <li>Utf8: a string (must have suitable syntax if used as signature or name)
+     * <li>Class: any java.lang.Class object
+     * <li>String: any object (not just a java.lang.String)
+     * <li>InterfaceMethodRef: (NYI) a method handle to invoke on that call site's arguments
+     * </ul>
+     * @param hostClass context for linkage, access control, protection domain, and class loader
+     * @param data      bytes of a class file
+     * @param cpPatches where non-null entries exist, they replace corresponding CP entries in data
+     */
+    public native Class<?> defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches);
+
+    /**
+     * Allocates an instance but does not run any constructor.
+     * Initializes the class if it has not yet been.
+     */
+    @HotSpotIntrinsicCandidate
+    public native Object allocateInstance(Class<?> cls)
+        throws InstantiationException;
+
+    /** Throws the exception without telling the verifier. */
+    public native void throwException(Throwable ee);
+
+    /**
+     * Atomically updates Java variable to {@code x} if it is currently
+     * holding {@code expected}.
+     *
+     * <p>This operation has memory semantics of a {@code volatile} read
+     * and write.  Corresponds to C11 atomic_compare_exchange_strong.
+     *
+     * @return {@code true} if successful
+     */
+    @HotSpotIntrinsicCandidate
+    public final native boolean compareAndSwapObject(Object o, long offset,
+                                                     Object expected,
+                                                     Object x);
+
+    /**
+     * Atomically updates Java variable to {@code x} if it is currently
+     * holding {@code expected}.
+     *
+     * <p>This operation has memory semantics of a {@code volatile} read
+     * and write.  Corresponds to C11 atomic_compare_exchange_strong.
+     *
+     * @return {@code true} if successful
+     */
+    @HotSpotIntrinsicCandidate
+    public final native boolean compareAndSwapInt(Object o, long offset,
+                                                  int expected,
+                                                  int x);
+
+    /**
+     * Atomically updates Java variable to {@code x} if it is currently
+     * holding {@code expected}.
+     *
+     * <p>This operation has memory semantics of a {@code volatile} read
+     * and write.  Corresponds to C11 atomic_compare_exchange_strong.
+     *
+     * @return {@code true} if successful
+     */
+    @HotSpotIntrinsicCandidate
+    public final native boolean compareAndSwapLong(Object o, long offset,
+                                                   long expected,
+                                                   long x);
+
+    /**
+     * Fetches a reference value from a given Java variable, with volatile
+     * load semantics. Otherwise identical to {@link #getObject(Object, long)}
+     */
+    @HotSpotIntrinsicCandidate
+    public native Object getObjectVolatile(Object o, long offset);
+
+    /**
+     * Stores a reference value into a given Java variable, with
+     * volatile store semantics. Otherwise identical to {@link #putObject(Object, long, Object)}
+     */
+    @HotSpotIntrinsicCandidate
+    public native void    putObjectVolatile(Object o, long offset, Object x);
+
+    /** Volatile version of {@link #getInt(Object, long)}  */
+    @HotSpotIntrinsicCandidate
+    public native int     getIntVolatile(Object o, long offset);
+
+    /** Volatile version of {@link #putInt(Object, long, int)}  */
+    @HotSpotIntrinsicCandidate
+    public native void    putIntVolatile(Object o, long offset, int x);
+
+    /** Volatile version of {@link #getBoolean(Object, long)}  */
+    @HotSpotIntrinsicCandidate
+    public native boolean getBooleanVolatile(Object o, long offset);
+
+    /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
+    @HotSpotIntrinsicCandidate
+    public native void    putBooleanVolatile(Object o, long offset, boolean x);
+
+    /** Volatile version of {@link #getByte(Object, long)}  */
+    @HotSpotIntrinsicCandidate
+    public native byte    getByteVolatile(Object o, long offset);
+
+    /** Volatile version of {@link #putByte(Object, long, byte)}  */
+    @HotSpotIntrinsicCandidate
+    public native void    putByteVolatile(Object o, long offset, byte x);
+
+    /** Volatile version of {@link #getShort(Object, long)}  */
+    @HotSpotIntrinsicCandidate
+    public native short   getShortVolatile(Object o, long offset);
+
+    /** Volatile version of {@link #putShort(Object, long, short)}  */
+    @HotSpotIntrinsicCandidate
+    public native void    putShortVolatile(Object o, long offset, short x);
+
+    /** Volatile version of {@link #getChar(Object, long)}  */
+    @HotSpotIntrinsicCandidate
+    public native char    getCharVolatile(Object o, long offset);
+
+    /** Volatile version of {@link #putChar(Object, long, char)}  */
+    @HotSpotIntrinsicCandidate
+    public native void    putCharVolatile(Object o, long offset, char x);
+
+    /** Volatile version of {@link #getLong(Object, long)}  */
+    @HotSpotIntrinsicCandidate
+    public native long    getLongVolatile(Object o, long offset);
+
+    /** Volatile version of {@link #putLong(Object, long, long)}  */
+    @HotSpotIntrinsicCandidate
+    public native void    putLongVolatile(Object o, long offset, long x);
+
+    /** Volatile version of {@link #getFloat(Object, long)}  */
+    @HotSpotIntrinsicCandidate
+    public native float   getFloatVolatile(Object o, long offset);
+
+    /** Volatile version of {@link #putFloat(Object, long, float)}  */
+    @HotSpotIntrinsicCandidate
+    public native void    putFloatVolatile(Object o, long offset, float x);
+
+    /** Volatile version of {@link #getDouble(Object, long)}  */
+    @HotSpotIntrinsicCandidate
+    public native double  getDoubleVolatile(Object o, long offset);
+
+    /** Volatile version of {@link #putDouble(Object, long, double)}  */
+    @HotSpotIntrinsicCandidate
+    public native void    putDoubleVolatile(Object o, long offset, double x);
+
+    /**
+     * Version of {@link #putObjectVolatile(Object, long, Object)}
+     * that does not guarantee immediate visibility of the store to
+     * other threads. This method is generally only useful if the
+     * underlying field is a Java volatile (or if an array cell, one
+     * that is otherwise only accessed using volatile accesses).
+     *
+     * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
+     */
+    @HotSpotIntrinsicCandidate
+    public native void    putOrderedObject(Object o, long offset, Object x);
+
+    /** Ordered/Lazy version of {@link #putIntVolatile(Object, long, int)}  */
+    @HotSpotIntrinsicCandidate
+    public native void    putOrderedInt(Object o, long offset, int x);
+
+    /** Ordered/Lazy version of {@link #putLongVolatile(Object, long, long)} */
+    @HotSpotIntrinsicCandidate
+    public native void    putOrderedLong(Object o, long offset, long x);
+
+    /**
+     * Unblocks the given thread blocked on {@code park}, or, if it is
+     * not blocked, causes the subsequent call to {@code park} not to
+     * block.  Note: this operation is "unsafe" solely because the
+     * caller must somehow ensure that the thread has not been
+     * destroyed. Nothing special is usually required to ensure this
+     * when called from Java (in which there will ordinarily be a live
+     * reference to the thread) but this is not nearly-automatically
+     * so when calling from native code.
+     *
+     * @param thread the thread to unpark.
+     */
+    @HotSpotIntrinsicCandidate
+    public native void unpark(Object thread);
+
+    /**
+     * Blocks current thread, returning when a balancing
+     * {@code unpark} occurs, or a balancing {@code unpark} has
+     * already occurred, or the thread is interrupted, or, if not
+     * absolute and time is not zero, the given time nanoseconds have
+     * elapsed, or if absolute, the given deadline in milliseconds
+     * since Epoch has passed, or spuriously (i.e., returning for no
+     * "reason"). Note: This operation is in the Unsafe class only
+     * because {@code unpark} is, so it would be strange to place it
+     * elsewhere.
+     */
+    @HotSpotIntrinsicCandidate
+    public native void park(boolean isAbsolute, long time);
+
+    /**
+     * Gets the load average in the system run queue assigned
+     * to the available processors averaged over various periods of time.
+     * This method retrieves the given {@code nelem} samples and
+     * assigns to the elements of the given {@code loadavg} array.
+     * The system imposes a maximum of 3 samples, representing
+     * averages over the last 1,  5,  and  15 minutes, respectively.
+     *
+     * @param loadavg an array of double of size nelems
+     * @param nelems the number of samples to be retrieved and
+     *        must be 1 to 3.
+     *
+     * @return the number of samples actually retrieved; or -1
+     *         if the load average is unobtainable.
+     */
+    public native int getLoadAverage(double[] loadavg, int nelems);
+
+    // The following contain CAS-based Java implementations used on
+    // platforms not supporting native instructions
+
+    /**
+     * Atomically adds the given value to the current value of a field
+     * or array element within the given object {@code o}
+     * at the given {@code offset}.
+     *
+     * @param o object/array to update the field/element in
+     * @param offset field/element offset
+     * @param delta the value to add
+     * @return the previous value
+     * @since 1.8
+     */
+    @HotSpotIntrinsicCandidate
+    public final int getAndAddInt(Object o, long offset, int delta) {
+        int v;
+        do {
+            v = getIntVolatile(o, offset);
+        } while (!compareAndSwapInt(o, offset, v, v + delta));
+        return v;
+    }
+
+    /**
+     * Atomically adds the given value to the current value of a field
+     * or array element within the given object {@code o}
+     * at the given {@code offset}.
+     *
+     * @param o object/array to update the field/element in
+     * @param offset field/element offset
+     * @param delta the value to add
+     * @return the previous value
+     * @since 1.8
+     */
+    @HotSpotIntrinsicCandidate
+    public final long getAndAddLong(Object o, long offset, long delta) {
+        long v;
+        do {
+            v = getLongVolatile(o, offset);
+        } while (!compareAndSwapLong(o, offset, v, v + delta));
+        return v;
+    }
+
+    /**
+     * Atomically exchanges the given value with the current value of
+     * a field or array element within the given object {@code o}
+     * at the given {@code offset}.
+     *
+     * @param o object/array to update the field/element in
+     * @param offset field/element offset
+     * @param newValue new value
+     * @return the previous value
+     * @since 1.8
+     */
+    @HotSpotIntrinsicCandidate
+    public final int getAndSetInt(Object o, long offset, int newValue) {
+        int v;
+        do {
+            v = getIntVolatile(o, offset);
+        } while (!compareAndSwapInt(o, offset, v, newValue));
+        return v;
+    }
+
+    /**
+     * Atomically exchanges the given value with the current value of
+     * a field or array element within the given object {@code o}
+     * at the given {@code offset}.
+     *
+     * @param o object/array to update the field/element in
+     * @param offset field/element offset
+     * @param newValue new value
+     * @return the previous value
+     * @since 1.8
+     */
+    @HotSpotIntrinsicCandidate
+    public final long getAndSetLong(Object o, long offset, long newValue) {
+        long v;
+        do {
+            v = getLongVolatile(o, offset);
+        } while (!compareAndSwapLong(o, offset, v, newValue));
+        return v;
+    }
+
+    /**
+     * Atomically exchanges the given reference value with the current
+     * reference value of a field or array element within the given
+     * object {@code o} at the given {@code offset}.
+     *
+     * @param o object/array to update the field/element in
+     * @param offset field/element offset
+     * @param newValue new value
+     * @return the previous value
+     * @since 1.8
+     */
+    @HotSpotIntrinsicCandidate
+    public final Object getAndSetObject(Object o, long offset, Object newValue) {
+        Object v;
+        do {
+            v = getObjectVolatile(o, offset);
+        } while (!compareAndSwapObject(o, offset, v, newValue));
+        return v;
+    }
+
+
+    /**
+     * Ensures that loads before the fence will not be reordered with loads and
+     * stores after the fence; a "LoadLoad plus LoadStore barrier".
+     *
+     * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
+     * (an "acquire fence").
+     *
+     * A pure LoadLoad fence is not provided, since the addition of LoadStore
+     * is almost always desired, and most current hardware instructions that
+     * provide a LoadLoad barrier also provide a LoadStore barrier for free.
+     * @since 1.8
+     */
+    @HotSpotIntrinsicCandidate
+    public native void loadFence();
+
+    /**
+     * Ensures that loads and stores before the fence will not be reordered with
+     * stores after the fence; a "StoreStore plus LoadStore barrier".
+     *
+     * Corresponds to C11 atomic_thread_fence(memory_order_release)
+     * (a "release fence").
+     *
+     * A pure StoreStore fence is not provided, since the addition of LoadStore
+     * is almost always desired, and most current hardware instructions that
+     * provide a StoreStore barrier also provide a LoadStore barrier for free.
+     * @since 1.8
+     */
+    @HotSpotIntrinsicCandidate
+    public native void storeFence();
+
+    /**
+     * Ensures that loads and stores before the fence will not be reordered
+     * with loads and stores after the fence.  Implies the effects of both
+     * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
+     * barrier.
+     *
+     * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
+     * @since 1.8
+     */
+    @HotSpotIntrinsicCandidate
+    public native void fullFence();
+
+    /**
+     * Throws IllegalAccessError; for use by the VM for access control
+     * error support.
+     * @since 1.8
+     */
+    private static void throwIllegalAccessError() {
+        throw new IllegalAccessError();
+    }
+
+    /**
+     * @return Returns true if the native byte ordering of this
+     * platform is big-endian, false if it is little-endian.
+     */
+    public final boolean isBigEndian() { return BE; }
+
+    /**
+     * @return Returns true if this platform is capable of performing
+     * accesses at addresses which are not aligned for the type of the
+     * primitive type being accessed, false otherwise.
+     */
+    public final boolean unalignedAccess() { return unalignedAccess; }
+
+    /**
+     * Fetches a value at some byte offset into a given Java object.
+     * More specifically, fetches a value within the given object
+     * <code>o</code> at the given offset, or (if <code>o</code> is
+     * null) from the memory address whose numerical value is the
+     * given offset.  <p>
+     *
+     * The specification of this method is the same as {@link
+     * #getLong(Object, long)} except that the offset does not need to
+     * have been obtained from {@link #objectFieldOffset} on the
+     * {@link java.lang.reflect.Field} of some Java field.  The value
+     * in memory is raw data, and need not correspond to any Java
+     * variable.  Unless <code>o</code> is null, the value accessed
+     * must be entirely within the allocated object.  The endianness
+     * of the value in memory is the endianness of the native platform.
+     *
+     * <p> The read will be atomic with respect to the largest power
+     * of two that divides the GCD of the offset and the storage size.
+     * For example, getLongUnaligned will make atomic reads of 2-, 4-,
+     * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
+     * respectively.  There are no other guarantees of atomicity.
+     * <p>
+     * 8-byte atomicity is only guaranteed on platforms on which
+     * support atomic accesses to longs.
+     *
+     * @param o Java heap object in which the value resides, if any, else
+     *        null
+     * @param offset The offset in bytes from the start of the object
+     * @return the value fetched from the indicated object
+     * @throws RuntimeException No defined exceptions are thrown, not even
+     *         {@link NullPointerException}
+     * @since 1.9
+     */
+    @HotSpotIntrinsicCandidate
+    public final long getLongUnaligned(Object o, long offset) {
+        if ((offset & 7) == 0) {
+            return getLong(o, offset);
+        } else if ((offset & 3) == 0) {
+            return makeLong(getInt(o, offset),
+                            getInt(o, offset + 4));
+        } else if ((offset & 1) == 0) {
+            return makeLong(getShort(o, offset),
+                            getShort(o, offset + 2),
+                            getShort(o, offset + 4),
+                            getShort(o, offset + 6));
+        } else {
+            return makeLong(getByte(o, offset),
+                            getByte(o, offset + 1),
+                            getByte(o, offset + 2),
+                            getByte(o, offset + 3),
+                            getByte(o, offset + 4),
+                            getByte(o, offset + 5),
+                            getByte(o, offset + 6),
+                            getByte(o, offset + 7));
+        }
+    }
+    /**
+     * As {@link #getLongUnaligned(Object, long)} but with an
+     * additional argument which specifies the endianness of the value
+     * as stored in memory.
+     *
+     * @param o Java heap object in which the variable resides
+     * @param offset The offset in bytes from the start of the object
+     * @param bigEndian The endianness of the value
+     * @return the value fetched from the indicated object
+     * @since 1.9
+     */
+    public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
+        return convEndian(bigEndian, getLongUnaligned(o, offset));
+    }
+
+    /** @see #getLongUnaligned(Object, long) */
+    @HotSpotIntrinsicCandidate
+    public final int getIntUnaligned(Object o, long offset) {
+        if ((offset & 3) == 0) {
+            return getInt(o, offset);
+        } else if ((offset & 1) == 0) {
+            return makeInt(getShort(o, offset),
+                           getShort(o, offset + 2));
+        } else {
+            return makeInt(getByte(o, offset),
+                           getByte(o, offset + 1),
+                           getByte(o, offset + 2),
+                           getByte(o, offset + 3));
+        }
+    }
+    /** @see #getLongUnaligned(Object, long, boolean) */
+    public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
+        return convEndian(bigEndian, getIntUnaligned(o, offset));
+    }
+
+    /** @see #getLongUnaligned(Object, long) */
+    @HotSpotIntrinsicCandidate
+    public final short getShortUnaligned(Object o, long offset) {
+        if ((offset & 1) == 0) {
+            return getShort(o, offset);
+        } else {
+            return makeShort(getByte(o, offset),
+                             getByte(o, offset + 1));
+        }
+    }
+    /** @see #getLongUnaligned(Object, long, boolean) */
+    public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
+        return convEndian(bigEndian, getShortUnaligned(o, offset));
+    }
+
+    /** @see #getLongUnaligned(Object, long) */
+    @HotSpotIntrinsicCandidate
+    public final char getCharUnaligned(Object o, long offset) {
+        return (char)getShortUnaligned(o, offset);
+    }
+
+    /** @see #getLongUnaligned(Object, long, boolean) */
+    public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
+        return convEndian(bigEndian, getCharUnaligned(o, offset));
+    }
+
+    /**
+     * Stores a value at some byte offset into a given Java object.
+     * <p>
+     * The specification of this method is the same as {@link
+     * #getLong(Object, long)} except that the offset does not need to
+     * have been obtained from {@link #objectFieldOffset} on the
+     * {@link java.lang.reflect.Field} of some Java field.  The value
+     * in memory is raw data, and need not correspond to any Java
+     * variable.  The endianness of the value in memory is the
+     * endianness of the native platform.
+     * <p>
+     * The write will be atomic with respect to the largest power of
+     * two that divides the GCD of the offset and the storage size.
+     * For example, putLongUnaligned will make atomic writes of 2-, 4-,
+     * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
+     * respectively.  There are no other guarantees of atomicity.
+     * <p>
+     * 8-byte atomicity is only guaranteed on platforms on which
+     * support atomic accesses to longs.
+     *
+     * @param o Java heap object in which the value resides, if any, else
+     *        null
+     * @param offset The offset in bytes from the start of the object
+     * @param x the value to store
+     * @throws RuntimeException No defined exceptions are thrown, not even
+     *         {@link NullPointerException}
+     * @since 1.9
+     */
+    @HotSpotIntrinsicCandidate
+    public final void putLongUnaligned(Object o, long offset, long x) {
+        if ((offset & 7) == 0) {
+            putLong(o, offset, x);
+        } else if ((offset & 3) == 0) {
+            putLongParts(o, offset,
+                         (int)(x >> 0),
+                         (int)(x >>> 32));
+        } else if ((offset & 1) == 0) {
+            putLongParts(o, offset,
+                         (short)(x >>> 0),
+                         (short)(x >>> 16),
+                         (short)(x >>> 32),
+                         (short)(x >>> 48));
+        } else {
+            putLongParts(o, offset,
+                         (byte)(x >>> 0),
+                         (byte)(x >>> 8),
+                         (byte)(x >>> 16),
+                         (byte)(x >>> 24),
+                         (byte)(x >>> 32),
+                         (byte)(x >>> 40),
+                         (byte)(x >>> 48),
+                         (byte)(x >>> 56));
+        }
+    }
+
+    /**
+     * As {@link #putLongUnaligned(Object, long, long)} but with an additional
+     * argument which specifies the endianness of the value as stored in memory.
+     * @param o Java heap object in which the value resides
+     * @param offset The offset in bytes from the start of the object
+     * @param x the value to store
+     * @param bigEndian The endianness of the value
+     * @throws RuntimeException No defined exceptions are thrown, not even
+     *         {@link NullPointerException}
+     * @since 1.9
+     */
+    public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
+        putLongUnaligned(o, offset, convEndian(bigEndian, x));
+    }
+
+    /** @see #putLongUnaligned(Object, long, long) */
+    @HotSpotIntrinsicCandidate
+    public final void putIntUnaligned(Object o, long offset, int x) {
+        if ((offset & 3) == 0) {
+            putInt(o, offset, x);
+        } else if ((offset & 1) == 0) {
+            putIntParts(o, offset,
+                        (short)(x >> 0),
+                        (short)(x >>> 16));
+        } else {
+            putIntParts(o, offset,
+                        (byte)(x >>> 0),
+                        (byte)(x >>> 8),
+                        (byte)(x >>> 16),
+                        (byte)(x >>> 24));
+        }
+    }
+    /** @see #putLongUnaligned(Object, long, long, boolean) */
+    public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
+        putIntUnaligned(o, offset, convEndian(bigEndian, x));
+    }
+
+    /** @see #putLongUnaligned(Object, long, long) */
+    @HotSpotIntrinsicCandidate
+    public final void putShortUnaligned(Object o, long offset, short x) {
+        if ((offset & 1) == 0) {
+            putShort(o, offset, x);
+        } else {
+            putShortParts(o, offset,
+                          (byte)(x >>> 0),
+                          (byte)(x >>> 8));
+        }
+    }
+    /** @see #putLongUnaligned(Object, long, long, boolean) */
+    public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
+        putShortUnaligned(o, offset, convEndian(bigEndian, x));
+    }
+
+    /** @see #putLongUnaligned(Object, long, long) */
+    @HotSpotIntrinsicCandidate
+    public final void putCharUnaligned(Object o, long offset, char x) {
+        putShortUnaligned(o, offset, (short)x);
+    }
+    /** @see #putLongUnaligned(Object, long, long, boolean) */
+    public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
+        putCharUnaligned(o, offset, convEndian(bigEndian, x));
+    }
+
+    // JVM interface methods
+    private native boolean unalignedAccess0();
+    private native boolean isBigEndian0();
+
+    // BE is true iff the native endianness of this platform is big.
+    private static final boolean BE = theUnsafe.isBigEndian0();
+
+    // unalignedAccess is true iff this platform can perform unaligned accesses.
+    private static final boolean unalignedAccess = theUnsafe.unalignedAccess0();
+
+    private static int pickPos(int top, int pos) { return BE ? top - pos : pos; }
+
+    // These methods construct integers from bytes.  The byte ordering
+    // is the native endianness of this platform.
+    private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
+        return ((toUnsignedLong(i0) << pickPos(56, 0))
+              | (toUnsignedLong(i1) << pickPos(56, 8))
+              | (toUnsignedLong(i2) << pickPos(56, 16))
+              | (toUnsignedLong(i3) << pickPos(56, 24))
+              | (toUnsignedLong(i4) << pickPos(56, 32))
+              | (toUnsignedLong(i5) << pickPos(56, 40))
+              | (toUnsignedLong(i6) << pickPos(56, 48))
+              | (toUnsignedLong(i7) << pickPos(56, 56)));
+    }
+    private static long makeLong(short i0, short i1, short i2, short i3) {
+        return ((toUnsignedLong(i0) << pickPos(48, 0))
+              | (toUnsignedLong(i1) << pickPos(48, 16))
+              | (toUnsignedLong(i2) << pickPos(48, 32))
+              | (toUnsignedLong(i3) << pickPos(48, 48)));
+    }
+    private static long makeLong(int i0, int i1) {
+        return (toUnsignedLong(i0) << pickPos(32, 0))
+             | (toUnsignedLong(i1) << pickPos(32, 32));
+    }
+    private static int makeInt(short i0, short i1) {
+        return (toUnsignedInt(i0) << pickPos(16, 0))
+             | (toUnsignedInt(i1) << pickPos(16, 16));
+    }
+    private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
+        return ((toUnsignedInt(i0) << pickPos(24, 0))
+              | (toUnsignedInt(i1) << pickPos(24, 8))
+              | (toUnsignedInt(i2) << pickPos(24, 16))
+              | (toUnsignedInt(i3) << pickPos(24, 24)));
+    }
+    private static short makeShort(byte i0, byte i1) {
+        return (short)((toUnsignedInt(i0) << pickPos(8, 0))
+                     | (toUnsignedInt(i1) << pickPos(8, 8)));
+    }
+
+    private static byte  pick(byte  le, byte  be) { return BE ? be : le; }
+    private static short pick(short le, short be) { return BE ? be : le; }
+    private static int   pick(int   le, int   be) { return BE ? be : le; }
+
+    // These methods write integers to memory from smaller parts
+    // provided by their caller.  The ordering in which these parts
+    // are written is the native endianness of this platform.
+    private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
+        putByte(o, offset + 0, pick(i0, i7));
+        putByte(o, offset + 1, pick(i1, i6));
+        putByte(o, offset + 2, pick(i2, i5));
+        putByte(o, offset + 3, pick(i3, i4));
+        putByte(o, offset + 4, pick(i4, i3));
+        putByte(o, offset + 5, pick(i5, i2));
+        putByte(o, offset + 6, pick(i6, i1));
+        putByte(o, offset + 7, pick(i7, i0));
+    }
+    private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
+        putShort(o, offset + 0, pick(i0, i3));
+        putShort(o, offset + 2, pick(i1, i2));
+        putShort(o, offset + 4, pick(i2, i1));
+        putShort(o, offset + 6, pick(i3, i0));
+    }
+    private void putLongParts(Object o, long offset, int i0, int i1) {
+        putInt(o, offset + 0, pick(i0, i1));
+        putInt(o, offset + 4, pick(i1, i0));
+    }
+    private void putIntParts(Object o, long offset, short i0, short i1) {
+        putShort(o, offset + 0, pick(i0, i1));
+        putShort(o, offset + 2, pick(i1, i0));
+    }
+    private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
+        putByte(o, offset + 0, pick(i0, i3));
+        putByte(o, offset + 1, pick(i1, i2));
+        putByte(o, offset + 2, pick(i2, i1));
+        putByte(o, offset + 3, pick(i3, i0));
+    }
+    private void putShortParts(Object o, long offset, byte i0, byte i1) {
+        putByte(o, offset + 0, pick(i0, i1));
+        putByte(o, offset + 1, pick(i1, i0));
+    }
+
+    // Zero-extend an integer
+    private static int toUnsignedInt(byte n)    { return n & 0xff; }
+    private static int toUnsignedInt(short n)   { return n & 0xffff; }
+    private static long toUnsignedLong(byte n)  { return n & 0xffl; }
+    private static long toUnsignedLong(short n) { return n & 0xffffl; }
+    private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
+
+    // Maybe byte-reverse an integer
+    private static char convEndian(boolean big, char n)   { return big == BE ? n : Character.reverseBytes(n); }
+    private static short convEndian(boolean big, short n) { return big == BE ? n : Short.reverseBytes(n)    ; }
+    private static int convEndian(boolean big, int n)     { return big == BE ? n : Integer.reverseBytes(n)  ; }
+    private static long convEndian(boolean big, long n)   { return big == BE ? n : Long.reverseBytes(n)     ; }
+}
--- a/src/java.base/share/classes/sun/misc/Unsafe.java	Wed Oct 21 16:39:02 2015 -0400
+++ b/src/java.base/share/classes/sun/misc/Unsafe.java	Tue Oct 27 14:19:55 2015 +0000
@@ -1036,355 +1036,8 @@
         throw new IllegalAccessError();
     }
 
-    /**
-     * @return Returns true if the native byte ordering of this
-     * platform is big-endian, false if it is little-endian.
-     */
-    public final boolean isBigEndian() { return BE; }
-
-    /**
-     * @return Returns true if this platform is capable of performing
-     * accesses at addresses which are not aligned for the type of the
-     * primitive type being accessed, false otherwise.
-     */
-    public final boolean unalignedAccess() { return unalignedAccess; }
-
-    /**
-     * Fetches a value at some byte offset into a given Java object.
-     * More specifically, fetches a value within the given object
-     * <code>o</code> at the given offset, or (if <code>o</code> is
-     * null) from the memory address whose numerical value is the
-     * given offset.  <p>
-     *
-     * The specification of this method is the same as {@link
-     * #getLong(Object, long)} except that the offset does not need to
-     * have been obtained from {@link #objectFieldOffset} on the
-     * {@link java.lang.reflect.Field} of some Java field.  The value
-     * in memory is raw data, and need not correspond to any Java
-     * variable.  Unless <code>o</code> is null, the value accessed
-     * must be entirely within the allocated object.  The endianness
-     * of the value in memory is the endianness of the native platform.
-     *
-     * <p> The read will be atomic with respect to the largest power
-     * of two that divides the GCD of the offset and the storage size.
-     * For example, getLongUnaligned will make atomic reads of 2-, 4-,
-     * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
-     * respectively.  There are no other guarantees of atomicity.
-     * <p>
-     * 8-byte atomicity is only guaranteed on platforms on which
-     * support atomic accesses to longs.
-     *
-     * @param o Java heap object in which the value resides, if any, else
-     *        null
-     * @param offset The offset in bytes from the start of the object
-     * @return the value fetched from the indicated object
-     * @throws RuntimeException No defined exceptions are thrown, not even
-     *         {@link NullPointerException}
-     * @since 1.9
-     */
-    @HotSpotIntrinsicCandidate
-    public final long getLongUnaligned(Object o, long offset) {
-        if ((offset & 7) == 0) {
-            return getLong(o, offset);
-        } else if ((offset & 3) == 0) {
-            return makeLong(getInt(o, offset),
-                            getInt(o, offset + 4));
-        } else if ((offset & 1) == 0) {
-            return makeLong(getShort(o, offset),
-                            getShort(o, offset + 2),
-                            getShort(o, offset + 4),
-                            getShort(o, offset + 6));
-        } else {
-            return makeLong(getByte(o, offset),
-                            getByte(o, offset + 1),
-                            getByte(o, offset + 2),
-                            getByte(o, offset + 3),
-                            getByte(o, offset + 4),
-                            getByte(o, offset + 5),
-                            getByte(o, offset + 6),
-                            getByte(o, offset + 7));
-        }
-    }
-    /**
-     * As {@link #getLongUnaligned(Object, long)} but with an
-     * additional argument which specifies the endianness of the value
-     * as stored in memory.
-     *
-     * @param o Java heap object in which the variable resides
-     * @param offset The offset in bytes from the start of the object
-     * @param bigEndian The endianness of the value
-     * @return the value fetched from the indicated object
-     * @since 1.9
-     */
-    public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
-        return convEndian(bigEndian, getLongUnaligned(o, offset));
-    }
-
-    /** @see #getLongUnaligned(Object, long) */
-    @HotSpotIntrinsicCandidate
-    public final int getIntUnaligned(Object o, long offset) {
-        if ((offset & 3) == 0) {
-            return getInt(o, offset);
-        } else if ((offset & 1) == 0) {
-            return makeInt(getShort(o, offset),
-                           getShort(o, offset + 2));
-        } else {
-            return makeInt(getByte(o, offset),
-                           getByte(o, offset + 1),
-                           getByte(o, offset + 2),
-                           getByte(o, offset + 3));
-        }
-    }
-    /** @see #getLongUnaligned(Object, long, boolean) */
-    public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
-        return convEndian(bigEndian, getIntUnaligned(o, offset));
-    }
-
-    /** @see #getLongUnaligned(Object, long) */
-    @HotSpotIntrinsicCandidate
-    public final short getShortUnaligned(Object o, long offset) {
-        if ((offset & 1) == 0) {
-            return getShort(o, offset);
-        } else {
-            return makeShort(getByte(o, offset),
-                             getByte(o, offset + 1));
-        }
-    }
-    /** @see #getLongUnaligned(Object, long, boolean) */
-    public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
-        return convEndian(bigEndian, getShortUnaligned(o, offset));
-    }
-
-    /** @see #getLongUnaligned(Object, long) */
-    @HotSpotIntrinsicCandidate
-    public final char getCharUnaligned(Object o, long offset) {
-        return (char)getShortUnaligned(o, offset);
-    }
-
-    /** @see #getLongUnaligned(Object, long, boolean) */
-    public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
-        return convEndian(bigEndian, getCharUnaligned(o, offset));
-    }
-
-    /**
-     * Stores a value at some byte offset into a given Java object.
-     * <p>
-     * The specification of this method is the same as {@link
-     * #getLong(Object, long)} except that the offset does not need to
-     * have been obtained from {@link #objectFieldOffset} on the
-     * {@link java.lang.reflect.Field} of some Java field.  The value
-     * in memory is raw data, and need not correspond to any Java
-     * variable.  The endianness of the value in memory is the
-     * endianness of the native platform.
-     * <p>
-     * The write will be atomic with respect to the largest power of
-     * two that divides the GCD of the offset and the storage size.
-     * For example, putLongUnaligned will make atomic writes of 2-, 4-,
-     * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
-     * respectively.  There are no other guarantees of atomicity.
-     * <p>
-     * 8-byte atomicity is only guaranteed on platforms on which
-     * support atomic accesses to longs.
-     *
-     * @param o Java heap object in which the value resides, if any, else
-     *        null
-     * @param offset The offset in bytes from the start of the object
-     * @param x the value to store
-     * @throws RuntimeException No defined exceptions are thrown, not even
-     *         {@link NullPointerException}
-     * @since 1.9
-     */
-    @HotSpotIntrinsicCandidate
-    public final void putLongUnaligned(Object o, long offset, long x) {
-        if ((offset & 7) == 0) {
-            putLong(o, offset, x);
-        } else if ((offset & 3) == 0) {
-            putLongParts(o, offset,
-                         (int)(x >> 0),
-                         (int)(x >>> 32));
-        } else if ((offset & 1) == 0) {
-            putLongParts(o, offset,
-                         (short)(x >>> 0),
-                         (short)(x >>> 16),
-                         (short)(x >>> 32),
-                         (short)(x >>> 48));
-        } else {
-            putLongParts(o, offset,
-                         (byte)(x >>> 0),
-                         (byte)(x >>> 8),
-                         (byte)(x >>> 16),
-                         (byte)(x >>> 24),
-                         (byte)(x >>> 32),
-                         (byte)(x >>> 40),
-                         (byte)(x >>> 48),
-                         (byte)(x >>> 56));
-        }
-    }
-
-    /**
-     * As {@link #putLongUnaligned(Object, long, long)} but with an additional
-     * argument which specifies the endianness of the value as stored in memory.
-     * @param o Java heap object in which the value resides
-     * @param offset The offset in bytes from the start of the object
-     * @param x the value to store
-     * @param bigEndian The endianness of the value
-     * @throws RuntimeException No defined exceptions are thrown, not even
-     *         {@link NullPointerException}
-     * @since 1.9
-     */
-    public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
-        putLongUnaligned(o, offset, convEndian(bigEndian, x));
-    }
-
-    /** @see #putLongUnaligned(Object, long, long) */
-    @HotSpotIntrinsicCandidate
-    public final void putIntUnaligned(Object o, long offset, int x) {
-        if ((offset & 3) == 0) {
-            putInt(o, offset, x);
-        } else if ((offset & 1) == 0) {
-            putIntParts(o, offset,
-                        (short)(x >> 0),
-                        (short)(x >>> 16));
-        } else {
-            putIntParts(o, offset,
-                        (byte)(x >>> 0),
-                        (byte)(x >>> 8),
-                        (byte)(x >>> 16),
-                        (byte)(x >>> 24));
-        }
-    }
-    /** @see #putLongUnaligned(Object, long, long, boolean) */
-    public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
-        putIntUnaligned(o, offset, convEndian(bigEndian, x));
-    }
-
-    /** @see #putLongUnaligned(Object, long, long) */
-    @HotSpotIntrinsicCandidate
-    public final void putShortUnaligned(Object o, long offset, short x) {
-        if ((offset & 1) == 0) {
-            putShort(o, offset, x);
-        } else {
-            putShortParts(o, offset,
-                          (byte)(x >>> 0),
-                          (byte)(x >>> 8));
-        }
-    }
-    /** @see #putLongUnaligned(Object, long, long, boolean) */
-    public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
-        putShortUnaligned(o, offset, convEndian(bigEndian, x));
-    }
-
-    /** @see #putLongUnaligned(Object, long, long) */
-    @HotSpotIntrinsicCandidate
-    public final void putCharUnaligned(Object o, long offset, char x) {
-        putShortUnaligned(o, offset, (short)x);
-    }
-    /** @see #putLongUnaligned(Object, long, long, boolean) */
-    public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
-        putCharUnaligned(o, offset, convEndian(bigEndian, x));
-    }
-
     // JVM interface methods
     private native boolean unalignedAccess0();
     private native boolean isBigEndian0();
 
-    // BE is true iff the native endianness of this platform is big.
-    private static final boolean BE = theUnsafe.isBigEndian0();
-
-    // unalignedAccess is true iff this platform can perform unaligned accesses.
-    private static final boolean unalignedAccess = theUnsafe.unalignedAccess0();
-
-    private static int pickPos(int top, int pos) { return BE ? top - pos : pos; }
-
-    // These methods construct integers from bytes.  The byte ordering
-    // is the native endianness of this platform.
-    private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
-        return ((toUnsignedLong(i0) << pickPos(56, 0))
-              | (toUnsignedLong(i1) << pickPos(56, 8))
-              | (toUnsignedLong(i2) << pickPos(56, 16))
-              | (toUnsignedLong(i3) << pickPos(56, 24))
-              | (toUnsignedLong(i4) << pickPos(56, 32))
-              | (toUnsignedLong(i5) << pickPos(56, 40))
-              | (toUnsignedLong(i6) << pickPos(56, 48))
-              | (toUnsignedLong(i7) << pickPos(56, 56)));
-    }
-    private static long makeLong(short i0, short i1, short i2, short i3) {
-        return ((toUnsignedLong(i0) << pickPos(48, 0))
-              | (toUnsignedLong(i1) << pickPos(48, 16))
-              | (toUnsignedLong(i2) << pickPos(48, 32))
-              | (toUnsignedLong(i3) << pickPos(48, 48)));
-    }
-    private static long makeLong(int i0, int i1) {
-        return (toUnsignedLong(i0) << pickPos(32, 0))
-             | (toUnsignedLong(i1) << pickPos(32, 32));
-    }
-    private static int makeInt(short i0, short i1) {
-        return (toUnsignedInt(i0) << pickPos(16, 0))
-             | (toUnsignedInt(i1) << pickPos(16, 16));
-    }
-    private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
-        return ((toUnsignedInt(i0) << pickPos(24, 0))
-              | (toUnsignedInt(i1) << pickPos(24, 8))
-              | (toUnsignedInt(i2) << pickPos(24, 16))
-              | (toUnsignedInt(i3) << pickPos(24, 24)));
-    }
-    private static short makeShort(byte i0, byte i1) {
-        return (short)((toUnsignedInt(i0) << pickPos(8, 0))
-                     | (toUnsignedInt(i1) << pickPos(8, 8)));
-    }
-
-    private static byte  pick(byte  le, byte  be) { return BE ? be : le; }
-    private static short pick(short le, short be) { return BE ? be : le; }
-    private static int   pick(int   le, int   be) { return BE ? be : le; }
-
-    // These methods write integers to memory from smaller parts
-    // provided by their caller.  The ordering in which these parts
-    // are written is the native endianness of this platform.
-    private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
-        putByte(o, offset + 0, pick(i0, i7));
-        putByte(o, offset + 1, pick(i1, i6));
-        putByte(o, offset + 2, pick(i2, i5));
-        putByte(o, offset + 3, pick(i3, i4));
-        putByte(o, offset + 4, pick(i4, i3));
-        putByte(o, offset + 5, pick(i5, i2));
-        putByte(o, offset + 6, pick(i6, i1));
-        putByte(o, offset + 7, pick(i7, i0));
-    }
-    private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
-        putShort(o, offset + 0, pick(i0, i3));
-        putShort(o, offset + 2, pick(i1, i2));
-        putShort(o, offset + 4, pick(i2, i1));
-        putShort(o, offset + 6, pick(i3, i0));
-    }
-    private void putLongParts(Object o, long offset, int i0, int i1) {
-        putInt(o, offset + 0, pick(i0, i1));
-        putInt(o, offset + 4, pick(i1, i0));
-    }
-    private void putIntParts(Object o, long offset, short i0, short i1) {
-        putShort(o, offset + 0, pick(i0, i1));
-        putShort(o, offset + 2, pick(i1, i0));
-    }
-    private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
-        putByte(o, offset + 0, pick(i0, i3));
-        putByte(o, offset + 1, pick(i1, i2));
-        putByte(o, offset + 2, pick(i2, i1));
-        putByte(o, offset + 3, pick(i3, i0));
-    }
-    private void putShortParts(Object o, long offset, byte i0, byte i1) {
-        putByte(o, offset + 0, pick(i0, i1));
-        putByte(o, offset + 1, pick(i1, i0));
-    }
-
-    // Zero-extend an integer
-    private static int toUnsignedInt(byte n)    { return n & 0xff; }
-    private static int toUnsignedInt(short n)   { return n & 0xffff; }
-    private static long toUnsignedLong(byte n)  { return n & 0xffl; }
-    private static long toUnsignedLong(short n) { return n & 0xffffl; }
-    private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
-
-    // Maybe byte-reverse an integer
-    private static char convEndian(boolean big, char n)   { return big == BE ? n : Character.reverseBytes(n); }
-    private static short convEndian(boolean big, short n) { return big == BE ? n : Short.reverseBytes(n)    ; }
-    private static int convEndian(boolean big, int n)     { return big == BE ? n : Integer.reverseBytes(n)  ; }
-    private static long convEndian(boolean big, long n)   { return big == BE ? n : Long.reverseBytes(n)     ; }
 }
--- a/src/java.base/share/classes/sun/security/provider/ByteArrayAccess.java	Wed Oct 21 16:39:02 2015 -0400
+++ b/src/java.base/share/classes/sun/security/provider/ByteArrayAccess.java	Tue Oct 27 14:19:55 2015 +0000
@@ -30,7 +30,7 @@
 
 import java.nio.ByteOrder;
 
-import sun.misc.Unsafe;
+import jdk.internal.misc.Unsafe;
 
 /**
  * Optimized methods for converting between byte[] and int[]/long[], both for