annotate src/hotspot/share/opto/node.cpp @ 54048:744dc9c33676

8217417: Decorator name typo: C2_TIGHLY_COUPLED_ALLOC Summary: Fixed typo in decorator name, variables, and comments. Reviewed-by: tschatzl
author kbarrett
date Mon, 11 Mar 2019 02:05:07 -0400
parents b04860fd2e2c
children a4d19817609c
rev   line source
duke@1 1 /*
mdoerr@35539 2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation.
duke@1 8 *
duke@1 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 13 * accompanied this code).
duke@1 14 *
duke@1 15 * You should have received a copy of the GNU General Public License version
duke@1 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 18 *
trims@5547 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@5547 20 * or visit www.oracle.com if you need additional information or have any
trims@5547 21 * questions.
duke@1 22 *
duke@1 23 */
duke@1 24
stefank@7397 25 #include "precompiled.hpp"
eosterlund@50180 26 #include "gc/shared/barrierSet.hpp"
eosterlund@50180 27 #include "gc/shared/c2/barrierSetC2.hpp"
stefank@7397 28 #include "libadt/vectset.hpp"
stefank@7397 29 #include "memory/allocation.inline.hpp"
jprovino@37248 30 #include "memory/resourceArea.hpp"
thartmann@35574 31 #include "opto/castnode.hpp"
stefank@7397 32 #include "opto/cfgnode.hpp"
stefank@7397 33 #include "opto/connode.hpp"
kvn@24342 34 #include "opto/loopnode.hpp"
stefank@7397 35 #include "opto/machnode.hpp"
stefank@7397 36 #include "opto/matcher.hpp"
stefank@7397 37 #include "opto/node.hpp"
stefank@7397 38 #include "opto/opcodes.hpp"
stefank@7397 39 #include "opto/regmask.hpp"
roland@53220 40 #include "opto/rootnode.hpp"
stefank@7397 41 #include "opto/type.hpp"
stefank@7397 42 #include "utilities/copy.hpp"
eosterlund@50180 43 #include "utilities/macros.hpp"
duke@1 44
duke@1 45 class RegMask;
duke@1 46 // #include "phase.hpp"
duke@1 47 class PhaseTransform;
duke@1 48 class PhaseGVN;
duke@1 49
duke@1 50 // Arena we are currently building Nodes in
duke@1 51 const uint Node::NotAMachineReg = 0xffff0000;
duke@1 52
duke@1 53 #ifndef PRODUCT
duke@1 54 extern int nodes_created;
duke@1 55 #endif
twisti@33160 56 #ifdef __clang__
twisti@33160 57 #pragma clang diagnostic push
twisti@33160 58 #pragma GCC diagnostic ignored "-Wuninitialized"
twisti@33160 59 #endif
duke@1 60
duke@1 61 #ifdef ASSERT
duke@1 62
duke@1 63 //-------------------------- construct_node------------------------------------
duke@1 64 // Set a breakpoint here to identify where a particular node index is built.
duke@1 65 void Node::verify_construction() {
duke@1 66 _debug_orig = NULL;
duke@1 67 int old_debug_idx = Compile::debug_idx();
duke@1 68 int new_debug_idx = old_debug_idx+1;
duke@1 69 if (new_debug_idx > 0) {
duke@1 70 // Arrange that the lowest five decimal digits of _debug_idx
bharadwaj@14623 71 // will repeat those of _idx. In case this is somehow pathological,
duke@1 72 // we continue to assign negative numbers (!) consecutively.
duke@1 73 const int mod = 100000;
duke@1 74 int bump = (int)(_idx - new_debug_idx) % mod;
duke@1 75 if (bump < 0) bump += mod;
duke@1 76 assert(bump >= 0 && bump < mod, "");
duke@1 77 new_debug_idx += bump;
duke@1 78 }
duke@1 79 Compile::set_debug_idx(new_debug_idx);
duke@1 80 set_debug_idx( new_debug_idx );
kvn@17383 81 assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
vlivanov@27707 82 assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
duke@1 83 if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
duke@1 84 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
duke@1 85 BREAKPOINT;
duke@1 86 }
duke@1 87 #if OPTO_DU_ITERATOR_ASSERT
duke@1 88 _last_del = NULL;
duke@1 89 _del_tick = 0;
duke@1 90 #endif
duke@1 91 _hash_lock = 0;
duke@1 92 }
duke@1 93
duke@1 94
duke@1 95 // #ifdef ASSERT ...
duke@1 96
duke@1 97 #if OPTO_DU_ITERATOR_ASSERT
duke@1 98 void DUIterator_Common::sample(const Node* node) {
duke@1 99 _vdui = VerifyDUIterators;
duke@1 100 _node = node;
duke@1 101 _outcnt = node->_outcnt;
duke@1 102 _del_tick = node->_del_tick;
duke@1 103 _last = NULL;
duke@1 104 }
duke@1 105
duke@1 106 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
duke@1 107 assert(_node == node, "consistent iterator source");
duke@1 108 assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
duke@1 109 }
duke@1 110
duke@1 111 void DUIterator_Common::verify_resync() {
duke@1 112 // Ensure that the loop body has just deleted the last guy produced.
duke@1 113 const Node* node = _node;
duke@1 114 // Ensure that at least one copy of the last-seen edge was deleted.
duke@1 115 // Note: It is OK to delete multiple copies of the last-seen edge.
duke@1 116 // Unfortunately, we have no way to verify that all the deletions delete
duke@1 117 // that same edge. On this point we must use the Honor System.
duke@1 118 assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
duke@1 119 assert(node->_last_del == _last, "must have deleted the edge just produced");
duke@1 120 // We liked this deletion, so accept the resulting outcnt and tick.
duke@1 121 _outcnt = node->_outcnt;
duke@1 122 _del_tick = node->_del_tick;
duke@1 123 }
duke@1 124
duke@1 125 void DUIterator_Common::reset(const DUIterator_Common& that) {
duke@1 126 if (this == &that) return; // ignore assignment to self
duke@1 127 if (!_vdui) {
duke@1 128 // We need to initialize everything, overwriting garbage values.
duke@1 129 _last = that._last;
duke@1 130 _vdui = that._vdui;
duke@1 131 }
duke@1 132 // Note: It is legal (though odd) for an iterator over some node x
duke@1 133 // to be reassigned to iterate over another node y. Some doubly-nested
duke@1 134 // progress loops depend on being able to do this.
duke@1 135 const Node* node = that._node;
duke@1 136 // Re-initialize everything, except _last.
duke@1 137 _node = node;
duke@1 138 _outcnt = node->_outcnt;
duke@1 139 _del_tick = node->_del_tick;
duke@1 140 }
duke@1 141
duke@1 142 void DUIterator::sample(const Node* node) {
duke@1 143 DUIterator_Common::sample(node); // Initialize the assertion data.
duke@1 144 _refresh_tick = 0; // No refreshes have happened, as yet.
duke@1 145 }
duke@1 146
duke@1 147 void DUIterator::verify(const Node* node, bool at_end_ok) {
duke@1 148 DUIterator_Common::verify(node, at_end_ok);
duke@1 149 assert(_idx < node->_outcnt + (uint)at_end_ok, "idx in range");
duke@1 150 }
duke@1 151
duke@1 152 void DUIterator::verify_increment() {
duke@1 153 if (_refresh_tick & 1) {
duke@1 154 // We have refreshed the index during this loop.
duke@1 155 // Fix up _idx to meet asserts.
duke@1 156 if (_idx > _outcnt) _idx = _outcnt;
duke@1 157 }
duke@1 158 verify(_node, true);
duke@1 159 }
duke@1 160
duke@1 161 void DUIterator::verify_resync() {
duke@1 162 // Note: We do not assert on _outcnt, because insertions are OK here.
duke@1 163 DUIterator_Common::verify_resync();
duke@1 164 // Make sure we are still in sync, possibly with no more out-edges:
duke@1 165 verify(_node, true);
duke@1 166 }
duke@1 167
duke@1 168 void DUIterator::reset(const DUIterator& that) {
duke@1 169 if (this == &that) return; // self assignment is always a no-op
duke@1 170 assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
duke@1 171 assert(that._idx == 0, "assign only the result of Node::outs()");
duke@1 172 assert(_idx == that._idx, "already assigned _idx");
duke@1 173 if (!_vdui) {
duke@1 174 // We need to initialize everything, overwriting garbage values.
duke@1 175 sample(that._node);
duke@1 176 } else {
duke@1 177 DUIterator_Common::reset(that);
duke@1 178 if (_refresh_tick & 1) {
duke@1 179 _refresh_tick++; // Clear the "was refreshed" flag.
duke@1 180 }
duke@1 181 assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
duke@1 182 }
duke@1 183 }
duke@1 184
duke@1 185 void DUIterator::refresh() {
duke@1 186 DUIterator_Common::sample(_node); // Re-fetch assertion data.
duke@1 187 _refresh_tick |= 1; // Set the "was refreshed" flag.
duke@1 188 }
duke@1 189
duke@1 190 void DUIterator::verify_finish() {
duke@1 191 // If the loop has killed the node, do not require it to re-run.
duke@1 192 if (_node->_outcnt == 0) _refresh_tick &= ~1;
duke@1 193 // If this assert triggers, it means that a loop used refresh_out_pos
duke@1 194 // to re-synch an iteration index, but the loop did not correctly
duke@1 195 // re-run itself, using a "while (progress)" construct.
duke@1 196 // This iterator enforces the rule that you must keep trying the loop
duke@1 197 // until it "runs clean" without any need for refreshing.
duke@1 198 assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
duke@1 199 }
duke@1 200
duke@1 201
duke@1 202 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
duke@1 203 DUIterator_Common::verify(node, at_end_ok);
duke@1 204 Node** out = node->_out;
duke@1 205 uint cnt = node->_outcnt;
duke@1 206 assert(cnt == _outcnt, "no insertions allowed");
duke@1 207 assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
duke@1 208 // This last check is carefully designed to work for NO_OUT_ARRAY.
duke@1 209 }
duke@1 210
duke@1 211 void DUIterator_Fast::verify_limit() {
duke@1 212 const Node* node = _node;
duke@1 213 verify(node, true);
duke@1 214 assert(_outp == node->_out + node->_outcnt, "limit still correct");
duke@1 215 }
duke@1 216
duke@1 217 void DUIterator_Fast::verify_resync() {
duke@1 218 const Node* node = _node;
duke@1 219 if (_outp == node->_out + _outcnt) {
duke@1 220 // Note that the limit imax, not the pointer i, gets updated with the
duke@1 221 // exact count of deletions. (For the pointer it's always "--i".)
duke@1 222 assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
duke@1 223 // This is a limit pointer, with a name like "imax".
duke@1 224 // Fudge the _last field so that the common assert will be happy.
duke@1 225 _last = (Node*) node->_last_del;
duke@1 226 DUIterator_Common::verify_resync();
duke@1 227 } else {
duke@1 228 assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
duke@1 229 // A normal internal pointer.
duke@1 230 DUIterator_Common::verify_resync();
duke@1 231 // Make sure we are still in sync, possibly with no more out-edges:
duke@1 232 verify(node, true);
duke@1 233 }
duke@1 234 }
duke@1 235
duke@1 236 void DUIterator_Fast::verify_relimit(uint n) {
duke@1 237 const Node* node = _node;
duke@1 238 assert((int)n > 0, "use imax -= n only with a positive count");
duke@1 239 // This must be a limit pointer, with a name like "imax".
duke@1 240 assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
duke@1 241 // The reported number of deletions must match what the node saw.
duke@1 242 assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
duke@1 243 // Fudge the _last field so that the common assert will be happy.
duke@1 244 _last = (Node*) node->_last_del;
duke@1 245 DUIterator_Common::verify_resync();
duke@1 246 }
duke@1 247
duke@1 248 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
duke@1 249 assert(_outp == that._outp, "already assigned _outp");
duke@1 250 DUIterator_Common::reset(that);
duke@1 251 }
duke@1 252
duke@1 253 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
duke@1 254 // at_end_ok means the _outp is allowed to underflow by 1
duke@1 255 _outp += at_end_ok;
duke@1 256 DUIterator_Fast::verify(node, at_end_ok); // check _del_tick, etc.
duke@1 257 _outp -= at_end_ok;
duke@1 258 assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
duke@1 259 }
duke@1 260
duke@1 261 void DUIterator_Last::verify_limit() {
duke@1 262 // Do not require the limit address to be resynched.
duke@1 263 //verify(node, true);
duke@1 264 assert(_outp == _node->_out, "limit still correct");
duke@1 265 }
duke@1 266
duke@1 267 void DUIterator_Last::verify_step(uint num_edges) {
duke@1 268 assert((int)num_edges > 0, "need non-zero edge count for loop progress");
duke@1 269 _outcnt -= num_edges;
duke@1 270 _del_tick += num_edges;
duke@1 271 // Make sure we are still in sync, possibly with no more out-edges:
duke@1 272 const Node* node = _node;
duke@1 273 verify(node, true);
duke@1 274 assert(node->_last_del == _last, "must have deleted the edge just produced");
duke@1 275 }
duke@1 276
duke@1 277 #endif //OPTO_DU_ITERATOR_ASSERT
duke@1 278
duke@1 279
duke@1 280 #endif //ASSERT
duke@1 281
duke@1 282
duke@1 283 // This constant used to initialize _out may be any non-null value.
duke@1 284 // The value NULL is reserved for the top node only.
duke@1 285 #define NO_OUT_ARRAY ((Node**)-1)
duke@1 286
duke@1 287 // Out-of-line code from node constructors.
duke@1 288 // Executed only when extra debug info. is being passed around.
duke@1 289 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
duke@1 290 C->set_node_notes_at(idx, nn);
duke@1 291 }
duke@1 292
duke@1 293 // Shared initialization code.
thartmann@24923 294 inline int Node::Init(int req) {
thartmann@24923 295 Compile* C = Compile::current();
duke@1 296 int idx = C->next_unique();
duke@1 297
kvn@13895 298 // Allocate memory for the necessary number of edges.
kvn@13895 299 if (req > 0) {
kvn@13895 300 // Allocate space for _in array to have double alignment.
kvn@13895 301 _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
kvn@13895 302 }
duke@1 303 // If there are default notes floating around, capture them:
duke@1 304 Node_Notes* nn = C->default_node_notes();
duke@1 305 if (nn != NULL) init_node_notes(C, idx, nn);
duke@1 306
duke@1 307 // Note: At this point, C is dead,
duke@1 308 // and we begin to initialize the new Node.
duke@1 309
duke@1 310 _cnt = _max = req;
duke@1 311 _outcnt = _outmax = 0;
duke@1 312 _class_id = Class_Node;
duke@1 313 _flags = 0;
duke@1 314 _out = NO_OUT_ARRAY;
duke@1 315 return idx;
duke@1 316 }
duke@1 317
duke@1 318 //------------------------------Node-------------------------------------------
duke@1 319 // Create a Node, with a given number of required edges.
duke@1 320 Node::Node(uint req)
thartmann@24923 321 : _idx(Init(req))
zmajo@34503 322 #ifdef ASSERT
zmajo@34503 323 , _parse_idx(_idx)
zmajo@34503 324 #endif
duke@1 325 {
vlivanov@27707 326 assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
duke@1 327 debug_only( verify_construction() );
duke@1 328 NOT_PRODUCT(nodes_created++);
duke@1 329 if (req == 0) {
duke@1 330 _in = NULL;
duke@1 331 } else {
duke@1 332 Node** to = _in;
duke@1 333 for(uint i = 0; i < req; i++) {
duke@1 334 to[i] = NULL;
duke@1 335 }
duke@1 336 }
duke@1 337 }
duke@1 338
duke@1 339 //------------------------------Node-------------------------------------------
duke@1 340 Node::Node(Node *n0)
thartmann@24923 341 : _idx(Init(1))
zmajo@34503 342 #ifdef ASSERT
zmajo@34503 343 , _parse_idx(_idx)
zmajo@34503 344 #endif
duke@1 345 {
duke@1 346 debug_only( verify_construction() );
duke@1 347 NOT_PRODUCT(nodes_created++);
duke@1 348 assert( is_not_dead(n0), "can not use dead node");
duke@1 349 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@1 350 }
duke@1 351
duke@1 352 //------------------------------Node-------------------------------------------
duke@1 353 Node::Node(Node *n0, Node *n1)
thartmann@24923 354 : _idx(Init(2))
zmajo@34503 355 #ifdef ASSERT
zmajo@34503 356 , _parse_idx(_idx)
zmajo@34503 357 #endif
duke@1 358 {
duke@1 359 debug_only( verify_construction() );
duke@1 360 NOT_PRODUCT(nodes_created++);
duke@1 361 assert( is_not_dead(n0), "can not use dead node");
duke@1 362 assert( is_not_dead(n1), "can not use dead node");
duke@1 363 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@1 364 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@1 365 }
duke@1 366
duke@1 367 //------------------------------Node-------------------------------------------
duke@1 368 Node::Node(Node *n0, Node *n1, Node *n2)
thartmann@24923 369 : _idx(Init(3))
zmajo@34503 370 #ifdef ASSERT
zmajo@34503 371 , _parse_idx(_idx)
zmajo@34503 372 #endif
duke@1 373 {
duke@1 374 debug_only( verify_construction() );
duke@1 375 NOT_PRODUCT(nodes_created++);
duke@1 376 assert( is_not_dead(n0), "can not use dead node");
duke@1 377 assert( is_not_dead(n1), "can not use dead node");
duke@1 378 assert( is_not_dead(n2), "can not use dead node");
duke@1 379 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@1 380 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@1 381 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@1 382 }
duke@1 383
duke@1 384 //------------------------------Node-------------------------------------------
duke@1 385 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
thartmann@24923 386 : _idx(Init(4))
zmajo@34503 387 #ifdef ASSERT
zmajo@34503 388 , _parse_idx(_idx)
zmajo@34503 389 #endif
duke@1 390 {
duke@1 391 debug_only( verify_construction() );
duke@1 392 NOT_PRODUCT(nodes_created++);
duke@1 393 assert( is_not_dead(n0), "can not use dead node");
duke@1 394 assert( is_not_dead(n1), "can not use dead node");
duke@1 395 assert( is_not_dead(n2), "can not use dead node");
duke@1 396 assert( is_not_dead(n3), "can not use dead node");
duke@1 397 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@1 398 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@1 399 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@1 400 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
duke@1 401 }
duke@1 402
duke@1 403 //------------------------------Node-------------------------------------------
duke@1 404 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
thartmann@24923 405 : _idx(Init(5))
zmajo@34503 406 #ifdef ASSERT
zmajo@34503 407 , _parse_idx(_idx)
zmajo@34503 408 #endif
duke@1 409 {
duke@1 410 debug_only( verify_construction() );
duke@1 411 NOT_PRODUCT(nodes_created++);
duke@1 412 assert( is_not_dead(n0), "can not use dead node");
duke@1 413 assert( is_not_dead(n1), "can not use dead node");
duke@1 414 assert( is_not_dead(n2), "can not use dead node");
duke@1 415 assert( is_not_dead(n3), "can not use dead node");
duke@1 416 assert( is_not_dead(n4), "can not use dead node");
duke@1 417 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@1 418 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@1 419 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@1 420 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
duke@1 421 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
duke@1 422 }
duke@1 423
duke@1 424 //------------------------------Node-------------------------------------------
duke@1 425 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
duke@1 426 Node *n4, Node *n5)
thartmann@24923 427 : _idx(Init(6))
zmajo@34503 428 #ifdef ASSERT
zmajo@34503 429 , _parse_idx(_idx)
zmajo@34503 430 #endif
duke@1 431 {
duke@1 432 debug_only( verify_construction() );
duke@1 433 NOT_PRODUCT(nodes_created++);
duke@1 434 assert( is_not_dead(n0), "can not use dead node");
duke@1 435 assert( is_not_dead(n1), "can not use dead node");
duke@1 436 assert( is_not_dead(n2), "can not use dead node");
duke@1 437 assert( is_not_dead(n3), "can not use dead node");
duke@1 438 assert( is_not_dead(n4), "can not use dead node");
duke@1 439 assert( is_not_dead(n5), "can not use dead node");
duke@1 440 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@1 441 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@1 442 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@1 443 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
duke@1 444 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
duke@1 445 _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
duke@1 446 }
duke@1 447
duke@1 448 //------------------------------Node-------------------------------------------
duke@1 449 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
duke@1 450 Node *n4, Node *n5, Node *n6)
thartmann@24923 451 : _idx(Init(7))
zmajo@34503 452 #ifdef ASSERT
zmajo@34503 453 , _parse_idx(_idx)
zmajo@34503 454 #endif
duke@1 455 {
duke@1 456 debug_only( verify_construction() );
duke@1 457 NOT_PRODUCT(nodes_created++);
duke@1 458 assert( is_not_dead(n0), "can not use dead node");
duke@1 459 assert( is_not_dead(n1), "can not use dead node");
duke@1 460 assert( is_not_dead(n2), "can not use dead node");
duke@1 461 assert( is_not_dead(n3), "can not use dead node");
duke@1 462 assert( is_not_dead(n4), "can not use dead node");
duke@1 463 assert( is_not_dead(n5), "can not use dead node");
duke@1 464 assert( is_not_dead(n6), "can not use dead node");
duke@1 465 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@1 466 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@1 467 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@1 468 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
duke@1 469 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
duke@1 470 _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
duke@1 471 _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
duke@1 472 }
duke@1 473
twisti@33160 474 #ifdef __clang__
twisti@33160 475 #pragma clang diagnostic pop
twisti@33160 476 #endif
twisti@33160 477
duke@1 478
duke@1 479 //------------------------------clone------------------------------------------
duke@1 480 // Clone a Node.
duke@1 481 Node *Node::clone() const {
kvn@17383 482 Compile* C = Compile::current();
duke@1 483 uint s = size_of(); // Size of inherited Node
kvn@17383 484 Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
duke@1 485 Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
duke@1 486 // Set the new input pointer array
duke@1 487 n->_in = (Node**)(((char*)n)+s);
duke@1 488 // Cannot share the old output pointer array, so kill it
duke@1 489 n->_out = NO_OUT_ARRAY;
duke@1 490 // And reset the counters to 0
duke@1 491 n->_outcnt = 0;
duke@1 492 n->_outmax = 0;
duke@1 493 // Unlock this guy, since he is not in any hash table.
duke@1 494 debug_only(n->_hash_lock = 0);
duke@1 495 // Walk the old node's input list to duplicate its edges
duke@1 496 uint i;
duke@1 497 for( i = 0; i < len(); i++ ) {
duke@1 498 Node *x = in(i);
duke@1 499 n->_in[i] = x;
duke@1 500 if (x != NULL) x->add_out(n);
duke@1 501 }
duke@1 502 if (is_macro())
kvn@17383 503 C->add_macro_node(n);
roland@15618 504 if (is_expensive())
kvn@17383 505 C->add_expensive_node(n);
eosterlund@50180 506 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
eosterlund@50180 507 bs->register_potential_barrier_node(n);
thartmann@35574 508 // If the cloned node is a range check dependent CastII, add it to the list.
thartmann@35574 509 CastIINode* cast = n->isa_CastII();
thartmann@35574 510 if (cast != NULL && cast->has_range_check()) {
thartmann@35574 511 C->add_range_check_cast(cast);
thartmann@35574 512 }
roland@49487 513 if (n->Opcode() == Op_Opaque4) {
roland@49487 514 C->add_opaque4_node(n);
roland@49487 515 }
duke@1 516
kvn@17383 517 n->set_idx(C->next_unique()); // Get new unique index as well
duke@1 518 debug_only( n->verify_construction() );
duke@1 519 NOT_PRODUCT(nodes_created++);
duke@1 520 // Do not patch over the debug_idx of a clone, because it makes it
duke@1 521 // impossible to break on the clone's moment of creation.
duke@1 522 //debug_only( n->set_debug_idx( debug_idx() ) );
duke@1 523
kvn@17383 524 C->copy_node_notes_to(n, (Node*) this);
duke@1 525
duke@1 526 // MachNode clone
duke@1 527 uint nopnds;
duke@1 528 if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
duke@1 529 MachNode *mach = n->as_Mach();
duke@1 530 MachNode *mthis = this->as_Mach();
duke@1 531 // Get address of _opnd_array.
duke@1 532 // It should be the same offset since it is the clone of this node.
duke@1 533 MachOper **from = mthis->_opnds;
duke@1 534 MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
duke@1 535 pointer_delta((const void*)from,
duke@1 536 (const void*)(&mthis->_opnds), 1));
duke@1 537 mach->_opnds = to;
duke@1 538 for ( uint i = 0; i < nopnds; ++i ) {
thartmann@25930 539 to[i] = from[i]->clone();
duke@1 540 }
duke@1 541 }
duke@1 542 // cloning CallNode may need to clone JVMState
duke@1 543 if (n->is_Call()) {
kvn@17383 544 n->as_Call()->clone_jvms(C);
duke@1 545 }
roland@24946 546 if (n->is_SafePoint()) {
roland@24946 547 n->as_SafePoint()->clone_replaced_nodes();
roland@24946 548 }
duke@1 549 return n; // Return the clone
duke@1 550 }
duke@1 551
duke@1 552 //---------------------------setup_is_top--------------------------------------
duke@1 553 // Call this when changing the top node, to reassert the invariants
duke@1 554 // required by Node::is_top. See Compile::set_cached_top_node.
duke@1 555 void Node::setup_is_top() {
duke@1 556 if (this == (Node*)Compile::current()->top()) {
duke@1 557 // This node has just become top. Kill its out array.
duke@1 558 _outcnt = _outmax = 0;
duke@1 559 _out = NULL; // marker value for top
duke@1 560 assert(is_top(), "must be top");
duke@1 561 } else {
duke@1 562 if (_out == NULL) _out = NO_OUT_ARRAY;
duke@1 563 assert(!is_top(), "must not be top");
duke@1 564 }
duke@1 565 }
duke@1 566
duke@1 567
duke@1 568 //------------------------------~Node------------------------------------------
duke@1 569 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
duke@1 570 void Node::destruct() {
duke@1 571 // Eagerly reclaim unique Node numberings
duke@1 572 Compile* compile = Compile::current();
duke@1 573 if ((uint)_idx+1 == compile->unique()) {
duke@1 574 compile->set_unique(compile->unique()-1);
duke@1 575 }
duke@1 576 // Clear debug info:
duke@1 577 Node_Notes* nn = compile->node_notes_at(_idx);
duke@1 578 if (nn != NULL) nn->clear();
duke@1 579 // Walk the input array, freeing the corresponding output edges
duke@1 580 _cnt = _max; // forget req/prec distinction
duke@1 581 uint i;
duke@1 582 for( i = 0; i < _max; i++ ) {
duke@1 583 set_req(i, NULL);
duke@1 584 //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
duke@1 585 }
duke@1 586 assert(outcnt() == 0, "deleting a node must not leave a dangling use");
duke@1 587 // See if the input array was allocated just prior to the object
duke@1 588 int edge_size = _max*sizeof(void*);
duke@1 589 int out_edge_size = _outmax*sizeof(void*);
duke@1 590 char *edge_end = ((char*)_in) + edge_size;
duke@1 591 char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
duke@1 592 int node_size = size_of();
duke@1 593
duke@1 594 // Free the output edge array
duke@1 595 if (out_edge_size > 0) {
duke@1 596 compile->node_arena()->Afree(out_array, out_edge_size);
duke@1 597 }
duke@1 598
duke@1 599 // Free the input edge array and the node itself
duke@1 600 if( edge_end == (char*)this ) {
duke@1 601 // It was; free the input array and object all in one hit
redestad@36336 602 #ifndef ASSERT
duke@1 603 compile->node_arena()->Afree(_in,edge_size+node_size);
duke@1 604 #endif
duke@1 605 } else {
duke@1 606 // Free just the input array
duke@1 607 compile->node_arena()->Afree(_in,edge_size);
duke@1 608
duke@1 609 // Free just the object
redestad@36336 610 #ifndef ASSERT
duke@1 611 compile->node_arena()->Afree(this,node_size);
duke@1 612 #endif
duke@1 613 }
duke@1 614 if (is_macro()) {
duke@1 615 compile->remove_macro_node(this);
duke@1 616 }
roland@15618 617 if (is_expensive()) {
roland@15618 618 compile->remove_expensive_node(this);
roland@15618 619 }
thartmann@35574 620 CastIINode* cast = isa_CastII();
thartmann@35574 621 if (cast != NULL && cast->has_range_check()) {
thartmann@35574 622 compile->remove_range_check_cast(cast);
thartmann@35574 623 }
roland@49487 624 if (Opcode() == Op_Opaque4) {
roland@49487 625 compile->remove_opaque4_node(this);
roland@49487 626 }
thartmann@35574 627
roland@24946 628 if (is_SafePoint()) {
roland@24946 629 as_SafePoint()->delete_replaced_nodes();
roland@24946 630 }
eosterlund@50180 631 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
eosterlund@50180 632 bs->unregister_potential_barrier_node(this);
duke@1 633 #ifdef ASSERT
duke@1 634 // We will not actually delete the storage, but we'll make the node unusable.
duke@1 635 *(address*)this = badAddress; // smash the C++ vtbl, probably
duke@1 636 _in = _out = (Node**) badAddress;
duke@1 637 _max = _cnt = _outmax = _outcnt = 0;
thartmann@25913 638 compile->remove_modified_node(this);
duke@1 639 #endif
duke@1 640 }
duke@1 641
duke@1 642 //------------------------------grow-------------------------------------------
duke@1 643 // Grow the input array, making space for more edges
duke@1 644 void Node::grow( uint len ) {
duke@1 645 Arena* arena = Compile::current()->node_arena();
duke@1 646 uint new_max = _max;
duke@1 647 if( new_max == 0 ) {
duke@1 648 _max = 4;
duke@1 649 _in = (Node**)arena->Amalloc(4*sizeof(Node*));
duke@1 650 Node** to = _in;
duke@1 651 to[0] = NULL;
duke@1 652 to[1] = NULL;
duke@1 653 to[2] = NULL;
duke@1 654 to[3] = NULL;
duke@1 655 return;
duke@1 656 }
duke@1 657 while( new_max <= len ) new_max <<= 1; // Find next power-of-2
duke@1 658 // Trimming to limit allows a uint8 to handle up to 255 edges.
duke@1 659 // Previously I was using only powers-of-2 which peaked at 128 edges.
duke@1 660 //if( new_max >= limit ) new_max = limit-1;
duke@1 661 _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
duke@1 662 Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
duke@1 663 _max = new_max; // Record new max length
duke@1 664 // This assertion makes sure that Node::_max is wide enough to
duke@1 665 // represent the numerical value of new_max.
duke@1 666 assert(_max == new_max && _max > len, "int width of _max is too small");
duke@1 667 }
duke@1 668
duke@1 669 //-----------------------------out_grow----------------------------------------
duke@1 670 // Grow the input array, making space for more edges
duke@1 671 void Node::out_grow( uint len ) {
duke@1 672 assert(!is_top(), "cannot grow a top node's out array");
duke@1 673 Arena* arena = Compile::current()->node_arena();
duke@1 674 uint new_max = _outmax;
duke@1 675 if( new_max == 0 ) {
duke@1 676 _outmax = 4;
duke@1 677 _out = (Node **)arena->Amalloc(4*sizeof(Node*));
duke@1 678 return;
duke@1 679 }
duke@1 680 while( new_max <= len ) new_max <<= 1; // Find next power-of-2
duke@1 681 // Trimming to limit allows a uint8 to handle up to 255 edges.
duke@1 682 // Previously I was using only powers-of-2 which peaked at 128 edges.
duke@1 683 //if( new_max >= limit ) new_max = limit-1;
duke@1 684 assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
duke@1 685 _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
duke@1 686 //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
duke@1 687 _outmax = new_max; // Record new max length
duke@1 688 // This assertion makes sure that Node::_max is wide enough to
duke@1 689 // represent the numerical value of new_max.
duke@1 690 assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
duke@1 691 }
duke@1 692
duke@1 693 #ifdef ASSERT
duke@1 694 //------------------------------is_dead----------------------------------------
duke@1 695 bool Node::is_dead() const {
duke@1 696 // Mach and pinch point nodes may look like dead.
duke@1 697 if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
duke@1 698 return false;
duke@1 699 for( uint i = 0; i < _max; i++ )
duke@1 700 if( _in[i] != NULL )
duke@1 701 return false;
duke@1 702 dump();
duke@1 703 return true;
duke@1 704 }
duke@1 705 #endif
duke@1 706
roland@15618 707
roland@15618 708 //------------------------------is_unreachable---------------------------------
roland@15618 709 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
roland@15618 710 assert(!is_Mach(), "doesn't work with MachNodes");
thartmann@49908 711 return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != NULL && in(0)->is_top());
roland@15618 712 }
roland@15618 713
duke@1 714 //------------------------------add_req----------------------------------------
duke@1 715 // Add a new required input at the end
duke@1 716 void Node::add_req( Node *n ) {
duke@1 717 assert( is_not_dead(n), "can not use dead node");
duke@1 718
duke@1 719 // Look to see if I can move precedence down one without reallocating
duke@1 720 if( (_cnt >= _max) || (in(_max-1) != NULL) )
duke@1 721 grow( _max+1 );
duke@1 722
duke@1 723 // Find a precedence edge to move
duke@1 724 if( in(_cnt) != NULL ) { // Next precedence edge is busy?
duke@1 725 uint i;
duke@1 726 for( i=_cnt; i<_max; i++ )
duke@1 727 if( in(i) == NULL ) // Find the NULL at end of prec edge list
duke@1 728 break; // There must be one, since we grew the array
duke@1 729 _in[i] = in(_cnt); // Move prec over, making space for req edge
duke@1 730 }
duke@1 731 _in[_cnt++] = n; // Stuff over old prec edge
duke@1 732 if (n != NULL) n->add_out((Node *)this);
duke@1 733 }
duke@1 734
duke@1 735 //---------------------------add_req_batch-------------------------------------
duke@1 736 // Add a new required input at the end
duke@1 737 void Node::add_req_batch( Node *n, uint m ) {
duke@1 738 assert( is_not_dead(n), "can not use dead node");
duke@1 739 // check various edge cases
duke@1 740 if ((int)m <= 1) {
duke@1 741 assert((int)m >= 0, "oob");
duke@1 742 if (m != 0) add_req(n);
duke@1 743 return;
duke@1 744 }
duke@1 745
duke@1 746 // Look to see if I can move precedence down one without reallocating
duke@1 747 if( (_cnt+m) > _max || _in[_max-m] )
duke@1 748 grow( _max+m );
duke@1 749
duke@1 750 // Find a precedence edge to move
duke@1 751 if( _in[_cnt] != NULL ) { // Next precedence edge is busy?
duke@1 752 uint i;
duke@1 753 for( i=_cnt; i<_max; i++ )
duke@1 754 if( _in[i] == NULL ) // Find the NULL at end of prec edge list
duke@1 755 break; // There must be one, since we grew the array
duke@1 756 // Slide all the precs over by m positions (assume #prec << m).
duke@1 757 Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
duke@1 758 }
duke@1 759
duke@1 760 // Stuff over the old prec edges
duke@1 761 for(uint i=0; i<m; i++ ) {
duke@1 762 _in[_cnt++] = n;
duke@1 763 }
duke@1 764
duke@1 765 // Insert multiple out edges on the node.
duke@1 766 if (n != NULL && !n->is_top()) {
duke@1 767 for(uint i=0; i<m; i++ ) {
duke@1 768 n->add_out((Node *)this);
duke@1 769 }
duke@1 770 }
duke@1 771 }
duke@1 772
duke@1 773 //------------------------------del_req----------------------------------------
duke@1 774 // Delete the required edge and compact the edge array
duke@1 775 void Node::del_req( uint idx ) {
kvn@8324 776 assert( idx < _cnt, "oob");
kvn@8324 777 assert( !VerifyHashTableKeys || _hash_lock == 0,
kvn@8324 778 "remove node from hash table before modifying it");
duke@1 779 // First remove corresponding def-use edge
duke@1 780 Node *n = in(idx);
duke@1 781 if (n != NULL) n->del_out((Node *)this);
mdoerr@35539 782 _in[idx] = in(--_cnt); // Compact the array
mdoerr@35539 783 // Avoid spec violation: Gap in prec edges.
mdoerr@35539 784 close_prec_gap_at(_cnt);
thartmann@25913 785 Compile::current()->record_modified_node(this);
duke@1 786 }
duke@1 787
kvn@19708 788 //------------------------------del_req_ordered--------------------------------
kvn@19708 789 // Delete the required edge and compact the edge array with preserved order
kvn@19708 790 void Node::del_req_ordered( uint idx ) {
kvn@19708 791 assert( idx < _cnt, "oob");
kvn@19708 792 assert( !VerifyHashTableKeys || _hash_lock == 0,
kvn@19708 793 "remove node from hash table before modifying it");
kvn@19708 794 // First remove corresponding def-use edge
kvn@19708 795 Node *n = in(idx);
kvn@19708 796 if (n != NULL) n->del_out((Node *)this);
mdoerr@35539 797 if (idx < --_cnt) { // Not last edge ?
mdoerr@35539 798 Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
kvn@19708 799 }
mdoerr@35539 800 // Avoid spec violation: Gap in prec edges.
mdoerr@35539 801 close_prec_gap_at(_cnt);
thartmann@25913 802 Compile::current()->record_modified_node(this);
kvn@19708 803 }
kvn@19708 804
duke@1 805 //------------------------------ins_req----------------------------------------
duke@1 806 // Insert a new required input at the end
duke@1 807 void Node::ins_req( uint idx, Node *n ) {
duke@1 808 assert( is_not_dead(n), "can not use dead node");
duke@1 809 add_req(NULL); // Make space
duke@1 810 assert( idx < _max, "Must have allocated enough space");
duke@1 811 // Slide over
duke@1 812 if(_cnt-idx-1 > 0) {
duke@1 813 Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
duke@1 814 }
duke@1 815 _in[idx] = n; // Stuff over old required edge
duke@1 816 if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
duke@1 817 }
duke@1 818
duke@1 819 //-----------------------------find_edge---------------------------------------
duke@1 820 int Node::find_edge(Node* n) {
duke@1 821 for (uint i = 0; i < len(); i++) {
duke@1 822 if (_in[i] == n) return i;
duke@1 823 }
duke@1 824 return -1;
duke@1 825 }
duke@1 826
duke@1 827 //----------------------------replace_edge-------------------------------------
duke@1 828 int Node::replace_edge(Node* old, Node* neww) {
duke@1 829 if (old == neww) return 0; // nothing to do
duke@1 830 uint nrep = 0;
duke@1 831 for (uint i = 0; i < len(); i++) {
duke@1 832 if (in(i) == old) {
mdoerr@35539 833 if (i < req()) {
duke@1 834 set_req(i, neww);
mdoerr@35539 835 } else {
mdoerr@35539 836 assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
duke@1 837 set_prec(i, neww);
mdoerr@35539 838 }
duke@1 839 nrep++;
duke@1 840 }
duke@1 841 }
duke@1 842 return nrep;
duke@1 843 }
duke@1 844
kvn@17383 845 /**
kvn@17383 846 * Replace input edges in the range pointing to 'old' node.
kvn@17383 847 */
kvn@17383 848 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
kvn@17383 849 if (old == neww) return 0; // nothing to do
kvn@17383 850 uint nrep = 0;
kvn@17383 851 for (int i = start; i < end; i++) {
kvn@17383 852 if (in(i) == old) {
kvn@17383 853 set_req(i, neww);
kvn@17383 854 nrep++;
kvn@17383 855 }
kvn@17383 856 }
kvn@17383 857 return nrep;
kvn@17383 858 }
kvn@17383 859
duke@1 860 //-------------------------disconnect_inputs-----------------------------------
duke@1 861 // NULL out all inputs to eliminate incoming Def-Use edges.
duke@1 862 // Return the number of edges between 'n' and 'this'
bharadwaj@14623 863 int Node::disconnect_inputs(Node *n, Compile* C) {
duke@1 864 int edges_to_n = 0;
duke@1 865
duke@1 866 uint cnt = req();
duke@1 867 for( uint i = 0; i < cnt; ++i ) {
duke@1 868 if( in(i) == 0 ) continue;
duke@1 869 if( in(i) == n ) ++edges_to_n;
duke@1 870 set_req(i, NULL);
duke@1 871 }
duke@1 872 // Remove precedence edges if any exist
duke@1 873 // Note: Safepoints may have precedence edges, even during parsing
duke@1 874 if( (req() != len()) && (in(req()) != NULL) ) {
duke@1 875 uint max = len();
duke@1 876 for( uint i = 0; i < max; ++i ) {
duke@1 877 if( in(i) == 0 ) continue;
duke@1 878 if( in(i) == n ) ++edges_to_n;
duke@1 879 set_prec(i, NULL);
duke@1 880 }
duke@1 881 }
duke@1 882
duke@1 883 // Node::destruct requires all out edges be deleted first
duke@1 884 // debug_only(destruct();) // no reuse benefit expected
bharadwaj@14623 885 if (edges_to_n == 0) {
bharadwaj@14623 886 C->record_dead_node(_idx);
bharadwaj@14623 887 }
duke@1 888 return edges_to_n;
duke@1 889 }
duke@1 890
duke@1 891 //-----------------------------uncast---------------------------------------
duke@1 892 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
duke@1 893 // Strip away casting. (It is depth-limited.)
duke@1 894 Node* Node::uncast() const {
duke@1 895 // Should be inline:
duke@1 896 //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
roland@35545 897 if (is_ConstraintCast())
duke@1 898 return uncast_helper(this);
duke@1 899 else
duke@1 900 return (Node*) this;
duke@1 901 }
duke@1 902
zmajo@28643 903 // Find out of current node that matches opcode.
zmajo@28643 904 Node* Node::find_out_with(int opcode) {
zmajo@28643 905 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
zmajo@28643 906 Node* use = fast_out(i);
zmajo@28643 907 if (use->Opcode() == opcode) {
zmajo@28643 908 return use;
zmajo@28643 909 }
zmajo@28643 910 }
zmajo@28643 911 return NULL;
zmajo@28643 912 }
zmajo@28643 913
zmajo@28643 914 // Return true if the current node has an out that matches opcode.
zmajo@28643 915 bool Node::has_out_with(int opcode) {
zmajo@28643 916 return (find_out_with(opcode) != NULL);
zmajo@28643 917 }
zmajo@28643 918
zmajo@28643 919 // Return true if the current node has an out that matches any of the opcodes.
zmajo@28643 920 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
zmajo@28643 921 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
zmajo@28643 922 int opcode = fast_out(i)->Opcode();
zmajo@28643 923 if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
zmajo@28643 924 return true;
zmajo@28643 925 }
zmajo@28643 926 }
zmajo@28643 927 return false;
zmajo@28643 928 }
zmajo@28643 929
zmajo@28643 930
duke@1 931 //---------------------------uncast_helper-------------------------------------
duke@1 932 Node* Node::uncast_helper(const Node* p) {
kvn@11446 933 #ifdef ASSERT
kvn@11446 934 uint depth_count = 0;
kvn@11446 935 const Node* orig_p = p;
kvn@11446 936 #endif
kvn@11446 937
kvn@11446 938 while (true) {
kvn@11446 939 #ifdef ASSERT
kvn@11446 940 if (depth_count >= K) {
kvn@11446 941 orig_p->dump(4);
kvn@11446 942 if (p != orig_p)
kvn@11446 943 p->dump(1);
kvn@11446 944 }
kvn@11446 945 assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
kvn@11446 946 #endif
duke@1 947 if (p == NULL || p->req() != 2) {
duke@1 948 break;
duke@1 949 } else if (p->is_ConstraintCast()) {
duke@1 950 p = p->in(1);
duke@1 951 } else {
duke@1 952 break;
duke@1 953 }
duke@1 954 }
duke@1 955 return (Node*) p;
duke@1 956 }
duke@1 957
duke@1 958 //------------------------------add_prec---------------------------------------
duke@1 959 // Add a new precedence input. Precedence inputs are unordered, with
duke@1 960 // duplicates removed and NULLs packed down at the end.
duke@1 961 void Node::add_prec( Node *n ) {
duke@1 962 assert( is_not_dead(n), "can not use dead node");
duke@1 963
duke@1 964 // Check for NULL at end
duke@1 965 if( _cnt >= _max || in(_max-1) )
duke@1 966 grow( _max+1 );
duke@1 967
duke@1 968 // Find a precedence edge to move
duke@1 969 uint i = _cnt;
mdoerr@35539 970 while( in(i) != NULL ) {
mdoerr@35539 971 if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
mdoerr@35539 972 i++;
mdoerr@35539 973 }
duke@1 974 _in[i] = n; // Stuff prec edge over NULL
duke@1 975 if ( n != NULL) n->add_out((Node *)this); // Add mirror edge
mdoerr@35539 976
mdoerr@35539 977 #ifdef ASSERT
mdoerr@35539 978 while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)", _idx); }
mdoerr@35539 979 #endif
duke@1 980 }
duke@1 981
duke@1 982 //------------------------------rm_prec----------------------------------------
duke@1 983 // Remove a precedence input. Precedence inputs are unordered, with
duke@1 984 // duplicates removed and NULLs packed down at the end.
duke@1 985 void Node::rm_prec( uint j ) {
mdoerr@35539 986 assert(j < _max, "oob: i=%d, _max=%d", j, _max);
mdoerr@35539 987 assert(j >= _cnt, "not a precedence edge");
mdoerr@35539 988 if (_in[j] == NULL) return; // Avoid spec violation: Gap in prec edges.
mdoerr@35539 989 _in[j]->del_out((Node *)this);
mdoerr@35539 990 close_prec_gap_at(j);
duke@1 991 }
duke@1 992
duke@1 993 //------------------------------size_of----------------------------------------
duke@1 994 uint Node::size_of() const { return sizeof(*this); }
duke@1 995
duke@1 996 //------------------------------ideal_reg--------------------------------------
duke@1 997 uint Node::ideal_reg() const { return 0; }
duke@1 998
duke@1 999 //------------------------------jvms-------------------------------------------
duke@1 1000 JVMState* Node::jvms() const { return NULL; }
duke@1 1001
duke@1 1002 #ifdef ASSERT
duke@1 1003 //------------------------------jvms-------------------------------------------
duke@1 1004 bool Node::verify_jvms(const JVMState* using_jvms) const {
duke@1 1005 for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
duke@1 1006 if (jvms == using_jvms) return true;
duke@1 1007 }
duke@1 1008 return false;
duke@1 1009 }
duke@1 1010
duke@1 1011 //------------------------------init_NodeProperty------------------------------
duke@1 1012 void Node::init_NodeProperty() {
duke@1 1013 assert(_max_classes <= max_jushort, "too many NodeProperty classes");
duke@1 1014 assert(_max_flags <= max_jushort, "too many NodeProperty flags");
duke@1 1015 }
duke@1 1016 #endif
duke@1 1017
duke@1 1018 //------------------------------format-----------------------------------------
duke@1 1019 // Print as assembly
duke@1 1020 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
duke@1 1021 //------------------------------emit-------------------------------------------
duke@1 1022 // Emit bytes starting at parameter 'ptr'.
duke@1 1023 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
duke@1 1024 //------------------------------size-------------------------------------------
duke@1 1025 // Size of instruction in bytes
duke@1 1026 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
duke@1 1027
duke@1 1028 //------------------------------CFG Construction-------------------------------
duke@1 1029 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
duke@1 1030 // Goto and Return.
duke@1 1031 const Node *Node::is_block_proj() const { return 0; }
duke@1 1032
duke@1 1033 // Minimum guaranteed type
duke@1 1034 const Type *Node::bottom_type() const { return Type::BOTTOM; }
duke@1 1035
duke@1 1036
duke@1 1037 //------------------------------raise_bottom_type------------------------------
duke@1 1038 // Get the worst-case Type output for this Node.
duke@1 1039 void Node::raise_bottom_type(const Type* new_type) {
duke@1 1040 if (is_Type()) {
duke@1 1041 TypeNode *n = this->as_Type();
duke@1 1042 if (VerifyAliases) {
roland@22799 1043 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
duke@1 1044 }
duke@1 1045 n->set_type(new_type);
duke@1 1046 } else if (is_Load()) {
duke@1 1047 LoadNode *n = this->as_Load();
duke@1 1048 if (VerifyAliases) {
roland@22799 1049 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
duke@1 1050 }
duke@1 1051 n->set_type(new_type);
duke@1 1052 }
duke@1 1053 }
duke@1 1054
duke@1 1055 //------------------------------Identity---------------------------------------
duke@1 1056 // Return a node that the given node is equivalent to.
thartmann@35551 1057 Node* Node::Identity(PhaseGVN* phase) {
duke@1 1058 return this; // Default to no identities
duke@1 1059 }
duke@1 1060
duke@1 1061 //------------------------------Value------------------------------------------
duke@1 1062 // Compute a new Type for a node using the Type of the inputs.
thartmann@35551 1063 const Type* Node::Value(PhaseGVN* phase) const {
duke@1 1064 return bottom_type(); // Default to worst-case Type
duke@1 1065 }
duke@1 1066
duke@1 1067 //------------------------------Ideal------------------------------------------
duke@1 1068 //
duke@1 1069 // 'Idealize' the graph rooted at this Node.
duke@1 1070 //
duke@1 1071 // In order to be efficient and flexible there are some subtle invariants
duke@1 1072 // these Ideal calls need to hold. Running with '+VerifyIterativeGVN' checks
duke@1 1073 // these invariants, although its too slow to have on by default. If you are
duke@1 1074 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
duke@1 1075 //
duke@1 1076 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
duke@1 1077 // pointer. If ANY change is made, it must return the root of the reshaped
duke@1 1078 // graph - even if the root is the same Node. Example: swapping the inputs
duke@1 1079 // to an AddINode gives the same answer and same root, but you still have to
duke@1 1080 // return the 'this' pointer instead of NULL.
duke@1 1081 //
duke@1 1082 // You cannot return an OLD Node, except for the 'this' pointer. Use the
duke@1 1083 // Identity call to return an old Node; basically if Identity can find
duke@1 1084 // another Node have the Ideal call make no change and return NULL.
duke@1 1085 // Example: AddINode::Ideal must check for add of zero; in this case it
duke@1 1086 // returns NULL instead of doing any graph reshaping.
duke@1 1087 //
duke@1 1088 // You cannot modify any old Nodes except for the 'this' pointer. Due to
duke@1 1089 // sharing there may be other users of the old Nodes relying on their current
duke@1 1090 // semantics. Modifying them will break the other users.
duke@1 1091 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
duke@1 1092 // "X+3" unchanged in case it is shared.
duke@1 1093 //
twisti@2131 1094 // If you modify the 'this' pointer's inputs, you should use
twisti@2131 1095 // 'set_req'. If you are making a new Node (either as the new root or
twisti@2131 1096 // some new internal piece) you may use 'init_req' to set the initial
twisti@2131 1097 // value. You can make a new Node with either 'new' or 'clone'. In
twisti@2131 1098 // either case, def-use info is correctly maintained.
twisti@2131 1099 //
duke@1 1100 // Example: reshape "(X+3)+4" into "X+7":
twisti@2131 1101 // set_req(1, in(1)->in(1));
twisti@2131 1102 // set_req(2, phase->intcon(7));
duke@1 1103 // return this;
twisti@2131 1104 // Example: reshape "X*4" into "X<<2"
thartmann@24923 1105 // return new LShiftINode(in(1), phase->intcon(2));
duke@1 1106 //
duke@1 1107 // You must call 'phase->transform(X)' on any new Nodes X you make, except
twisti@2131 1108 // for the returned root node. Example: reshape "X*31" with "(X<<5)-X".
thartmann@24923 1109 // Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
thartmann@24923 1110 // return new AddINode(shift, in(1));
duke@1 1111 //
duke@1 1112 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
thartmann@24923 1113 // These forms are faster than 'phase->transform(new ConNode())' and Do
duke@1 1114 // The Right Thing with def-use info.
duke@1 1115 //
duke@1 1116 // You cannot bury the 'this' Node inside of a graph reshape. If the reshaped
duke@1 1117 // graph uses the 'this' Node it must be the root. If you want a Node with
duke@1 1118 // the same Opcode as the 'this' pointer use 'clone'.
duke@1 1119 //
duke@1 1120 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@1 1121 return NULL; // Default to being Ideal already
duke@1 1122 }
duke@1 1123
duke@1 1124 // Some nodes have specific Ideal subgraph transformations only if they are
duke@1 1125 // unique users of specific nodes. Such nodes should be put on IGVN worklist
duke@1 1126 // for the transformations to happen.
duke@1 1127 bool Node::has_special_unique_user() const {
duke@1 1128 assert(outcnt() == 1, "match only for unique out");
duke@1 1129 Node* n = unique_out();
duke@1 1130 int op = Opcode();
roland@28486 1131 if (this->is_Store()) {
duke@1 1132 // Condition for back-to-back stores folding.
duke@1 1133 return n->Opcode() == op && n->in(MemNode::Memory) == this;
pliden@50525 1134 } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) {
thartmann@42610 1135 // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
thartmann@26176 1136 return n->Opcode() == Op_MemBarAcquire;
roland@28486 1137 } else if (op == Op_AddL) {
duke@1 1138 // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
duke@1 1139 return n->Opcode() == Op_ConvL2I && n->in(1) == this;
roland@28486 1140 } else if (op == Op_SubI || op == Op_SubL) {
duke@1 1141 // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
duke@1 1142 return n->Opcode() == op && n->in(2) == this;
roland@28486 1143 } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
roland@28486 1144 // See IfProjNode::Identity()
roland@28486 1145 return true;
rkennke@52655 1146 } else {
rkennke@52655 1147 return BarrierSet::barrier_set()->barrier_set_c2()->has_special_unique_user(this);
duke@1 1148 }
duke@1 1149 };
duke@1 1150
kvn@258 1151 //--------------------------find_exact_control---------------------------------
kvn@258 1152 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
kvn@258 1153 Node* Node::find_exact_control(Node* ctrl) {
kvn@258 1154 if (ctrl == NULL && this->is_Region())
kvn@258 1155 ctrl = this->as_Region()->is_copy();
kvn@258 1156
kvn@258 1157 if (ctrl != NULL && ctrl->is_CatchProj()) {
kvn@258 1158 if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
kvn@258 1159 ctrl = ctrl->in(0);
kvn@258 1160 if (ctrl != NULL && !ctrl->is_top())
kvn@258 1161 ctrl = ctrl->in(0);
kvn@258 1162 }
kvn@258 1163
kvn@258 1164 if (ctrl != NULL && ctrl->is_Proj())
kvn@258 1165 ctrl = ctrl->in(0);
kvn@258 1166
kvn@258 1167 return ctrl;
kvn@258 1168 }
kvn@258 1169
kvn@258 1170 //--------------------------dominates------------------------------------------
kvn@258 1171 // Helper function for MemNode::all_controls_dominate().
kvn@258 1172 // Check if 'this' control node dominates or equal to 'sub' control node.
kvn@619 1173 // We already know that if any path back to Root or Start reaches 'this',
kvn@619 1174 // then all paths so, so this is a simple search for one example,
kvn@619 1175 // not an exhaustive search for a counterexample.
kvn@258 1176 bool Node::dominates(Node* sub, Node_List &nlist) {
kvn@258 1177 assert(this->is_CFG(), "expecting control");
kvn@258 1178 assert(sub != NULL && sub->is_CFG(), "expecting control");
kvn@258 1179
kvn@581 1180 // detect dead cycle without regions
kvn@581 1181 int iterations_without_region_limit = DominatorSearchLimit;
kvn@581 1182
kvn@258 1183 Node* orig_sub = sub;
kvn@619 1184 Node* dom = this;
kvn@619 1185 bool met_dom = false;
kvn@258 1186 nlist.clear();
kvn@589 1187
kvn@619 1188 // Walk 'sub' backward up the chain to 'dom', watching for regions.
kvn@619 1189 // After seeing 'dom', continue up to Root or Start.
kvn@619 1190 // If we hit a region (backward split point), it may be a loop head.
kvn@619 1191 // Keep going through one of the region's inputs. If we reach the
kvn@619 1192 // same region again, go through a different input. Eventually we
kvn@619 1193 // will either exit through the loop head, or give up.
kvn@619 1194 // (If we get confused, break out and return a conservative 'false'.)
kvn@619 1195 while (sub != NULL) {
kvn@619 1196 if (sub->is_top()) break; // Conservative answer for dead code.
kvn@619 1197 if (sub == dom) {
kvn@258 1198 if (nlist.size() == 0) {
kvn@258 1199 // No Region nodes except loops were visited before and the EntryControl
kvn@258 1200 // path was taken for loops: it did not walk in a cycle.
kvn@619 1201 return true;
kvn@619 1202 } else if (met_dom) {
kvn@619 1203 break; // already met before: walk in a cycle
kvn@589 1204 } else {
kvn@258 1205 // Region nodes were visited. Continue walk up to Start or Root
kvn@258 1206 // to make sure that it did not walk in a cycle.
kvn@619 1207 met_dom = true; // first time meet
kvn@581 1208 iterations_without_region_limit = DominatorSearchLimit; // Reset
kvn@589 1209 }
kvn@258 1210 }
kvn@589 1211 if (sub->is_Start() || sub->is_Root()) {
kvn@619 1212 // Success if we met 'dom' along a path to Start or Root.
kvn@619 1213 // We assume there are no alternative paths that avoid 'dom'.
kvn@619 1214 // (This assumption is up to the caller to ensure!)
kvn@619 1215 return met_dom;
kvn@589 1216 }
kvn@619 1217 Node* up = sub->in(0);
kvn@619 1218 // Normalize simple pass-through regions and projections:
kvn@619 1219 up = sub->find_exact_control(up);
kvn@619 1220 // If sub == up, we found a self-loop. Try to push past it.
kvn@619 1221 if (sub == up && sub->is_Loop()) {
kvn@619 1222 // Take loop entry path on the way up to 'dom'.
kvn@589 1223 up = sub->in(1); // in(LoopNode::EntryControl);
kvn@619 1224 } else if (sub == up && sub->is_Region() && sub->req() != 3) {
kvn@619 1225 // Always take in(1) path on the way up to 'dom' for clone regions
kvn@619 1226 // (with only one input) or regions which merge > 2 paths
kvn@619 1227 // (usually used to merge fast/slow paths).
kvn@619 1228 up = sub->in(1);
kvn@589 1229 } else if (sub == up && sub->is_Region()) {
kvn@619 1230 // Try both paths for Regions with 2 input paths (it may be a loop head).
kvn@619 1231 // It could give conservative 'false' answer without information
kvn@619 1232 // which region's input is the entry path.
kvn@589 1233 iterations_without_region_limit = DominatorSearchLimit; // Reset
kvn@258 1234
kvn@589 1235 bool region_was_visited_before = false;
kvn@619 1236 // Was this Region node visited before?
kvn@619 1237 // If so, we have reached it because we accidentally took a
kvn@619 1238 // loop-back edge from 'sub' back into the body of the loop,
kvn@619 1239 // and worked our way up again to the loop header 'sub'.
kvn@619 1240 // So, take the first unexplored path on the way up to 'dom'.
kvn@619 1241 for (int j = nlist.size() - 1; j >= 0; j--) {
kvn@619 1242 intptr_t ni = (intptr_t)nlist.at(j);
kvn@619 1243 Node* visited = (Node*)(ni & ~1);
kvn@619 1244 bool visited_twice_already = ((ni & 1) != 0);
kvn@619 1245 if (visited == sub) {
kvn@619 1246 if (visited_twice_already) {
kvn@619 1247 // Visited 2 paths, but still stuck in loop body. Give up.
kvn@619 1248 return false;
kvn@258 1249 }
kvn@619 1250 // The Region node was visited before only once.
kvn@619 1251 // (We will repush with the low bit set, below.)
kvn@619 1252 nlist.remove(j);
kvn@619 1253 // We will find a new edge and re-insert.
kvn@619 1254 region_was_visited_before = true;
kvn@258 1255 break;
kvn@258 1256 }
kvn@258 1257 }
kvn@619 1258
kvn@619 1259 // Find an incoming edge which has not been seen yet; walk through it.
kvn@619 1260 assert(up == sub, "");
kvn@619 1261 uint skip = region_was_visited_before ? 1 : 0;
kvn@619 1262 for (uint i = 1; i < sub->req(); i++) {
kvn@619 1263 Node* in = sub->in(i);
kvn@619 1264 if (in != NULL && !in->is_top() && in != sub) {
kvn@619 1265 if (skip == 0) {
kvn@619 1266 up = in;
kvn@619 1267 break;
kvn@619 1268 }
kvn@619 1269 --skip; // skip this nontrivial input
kvn@589 1270 }
kvn@258 1271 }
kvn@619 1272
kvn@619 1273 // Set 0 bit to indicate that both paths were taken.
kvn@619 1274 nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
kvn@258 1275 }
kvn@619 1276
kvn@619 1277 if (up == sub) {
kvn@619 1278 break; // some kind of tight cycle
kvn@619 1279 }
kvn@619 1280 if (up == orig_sub && met_dom) {
kvn@619 1281 // returned back after visiting 'dom'
kvn@619 1282 break; // some kind of cycle
kvn@589 1283 }
kvn@589 1284 if (--iterations_without_region_limit < 0) {
kvn@619 1285 break; // dead cycle
kvn@589 1286 }
kvn@258 1287 sub = up;
kvn@258 1288 }
kvn@619 1289
kvn@619 1290 // Did not meet Root or Start node in pred. chain.
kvn@619 1291 // Conservative answer for dead code.
kvn@619 1292 return false;
kvn@258 1293 }
kvn@258 1294
duke@1 1295 //------------------------------remove_dead_region-----------------------------
duke@1 1296 // This control node is dead. Follow the subgraph below it making everything
duke@1 1297 // using it dead as well. This will happen normally via the usual IterGVN
duke@1 1298 // worklist but this call is more efficient. Do not update use-def info
duke@1 1299 // inside the dead region, just at the borders.
kvn@1067 1300 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
duke@1 1301 // Con's are a popular node to re-hit in the hash table again.
kvn@1067 1302 if( dead->is_Con() ) return;
duke@1 1303
duke@1 1304 // Can't put ResourceMark here since igvn->_worklist uses the same arena
duke@1 1305 // for verify pass with +VerifyOpto and we add/remove elements in it here.
duke@1 1306 Node_List nstack(Thread::current()->resource_area());
duke@1 1307
duke@1 1308 Node *top = igvn->C->top();
duke@1 1309 nstack.push(dead);
kvn@24342 1310 bool has_irreducible_loop = igvn->C->has_irreducible_loop();
duke@1 1311
duke@1 1312 while (nstack.size() > 0) {
duke@1 1313 dead = nstack.pop();
roland@53220 1314 if (dead->Opcode() == Op_SafePoint) {
roland@53220 1315 dead->as_SafePoint()->disconnect_from_root(igvn);
roland@53220 1316 }
duke@1 1317 if (dead->outcnt() > 0) {
duke@1 1318 // Keep dead node on stack until all uses are processed.
duke@1 1319 nstack.push(dead);
duke@1 1320 // For all Users of the Dead... ;-)
duke@1 1321 for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
duke@1 1322 Node* use = dead->last_out(k);
duke@1 1323 igvn->hash_delete(use); // Yank from hash table prior to mod
duke@1 1324 if (use->in(0) == dead) { // Found another dead node
jcoomes@5402 1325 assert (!use->is_Con(), "Control for Con node should be Root node.");
duke@1 1326 use->set_req(0, top); // Cut dead edge to prevent processing
duke@1 1327 nstack.push(use); // the dead node again.
kvn@24342 1328 } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
kvn@24342 1329 use->is_Loop() && !use->is_Root() && // Don't kill Root (RootNode extends LoopNode)
kvn@24342 1330 use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
kvn@24342 1331 use->set_req(LoopNode::EntryControl, top); // Cut dead edge to prevent processing
kvn@24342 1332 use->set_req(0, top); // Cut self edge
kvn@24342 1333 nstack.push(use);
duke@1 1334 } else { // Else found a not-dead user
kvn@24342 1335 // Dead if all inputs are top or null
kvn@24342 1336 bool dead_use = !use->is_Root(); // Keep empty graph alive
duke@1 1337 for (uint j = 1; j < use->req(); j++) {
kvn@24342 1338 Node* in = use->in(j);
kvn@24342 1339 if (in == dead) { // Turn all dead inputs into TOP
duke@1 1340 use->set_req(j, top);
kvn@24342 1341 } else if (in != NULL && !in->is_top()) {
kvn@24342 1342 dead_use = false;
duke@1 1343 }
duke@1 1344 }
kvn@24342 1345 if (dead_use) {
kvn@24342 1346 if (use->is_Region()) {
kvn@24342 1347 use->set_req(0, top); // Cut self edge
kvn@24342 1348 }
kvn@24342 1349 nstack.push(use);
kvn@24342 1350 } else {
kvn@24342 1351 igvn->_worklist.push(use);
kvn@24342 1352 }
duke@1 1353 }
duke@1 1354 // Refresh the iterator, since any number of kills might have happened.
duke@1 1355 k = dead->last_outs(kmin);
duke@1 1356 }
duke@1 1357 } else { // (dead->outcnt() == 0)
duke@1 1358 // Done with outputs.
duke@1 1359 igvn->hash_delete(dead);
duke@1 1360 igvn->_worklist.remove(dead);
thartmann@25913 1361 igvn->C->remove_modified_node(dead);
duke@1 1362 igvn->set_type(dead, Type::TOP);
duke@1 1363 if (dead->is_macro()) {
duke@1 1364 igvn->C->remove_macro_node(dead);
duke@1 1365 }
roland@15618 1366 if (dead->is_expensive()) {
roland@15618 1367 igvn->C->remove_expensive_node(dead);
roland@15618 1368 }
thartmann@35574 1369 CastIINode* cast = dead->isa_CastII();
thartmann@35574 1370 if (cast != NULL && cast->has_range_check()) {
thartmann@35574 1371 igvn->C->remove_range_check_cast(cast);
thartmann@35574 1372 }
roland@49487 1373 if (dead->Opcode() == Op_Opaque4) {
rraghavan@53063 1374 igvn->C->remove_opaque4_node(dead);
roland@49487 1375 }
eosterlund@50180 1376 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
eosterlund@50180 1377 bs->unregister_potential_barrier_node(dead);
roland@15813 1378 igvn->C->record_dead_node(dead->_idx);
duke@1 1379 // Kill all inputs to the dead guy
duke@1 1380 for (uint i=0; i < dead->req(); i++) {
duke@1 1381 Node *n = dead->in(i); // Get input to dead guy
duke@1 1382 if (n != NULL && !n->is_top()) { // Input is valid?
duke@1 1383 dead->set_req(i, top); // Smash input away
duke@1 1384 if (n->outcnt() == 0) { // Input also goes dead?
duke@1 1385 if (!n->is_Con())
duke@1 1386 nstack.push(n); // Clear it out as well
duke@1 1387 } else if (n->outcnt() == 1 &&
duke@1 1388 n->has_special_unique_user()) {
duke@1 1389 igvn->add_users_to_worklist( n );
duke@1 1390 } else if (n->outcnt() <= 2 && n->is_Store()) {
duke@1 1391 // Push store's uses on worklist to enable folding optimization for
duke@1 1392 // store/store and store/load to the same address.
duke@1 1393 // The restriction (outcnt() <= 2) is the same as in set_req_X()
duke@1 1394 // and remove_globally_dead_node().
duke@1 1395 igvn->add_users_to_worklist( n );
eosterlund@50180 1396 } else {
roland@52224 1397 BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n);
duke@1 1398 }
duke@1 1399 }
duke@1 1400 }
duke@1 1401 } // (dead->outcnt() == 0)
duke@1 1402 } // while (nstack.size() > 0) for outputs
kvn@1067 1403 return;
duke@1 1404 }
duke@1 1405
duke@1 1406 //------------------------------remove_dead_region-----------------------------
duke@1 1407 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
duke@1 1408 Node *n = in(0);
duke@1 1409 if( !n ) return false;
duke@1 1410 // Lost control into this guy? I.e., it became unreachable?
duke@1 1411 // Aggressively kill all unreachable code.
duke@1 1412 if (can_reshape && n->is_top()) {
kvn@1067 1413 kill_dead_code(this, phase->is_IterGVN());
kvn@1067 1414 return false; // Node is dead.
duke@1 1415 }
duke@1 1416
duke@1 1417 if( n->is_Region() && n->as_Region()->is_copy() ) {
duke@1 1418 Node *m = n->nonnull_req();
duke@1 1419 set_req(0, m);
duke@1 1420 return true;
duke@1 1421 }
duke@1 1422 return false;
duke@1 1423 }
duke@1 1424
duke@1 1425 //------------------------------hash-------------------------------------------
duke@1 1426 // Hash function over Nodes.
duke@1 1427 uint Node::hash() const {
duke@1 1428 uint sum = 0;
duke@1 1429 for( uint i=0; i<_cnt; i++ ) // Add in all inputs
duke@1 1430 sum = (sum<<1)-(uintptr_t)in(i); // Ignore embedded NULLs
duke@1 1431 return (sum>>2) + _cnt + Opcode();
duke@1 1432 }
duke@1 1433
duke@1 1434 //------------------------------cmp--------------------------------------------
duke@1 1435 // Compare special parts of simple Nodes
duke@1 1436 uint Node::cmp( const Node &n ) const {
duke@1 1437 return 1; // Must be same
duke@1 1438 }
duke@1 1439
duke@1 1440 //------------------------------rematerialize-----------------------------------
duke@1 1441 // Should we clone rather than spill this instruction?
duke@1 1442 bool Node::rematerialize() const {
duke@1 1443 if ( is_Mach() )
duke@1 1444 return this->as_Mach()->rematerialize();
duke@1 1445 else
duke@1 1446 return (_flags & Flag_rematerialize) != 0;
duke@1 1447 }
duke@1 1448
duke@1 1449 //------------------------------needs_anti_dependence_check---------------------
duke@1 1450 // Nodes which use memory without consuming it, hence need antidependences.
duke@1 1451 bool Node::needs_anti_dependence_check() const {
duke@1 1452 if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
duke@1 1453 return false;
duke@1 1454 else
duke@1 1455 return in(1)->bottom_type()->has_memory();
duke@1 1456 }
duke@1 1457
duke@1 1458
duke@1 1459 // Get an integer constant from a ConNode (or CastIINode).
duke@1 1460 // Return a default value if there is no apparent constant here.
duke@1 1461 const TypeInt* Node::find_int_type() const {
duke@1 1462 if (this->is_Type()) {
duke@1 1463 return this->as_Type()->type()->isa_int();
duke@1 1464 } else if (this->is_Con()) {
duke@1 1465 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
duke@1 1466 return this->bottom_type()->isa_int();
duke@1 1467 }
duke@1 1468 return NULL;
duke@1 1469 }
duke@1 1470
duke@1 1471 // Get a pointer constant from a ConstNode.
duke@1 1472 // Returns the constant if it is a pointer ConstNode
duke@1 1473 intptr_t Node::get_ptr() const {
duke@1 1474 assert( Opcode() == Op_ConP, "" );
duke@1 1475 return ((ConPNode*)this)->type()->is_ptr()->get_con();
duke@1 1476 }
duke@1 1477
coleenp@360 1478 // Get a narrow oop constant from a ConNNode.
coleenp@360 1479 intptr_t Node::get_narrowcon() const {
coleenp@360 1480 assert( Opcode() == Op_ConN, "" );
coleenp@360 1481 return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
coleenp@360 1482 }
coleenp@360 1483
duke@1 1484 // Get a long constant from a ConNode.
duke@1 1485 // Return a default value if there is no apparent constant here.
duke@1 1486 const TypeLong* Node::find_long_type() const {
duke@1 1487 if (this->is_Type()) {
duke@1 1488 return this->as_Type()->type()->isa_long();
duke@1 1489 } else if (this->is_Con()) {
duke@1 1490 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
duke@1 1491 return this->bottom_type()->isa_long();
duke@1 1492 }
duke@1 1493 return NULL;
duke@1 1494 }
duke@1 1495
kvn@17384 1496
kvn@17384 1497 /**
kvn@17384 1498 * Return a ptr type for nodes which should have it.
kvn@17384 1499 */
kvn@17384 1500 const TypePtr* Node::get_ptr_type() const {
kvn@17384 1501 const TypePtr* tp = this->bottom_type()->make_ptr();
kvn@17384 1502 #ifdef ASSERT
kvn@17384 1503 if (tp == NULL) {
kvn@17384 1504 this->dump(1);
kvn@17384 1505 assert((tp != NULL), "unexpected node type");
kvn@17384 1506 }
kvn@17384 1507 #endif
kvn@17384 1508 return tp;
kvn@17384 1509 }
kvn@17384 1510
duke@1 1511 // Get a double constant from a ConstNode.
duke@1 1512 // Returns the constant if it is a double ConstNode
duke@1 1513 jdouble Node::getd() const {
duke@1 1514 assert( Opcode() == Op_ConD, "" );
duke@1 1515 return ((ConDNode*)this)->type()->is_double_constant()->getd();
duke@1 1516 }
duke@1 1517
duke@1 1518 // Get a float constant from a ConstNode.
duke@1 1519 // Returns the constant if it is a float ConstNode
duke@1 1520 jfloat Node::getf() const {
duke@1 1521 assert( Opcode() == Op_ConF, "" );
duke@1 1522 return ((ConFNode*)this)->type()->is_float_constant()->getf();
duke@1 1523 }
duke@1 1524
duke@1 1525 #ifndef PRODUCT
duke@1 1526
duke@1 1527 //------------------------------find------------------------------------------
duke@1 1528 // Find a neighbor of this Node with the given _idx
duke@1 1529 // If idx is negative, find its absolute value, following both _in and _out.
never@8870 1530 static void find_recur(Compile* C, Node* &result, Node *n, int idx, bool only_ctrl,
never@8870 1531 VectorSet* old_space, VectorSet* new_space ) {
duke@1 1532 int node_idx = (idx >= 0) ? idx : -idx;
duke@1 1533 if (NotANode(n)) return; // Gracefully handle NULL, -1, 0xabababab, etc.
never@8870 1534 // Contained in new_space or old_space? Check old_arena first since it's mostly empty.
never@8870 1535 VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
duke@1 1536 if( v->test(n->_idx) ) return;
duke@1 1537 if( (int)n->_idx == node_idx
duke@1 1538 debug_only(|| n->debug_idx() == node_idx) ) {
duke@1 1539 if (result != NULL)
duke@1 1540 tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
duke@1 1541 (uintptr_t)result, (uintptr_t)n, node_idx);
duke@1 1542 result = n;
duke@1 1543 }
duke@1 1544 v->set(n->_idx);
duke@1 1545 for( uint i=0; i<n->len(); i++ ) {
duke@1 1546 if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
never@8870 1547 find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
duke@1 1548 }
duke@1 1549 // Search along forward edges also:
duke@1 1550 if (idx < 0 && !only_ctrl) {
duke@1 1551 for( uint j=0; j<n->outcnt(); j++ ) {
never@8870 1552 find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
duke@1 1553 }
duke@1 1554 }
duke@1 1555 #ifdef ASSERT
never@8870 1556 // Search along debug_orig edges last, checking for cycles
never@8870 1557 Node* orig = n->debug_orig();
never@8870 1558 if (orig != NULL) {
never@8870 1559 do {
never@8870 1560 if (NotANode(orig)) break;
never@8870 1561 find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
never@8870 1562 orig = orig->debug_orig();
never@8870 1563 } while (orig != NULL && orig != n->debug_orig());
duke@1 1564 }
duke@1 1565 #endif //ASSERT
duke@1 1566 }
duke@1 1567
duke@1 1568 // call this from debugger:
duke@1 1569 Node* find_node(Node* n, int idx) {
duke@1 1570 return n->find(idx);
duke@1 1571 }
duke@1 1572
duke@1 1573 //------------------------------find-------------------------------------------
duke@1 1574 Node* Node::find(int idx) const {
duke@1 1575 ResourceArea *area = Thread::current()->resource_area();
duke@1 1576 VectorSet old_space(area), new_space(area);
duke@1 1577 Node* result = NULL;
never@8870 1578 find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
duke@1 1579 return result;
duke@1 1580 }
duke@1 1581
duke@1 1582 //------------------------------find_ctrl--------------------------------------
duke@1 1583 // Find an ancestor to this node in the control history with given _idx
duke@1 1584 Node* Node::find_ctrl(int idx) const {
duke@1 1585 ResourceArea *area = Thread::current()->resource_area();
duke@1 1586 VectorSet old_space(area), new_space(area);
duke@1 1587 Node* result = NULL;
never@8870 1588 find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
duke@1 1589 return result;
duke@1 1590 }
duke@1 1591 #endif
duke@1 1592
duke@1 1593
duke@1 1594
duke@1 1595 #ifndef PRODUCT
duke@1 1596
duke@1 1597 // -----------------------------Name-------------------------------------------
duke@1 1598 extern const char *NodeClassNames[];
duke@1 1599 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
duke@1 1600
duke@1 1601 static bool is_disconnected(const Node* n) {
duke@1 1602 for (uint i = 0; i < n->req(); i++) {
duke@1 1603 if (n->in(i) != NULL) return false;
duke@1 1604 }
duke@1 1605 return true;
duke@1 1606 }
duke@1 1607
duke@1 1608 #ifdef ASSERT
kvn@15241 1609 static void dump_orig(Node* orig, outputStream *st) {
duke@1 1610 Compile* C = Compile::current();
kvn@15241 1611 if (NotANode(orig)) orig = NULL;
kvn@15241 1612 if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
kvn@15241 1613 if (orig == NULL) return;
kvn@15241 1614 st->print(" !orig=");
duke@1 1615 Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
kvn@15241 1616 if (NotANode(fast)) fast = NULL;
duke@1 1617 while (orig != NULL) {
duke@1 1618 bool discon = is_disconnected(orig); // if discon, print [123] else 123
kvn@15241 1619 if (discon) st->print("[");
duke@1 1620 if (!Compile::current()->node_arena()->contains(orig))
kvn@15241 1621 st->print("o");
kvn@15241 1622 st->print("%d", orig->_idx);
kvn@15241 1623 if (discon) st->print("]");
duke@1 1624 orig = orig->debug_orig();
kvn@15241 1625 if (NotANode(orig)) orig = NULL;
kvn@15241 1626 if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
kvn@15241 1627 if (orig != NULL) st->print(",");
duke@1 1628 if (fast != NULL) {
duke@1 1629 // Step fast twice for each single step of orig:
duke@1 1630 fast = fast->debug_orig();
kvn@15241 1631 if (NotANode(fast)) fast = NULL;
duke@1 1632 if (fast != NULL && fast != orig) {
duke@1 1633 fast = fast->debug_orig();
kvn@15241 1634 if (NotANode(fast)) fast = NULL;
duke@1 1635 }
duke@1 1636 if (fast == orig) {
kvn@15241 1637 st->print("...");
duke@1 1638 break;
duke@1 1639 }
duke@1 1640 }
duke@1 1641 }
duke@1 1642 }
duke@1 1643
duke@1 1644 void Node::set_debug_orig(Node* orig) {
duke@1 1645 _debug_orig = orig;
duke@1 1646 if (BreakAtNode == 0) return;
duke@1 1647 if (NotANode(orig)) orig = NULL;
duke@1 1648 int trip = 10;
duke@1 1649 while (orig != NULL) {
duke@1 1650 if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
duke@1 1651 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
duke@1 1652 this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
duke@1 1653 BREAKPOINT;
duke@1 1654 }
duke@1 1655 orig = orig->debug_orig();
duke@1 1656 if (NotANode(orig)) orig = NULL;
duke@1 1657 if (trip-- <= 0) break;
duke@1 1658 }
duke@1 1659 }
duke@1 1660 #endif //ASSERT
duke@1 1661
duke@1 1662 //------------------------------dump------------------------------------------
duke@1 1663 // Dump a Node
mhaupt@32084 1664 void Node::dump(const char* suffix, bool mark, outputStream *st) const {
duke@1 1665 Compile* C = Compile::current();
duke@1 1666 bool is_new = C->node_arena()->contains(this);
goetz@22854 1667 C->_in_dump_cnt++;
mhaupt@32084 1668 st->print("%c%d%s\t%s\t=== ", is_new ? ' ' : 'o', _idx, mark ? " >" : "", Name());
duke@1 1669
duke@1 1670 // Dump the required and precedence inputs
kvn@15241 1671 dump_req(st);
kvn@15241 1672 dump_prec(st);
duke@1 1673 // Dump the outputs
kvn@15241 1674 dump_out(st);
duke@1 1675
duke@1 1676 if (is_disconnected(this)) {
duke@1 1677 #ifdef ASSERT
kvn@15241 1678 st->print(" [%d]",debug_idx());
kvn@15241 1679 dump_orig(debug_orig(), st);
duke@1 1680 #endif
kvn@15241 1681 st->cr();
goetz@22854 1682 C->_in_dump_cnt--;
duke@1 1683 return; // don't process dead nodes
duke@1 1684 }
duke@1 1685
kvn@30593 1686 if (C->clone_map().value(_idx) != 0) {
kvn@30593 1687 C->clone_map().dump(_idx);
kvn@30593 1688 }
duke@1 1689 // Dump node-specific info
kvn@15241 1690 dump_spec(st);
duke@1 1691 #ifdef ASSERT
duke@1 1692 // Dump the non-reset _debug_idx
kvn@15241 1693 if (Verbose && WizardMode) {
kvn@15241 1694 st->print(" [%d]",debug_idx());
duke@1 1695 }
duke@1 1696 #endif
duke@1 1697
duke@1 1698 const Type *t = bottom_type();
duke@1 1699
duke@1 1700 if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
duke@1 1701 const TypeInstPtr *toop = t->isa_instptr();
duke@1 1702 const TypeKlassPtr *tkls = t->isa_klassptr();
duke@1 1703 ciKlass* klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
kvn@15241 1704 if (klass && klass->is_loaded() && klass->is_interface()) {
kvn@15241 1705 st->print(" Interface:");
kvn@15241 1706 } else if (toop) {
kvn@15241 1707 st->print(" Oop:");
kvn@15241 1708 } else if (tkls) {
kvn@15241 1709 st->print(" Klass:");
duke@1 1710 }
kvn@15241 1711 t->dump_on(st);
kvn@15241 1712 } else if (t == Type::MEMORY) {
kvn@15241 1713 st->print(" Memory:");
kvn@15241 1714 MemNode::dump_adr_type(this, adr_type(), st);
kvn@15241 1715 } else if (Verbose || WizardMode) {
kvn@15241 1716 st->print(" Type:");
kvn@15241 1717 if (t) {
kvn@15241 1718 t->dump_on(st);
duke@1 1719 } else {
kvn@15241 1720 st->print("no type");
duke@1 1721 }
kvn@13104 1722 } else if (t->isa_vect() && this->is_MachSpillCopy()) {
kvn@13104 1723 // Dump MachSpillcopy vector type.
kvn@15241 1724 t->dump_on(st);
duke@1 1725 }
duke@1 1726 if (is_new) {
kvn@15241 1727 debug_only(dump_orig(debug_orig(), st));
duke@1 1728 Node_Notes* nn = C->node_notes_at(_idx);
duke@1 1729 if (nn != NULL && !nn->is_clear()) {
duke@1 1730 if (nn->jvms() != NULL) {
kvn@15241 1731 st->print(" !jvms:");
kvn@15241 1732 nn->jvms()->dump_spec(st);
duke@1 1733 }
duke@1 1734 }
duke@1 1735 }
drchase@24424 1736 if (suffix) st->print("%s", suffix);
goetz@22854 1737 C->_in_dump_cnt--;
duke@1 1738 }
duke@1 1739
duke@1 1740 //------------------------------dump_req--------------------------------------
kvn@15241 1741 void Node::dump_req(outputStream *st) const {
duke@1 1742 // Dump the required input edges
duke@1 1743 for (uint i = 0; i < req(); i++) { // For all required inputs
duke@1 1744 Node* d = in(i);
duke@1 1745 if (d == NULL) {
kvn@15241 1746 st->print("_ ");
duke@1 1747 } else if (NotANode(d)) {
kvn@15241 1748 st->print("NotANode "); // uninitialized, sentinel, garbage, etc.
duke@1 1749 } else {
kvn@15241 1750 st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
duke@1 1751 }
duke@1 1752 }
duke@1 1753 }
duke@1 1754
duke@1 1755
duke@1 1756 //------------------------------dump_prec-------------------------------------
kvn@15241 1757 void Node::dump_prec(outputStream *st) const {
duke@1 1758 // Dump the precedence edges
duke@1 1759 int any_prec = 0;
duke@1 1760 for (uint i = req(); i < len(); i++) { // For all precedence inputs
duke@1 1761 Node* p = in(i);
duke@1 1762 if (p != NULL) {
kvn@15241 1763 if (!any_prec++) st->print(" |");
kvn@15241 1764 if (NotANode(p)) { st->print("NotANode "); continue; }
kvn@15241 1765 st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
duke@1 1766 }
duke@1 1767 }
duke@1 1768 }
duke@1 1769
duke@1 1770 //------------------------------dump_out--------------------------------------
kvn@15241 1771 void Node::dump_out(outputStream *st) const {
duke@1 1772 // Delimit the output edges
kvn@15241 1773 st->print(" [[");
duke@1 1774 // Dump the output edges
duke@1 1775 for (uint i = 0; i < _outcnt; i++) { // For all outputs
duke@1 1776 Node* u = _out[i];
duke@1 1777 if (u == NULL) {
kvn@15241 1778 st->print("_ ");
duke@1 1779 } else if (NotANode(u)) {
kvn@15241 1780 st->print("NotANode ");
duke@1 1781 } else {
kvn@15241 1782 st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
duke@1 1783 }
duke@1 1784 }
kvn@15241 1785 st->print("]] ");
duke@1 1786 }
duke@1 1787
mhaupt@32084 1788 //----------------------------collect_nodes_i----------------------------------
mhaupt@32084 1789 // Collects nodes from an Ideal graph, starting from a given start node and
mhaupt@32084 1790 // moving in a given direction until a certain depth (distance from the start
mhaupt@32084 1791 // node) is reached. Duplicates are ignored.
mhaupt@32084 1792 // Arguments:
mhaupt@32084 1793 // nstack: the nodes are collected into this array.
mhaupt@32084 1794 // start: the node at which to start collecting.
mhaupt@32084 1795 // direction: if this is a positive number, collect input nodes; if it is
mhaupt@32084 1796 // a negative number, collect output nodes.
mhaupt@32084 1797 // depth: collect nodes up to this distance from the start node.
mhaupt@32084 1798 // include_start: whether to include the start node in the result collection.
mhaupt@32084 1799 // only_ctrl: whether to regard control edges only during traversal.
mhaupt@32084 1800 // only_data: whether to regard data edges only during traversal.
mhaupt@32084 1801 static void collect_nodes_i(GrowableArray<Node*> *nstack, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) {
mhaupt@32084 1802 Node* s = (Node*) start; // remove const
mhaupt@32084 1803 nstack->append(s);
kvn@213 1804 int begin = 0;
kvn@213 1805 int end = 0;
kvn@213 1806 for(uint i = 0; i < depth; i++) {
mhaupt@32084 1807 end = nstack->length();
kvn@213 1808 for(int j = begin; j < end; j++) {
mhaupt@32084 1809 Node* tp = nstack->at(j);
kvn@213 1810 uint limit = direction > 0 ? tp->len() : tp->outcnt();
kvn@213 1811 for(uint k = 0; k < limit; k++) {
kvn@213 1812 Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
duke@1 1813
kvn@213 1814 if (NotANode(n)) continue;
kvn@213 1815 // do not recurse through top or the root (would reach unrelated stuff)
mhaupt@32084 1816 if (n->is_Root() || n->is_top()) continue;
kvn@213 1817 if (only_ctrl && !n->is_CFG()) continue;
mhaupt@32084 1818 if (only_data && n->is_CFG()) continue;
duke@1 1819
mhaupt@32084 1820 bool on_stack = nstack->contains(n);
kvn@213 1821 if (!on_stack) {
mhaupt@32084 1822 nstack->append(n);
duke@1 1823 }
duke@1 1824 }
duke@1 1825 }
kvn@213 1826 begin = end;
kvn@213 1827 }
mhaupt@32084 1828 if (!include_start) {
mhaupt@32084 1829 nstack->remove(s);
mhaupt@32084 1830 }
mhaupt@32084 1831 }
mhaupt@32084 1832
mhaupt@32084 1833 //------------------------------dump_nodes-------------------------------------
mhaupt@32084 1834 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
mhaupt@32084 1835 if (NotANode(start)) return;
mhaupt@32084 1836
kvn@32202 1837 GrowableArray <Node *> nstack(Compile::current()->live_nodes());
mhaupt@32084 1838 collect_nodes_i(&nstack, start, d, (uint) ABS(d), true, only_ctrl, false);
mhaupt@32084 1839
mhaupt@32084 1840 int end = nstack.length();
mhaupt@32084 1841 if (d > 0) {
kvn@213 1842 for(int j = end-1; j >= 0; j--) {
kvn@213 1843 nstack.at(j)->dump();
kvn@213 1844 }
kvn@213 1845 } else {
kvn@213 1846 for(int j = 0; j < end; j++) {
kvn@213 1847 nstack.at(j)->dump();
kvn@213 1848 }
duke@1 1849 }
duke@1 1850 }
duke@1 1851
duke@1 1852 //------------------------------dump-------------------------------------------
duke@1 1853 void Node::dump(int d) const {
duke@1 1854 dump_nodes(this, d, false);
duke@1 1855 }
duke@1 1856
duke@1 1857 //------------------------------dump_ctrl--------------------------------------
duke@1 1858 // Dump a Node's control history to depth
duke@1 1859 void Node::dump_ctrl(int d) const {
duke@1 1860 dump_nodes(this, d, true);
duke@1 1861 }
duke@1 1862
mhaupt@32084 1863 //-----------------------------dump_compact------------------------------------
mhaupt@32084 1864 void Node::dump_comp() const {
mhaupt@32084 1865 this->dump_comp("\n");
mhaupt@32084 1866 }
mhaupt@32084 1867
mhaupt@32084 1868 //-----------------------------dump_compact------------------------------------
mhaupt@32084 1869 // Dump a Node in compact representation, i.e., just print its name and index.
mhaupt@32084 1870 // Nodes can specify additional specifics to print in compact representation by
mhaupt@32084 1871 // implementing dump_compact_spec.
mhaupt@32084 1872 void Node::dump_comp(const char* suffix, outputStream *st) const {
mhaupt@32084 1873 Compile* C = Compile::current();
mhaupt@32084 1874 C->_in_dump_cnt++;
mhaupt@32084 1875 st->print("%s(%d)", Name(), _idx);
mhaupt@32084 1876 this->dump_compact_spec(st);
mhaupt@32084 1877 if (suffix) {
mhaupt@32084 1878 st->print("%s", suffix);
mhaupt@32084 1879 }
mhaupt@32084 1880 C->_in_dump_cnt--;
mhaupt@32084 1881 }
mhaupt@32084 1882
mhaupt@32084 1883 //----------------------------dump_related-------------------------------------
mhaupt@32084 1884 // Dump a Node's related nodes - the notion of "related" depends on the Node at
mhaupt@32084 1885 // hand and is determined by the implementation of the virtual method rel.
mhaupt@32084 1886 void Node::dump_related() const {
mhaupt@32084 1887 Compile* C = Compile::current();
mhaupt@32084 1888 GrowableArray <Node *> in_rel(C->unique());
mhaupt@32084 1889 GrowableArray <Node *> out_rel(C->unique());
mhaupt@32084 1890 this->related(&in_rel, &out_rel, false);
mhaupt@32084 1891 for (int i = in_rel.length() - 1; i >= 0; i--) {
mhaupt@32084 1892 in_rel.at(i)->dump();
mhaupt@32084 1893 }
mhaupt@32084 1894 this->dump("\n", true);
mhaupt@32084 1895 for (int i = 0; i < out_rel.length(); i++) {
mhaupt@32084 1896 out_rel.at(i)->dump();
mhaupt@32084 1897 }
mhaupt@32084 1898 }
mhaupt@32084 1899
mhaupt@32084 1900 //----------------------------dump_related-------------------------------------
mhaupt@32084 1901 // Dump a Node's related nodes up to a given depth (distance from the start
mhaupt@32084 1902 // node).
mhaupt@32084 1903 // Arguments:
mhaupt@32084 1904 // d_in: depth for input nodes.
mhaupt@32084 1905 // d_out: depth for output nodes (note: this also is a positive number).
mhaupt@32084 1906 void Node::dump_related(uint d_in, uint d_out) const {
mhaupt@32084 1907 Compile* C = Compile::current();
mhaupt@32084 1908 GrowableArray <Node *> in_rel(C->unique());
mhaupt@32084 1909 GrowableArray <Node *> out_rel(C->unique());
mhaupt@32084 1910
mhaupt@32084 1911 // call collect_nodes_i directly
mhaupt@32084 1912 collect_nodes_i(&in_rel, this, 1, d_in, false, false, false);
mhaupt@32084 1913 collect_nodes_i(&out_rel, this, -1, d_out, false, false, false);
mhaupt@32084 1914
mhaupt@32084 1915 for (int i = in_rel.length() - 1; i >= 0; i--) {
mhaupt@32084 1916 in_rel.at(i)->dump();
mhaupt@32084 1917 }
mhaupt@32084 1918 this->dump("\n", true);
mhaupt@32084 1919 for (int i = 0; i < out_rel.length(); i++) {
mhaupt@32084 1920 out_rel.at(i)->dump();
mhaupt@32084 1921 }
mhaupt@32084 1922 }
mhaupt@32084 1923
mhaupt@32084 1924 //------------------------dump_related_compact---------------------------------
mhaupt@32084 1925 // Dump a Node's related nodes in compact representation. The notion of
mhaupt@32084 1926 // "related" depends on the Node at hand and is determined by the implementation
mhaupt@32084 1927 // of the virtual method rel.
mhaupt@32084 1928 void Node::dump_related_compact() const {
mhaupt@32084 1929 Compile* C = Compile::current();
mhaupt@32084 1930 GrowableArray <Node *> in_rel(C->unique());
mhaupt@32084 1931 GrowableArray <Node *> out_rel(C->unique());
mhaupt@32084 1932 this->related(&in_rel, &out_rel, true);
mhaupt@32084 1933 int n_in = in_rel.length();
mhaupt@32084 1934 int n_out = out_rel.length();
mhaupt@32084 1935
mhaupt@32084 1936 this->dump_comp(n_in == 0 ? "\n" : " ");
mhaupt@32084 1937 for (int i = 0; i < n_in; i++) {
mhaupt@32084 1938 in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : " ");
mhaupt@32084 1939 }
mhaupt@32084 1940 for (int i = 0; i < n_out; i++) {
mhaupt@32084 1941 out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : " ");
mhaupt@32084 1942 }
mhaupt@32084 1943 }
mhaupt@32084 1944
mhaupt@32084 1945 //------------------------------related----------------------------------------
mhaupt@32084 1946 // Collect a Node's related nodes. The default behaviour just collects the
mhaupt@32084 1947 // inputs and outputs at depth 1, including both control and data flow edges,
mhaupt@32084 1948 // regardless of whether the presentation is compact or not. For data nodes,
mhaupt@32084 1949 // the default is to collect all data inputs (till level 1 if compact), and
mhaupt@32084 1950 // outputs till level 1.
mhaupt@32084 1951 void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
mhaupt@32084 1952 if (this->is_CFG()) {
mhaupt@32084 1953 collect_nodes_i(in_rel, this, 1, 1, false, false, false);
mhaupt@32084 1954 collect_nodes_i(out_rel, this, -1, 1, false, false, false);
mhaupt@32084 1955 } else {
mhaupt@32084 1956 if (compact) {
mhaupt@32084 1957 this->collect_nodes(in_rel, 1, false, true);
mhaupt@32084 1958 } else {
mhaupt@32084 1959 this->collect_nodes_in_all_data(in_rel, false);
mhaupt@32084 1960 }
mhaupt@32084 1961 this->collect_nodes(out_rel, -1, false, false);
mhaupt@32084 1962 }
mhaupt@32084 1963 }
mhaupt@32084 1964
mhaupt@32084 1965 //---------------------------collect_nodes-------------------------------------
mhaupt@32084 1966 // An entry point to the low-level node collection facility, to start from a
mhaupt@32084 1967 // given node in the graph. The start node is by default not included in the
mhaupt@32084 1968 // result.
mhaupt@32084 1969 // Arguments:
mhaupt@32084 1970 // ns: collect the nodes into this data structure.
mhaupt@32084 1971 // d: the depth (distance from start node) to which nodes should be
mhaupt@32084 1972 // collected. A value >0 indicates input nodes, a value <0, output
mhaupt@32084 1973 // nodes.
mhaupt@32084 1974 // ctrl: include only control nodes.
mhaupt@32084 1975 // data: include only data nodes.
mhaupt@32084 1976 void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const {
mhaupt@32084 1977 if (ctrl && data) {
mhaupt@32084 1978 // ignore nonsensical combination
mhaupt@32084 1979 return;
mhaupt@32084 1980 }
mhaupt@32084 1981 collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data);
mhaupt@32084 1982 }
mhaupt@32084 1983
mhaupt@32084 1984 //--------------------------collect_nodes_in-----------------------------------
mhaupt@32084 1985 static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) {
mhaupt@32084 1986 // The maximum depth is determined using a BFS that visits all primary (data
mhaupt@32084 1987 // or control) inputs and increments the depth at each level.
mhaupt@32084 1988 uint d_in = 0;
mhaupt@32084 1989 GrowableArray<Node*> nodes(Compile::current()->unique());
mhaupt@32084 1990 nodes.push(start);
mhaupt@32084 1991 int nodes_at_current_level = 1;
mhaupt@32084 1992 int n_idx = 0;
mhaupt@32084 1993 while (nodes_at_current_level > 0) {
mhaupt@32084 1994 // Add all primary inputs reachable from the current level to the list, and
mhaupt@32084 1995 // increase the depth if there were any.
mhaupt@32084 1996 int nodes_at_next_level = 0;
mhaupt@32084 1997 bool nodes_added = false;
mhaupt@32084 1998 while (nodes_at_current_level > 0) {
mhaupt@32084 1999 nodes_at_current_level--;
mhaupt@32084 2000 Node* current = nodes.at(n_idx++);
mhaupt@32084 2001 for (uint i = 0; i < current->len(); i++) {
mhaupt@32084 2002 Node* n = current->in(i);
mhaupt@32084 2003 if (NotANode(n)) {
mhaupt@32084 2004 continue;
mhaupt@32084 2005 }
mhaupt@32084 2006 if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) {
mhaupt@32084 2007 continue;
mhaupt@32084 2008 }
mhaupt@32084 2009 if (!nodes.contains(n)) {
mhaupt@32084 2010 nodes.push(n);
mhaupt@32084 2011 nodes_added = true;
mhaupt@32084 2012 nodes_at_next_level++;
mhaupt@32084 2013 }
mhaupt@32084 2014 }
mhaupt@32084 2015 }
mhaupt@32084 2016 if (nodes_added) {
mhaupt@32084 2017 d_in++;
mhaupt@32084 2018 }
mhaupt@32084 2019 nodes_at_current_level = nodes_at_next_level;
mhaupt@32084 2020 }
mhaupt@32084 2021 start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data);
mhaupt@32084 2022 if (collect_secondary) {
mhaupt@32084 2023 // Now, iterate over the secondary nodes in ns and add the respective
mhaupt@32084 2024 // boundary reachable from them.
mhaupt@32084 2025 GrowableArray<Node*> sns(Compile::current()->unique());
mhaupt@32084 2026 for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) {
mhaupt@32084 2027 Node* n = *it;
mhaupt@32084 2028 n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data);
mhaupt@32084 2029 for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) {
mhaupt@32084 2030 ns->append_if_missing(*d);
mhaupt@32084 2031 }
mhaupt@32084 2032 sns.clear();
mhaupt@32084 2033 }
mhaupt@32084 2034 }
mhaupt@32084 2035 }
mhaupt@32084 2036
mhaupt@32084 2037 //---------------------collect_nodes_in_all_data-------------------------------
mhaupt@32084 2038 // Collect the entire data input graph. Include the control boundary if
mhaupt@32084 2039 // requested.
mhaupt@32084 2040 // Arguments:
mhaupt@32084 2041 // ns: collect the nodes into this data structure.
mhaupt@32084 2042 // ctrl: if true, include the control boundary.
mhaupt@32084 2043 void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const {
mhaupt@32084 2044 collect_nodes_in((Node*) this, ns, true, ctrl);
mhaupt@32084 2045 }
mhaupt@32084 2046
mhaupt@32084 2047 //--------------------------collect_nodes_in_all_ctrl--------------------------
mhaupt@32084 2048 // Collect the entire control input graph. Include the data boundary if
mhaupt@32084 2049 // requested.
mhaupt@32084 2050 // ns: collect the nodes into this data structure.
mhaupt@32084 2051 // data: if true, include the control boundary.
mhaupt@32084 2052 void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const {
mhaupt@32084 2053 collect_nodes_in((Node*) this, ns, false, data);
mhaupt@32084 2054 }
mhaupt@32084 2055
mhaupt@32084 2056 //------------------collect_nodes_out_all_ctrl_boundary------------------------
mhaupt@32084 2057 // Collect the entire output graph until hitting control node boundaries, and
mhaupt@32084 2058 // include those.
mhaupt@32084 2059 void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const {
mhaupt@32084 2060 // Perform a BFS and stop at control nodes.
mhaupt@32084 2061 GrowableArray<Node*> nodes(Compile::current()->unique());
mhaupt@32084 2062 nodes.push((Node*) this);
mhaupt@32084 2063 while (nodes.length() > 0) {
mhaupt@32084 2064 Node* current = nodes.pop();
mhaupt@32084 2065 if (NotANode(current)) {
mhaupt@32084 2066 continue;
mhaupt@32084 2067 }
mhaupt@32084 2068 ns->append_if_missing(current);
mhaupt@32084 2069 if (!current->is_CFG()) {
mhaupt@32084 2070 for (DUIterator i = current->outs(); current->has_out(i); i++) {
mhaupt@32084 2071 nodes.push(current->out(i));
mhaupt@32084 2072 }
mhaupt@32084 2073 }
mhaupt@32084 2074 }
mhaupt@32084 2075 ns->remove((Node*) this);
mhaupt@32084 2076 }
mhaupt@32084 2077
duke@1 2078 // VERIFICATION CODE
duke@1 2079 // For each input edge to a node (ie - for each Use-Def edge), verify that
duke@1 2080 // there is a corresponding Def-Use edge.
duke@1 2081 //------------------------------verify_edges-----------------------------------
duke@1 2082 void Node::verify_edges(Unique_Node_List &visited) {
duke@1 2083 uint i, j, idx;
duke@1 2084 int cnt;
duke@1 2085 Node *n;
duke@1 2086
duke@1 2087 // Recursive termination test
duke@1 2088 if (visited.member(this)) return;
duke@1 2089 visited.push(this);
duke@1 2090
twisti@2131 2091 // Walk over all input edges, checking for correspondence
duke@1 2092 for( i = 0; i < len(); i++ ) {
duke@1 2093 n = in(i);
duke@1 2094 if (n != NULL && !n->is_top()) {
duke@1 2095 // Count instances of (Node *)this
duke@1 2096 cnt = 0;
duke@1 2097 for (idx = 0; idx < n->_outcnt; idx++ ) {
duke@1 2098 if (n->_out[idx] == (Node *)this) cnt++;
duke@1 2099 }
duke@1 2100 assert( cnt > 0,"Failed to find Def-Use edge." );
duke@1 2101 // Check for duplicate edges
duke@1 2102 // walk the input array downcounting the input edges to n
duke@1 2103 for( j = 0; j < len(); j++ ) {
duke@1 2104 if( in(j) == n ) cnt--;
duke@1 2105 }
duke@1 2106 assert( cnt == 0,"Mismatched edge count.");
duke@1 2107 } else if (n == NULL) {
duke@1 2108 assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
duke@1 2109 } else {
duke@1 2110 assert(n->is_top(), "sanity");
duke@1 2111 // Nothing to check.
duke@1 2112 }
duke@1 2113 }
duke@1 2114 // Recursive walk over all input edges
duke@1 2115 for( i = 0; i < len(); i++ ) {
duke@1 2116 n = in(i);
duke@1 2117 if( n != NULL )
duke@1 2118 in(i)->verify_edges(visited);
duke@1 2119 }
duke@1 2120 }
duke@1 2121
duke@1 2122 //------------------------------verify_recur-----------------------------------
duke@1 2123 static const Node *unique_top = NULL;
duke@1 2124
duke@1 2125 void Node::verify_recur(const Node *n, int verify_depth,
duke@1 2126 VectorSet &old_space, VectorSet &new_space) {
duke@1 2127 if ( verify_depth == 0 ) return;
duke@1 2128 if (verify_depth > 0) --verify_depth;
duke@1 2129
duke@1 2130 Compile* C = Compile::current();
duke@1 2131
duke@1 2132 // Contained in new_space or old_space?
duke@1 2133 VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
duke@1 2134 // Check for visited in the proper space. Numberings are not unique
twisti@2131 2135 // across spaces so we need a separate VectorSet for each space.
duke@1 2136 if( v->test_set(n->_idx) ) return;
duke@1 2137
duke@1 2138 if (n->is_Con() && n->bottom_type() == Type::TOP) {
duke@1 2139 if (C->cached_top_node() == NULL)
duke@1 2140 C->set_cached_top_node((Node*)n);
duke@1 2141 assert(C->cached_top_node() == n, "TOP node must be unique");
duke@1 2142 }
duke@1 2143
duke@1 2144 for( uint i = 0; i < n->len(); i++ ) {
duke@1 2145 Node *x = n->in(i);
duke@1 2146 if (!x || x->is_top()) continue;
duke@1 2147
duke@1 2148 // Verify my input has a def-use edge to me
duke@1 2149 if (true /*VerifyDefUse*/) {
duke@1 2150 // Count use-def edges from n to x
duke@1 2151 int cnt = 0;
duke@1 2152 for( uint j = 0; j < n->len(); j++ )
duke@1 2153 if( n->in(j) == x )
duke@1 2154 cnt++;
duke@1 2155 // Count def-use edges from x to n
duke@1 2156 uint max = x->_outcnt;
duke@1 2157 for( uint k = 0; k < max; k++ )
duke@1 2158 if (x->_out[k] == n)
duke@1 2159 cnt--;
duke@1 2160 assert( cnt == 0, "mismatched def-use edge counts" );
duke@1 2161 }
duke@1 2162
duke@1 2163 verify_recur(x, verify_depth, old_space, new_space);
duke@1 2164 }
duke@1 2165
duke@1 2166 }
duke@1 2167
duke@1 2168 //------------------------------verify-----------------------------------------
duke@1 2169 // Check Def-Use info for my subgraph
duke@1 2170 void Node::verify() const {
duke@1 2171 Compile* C = Compile::current();
duke@1 2172 Node* old_top = C->cached_top_node();
duke@1 2173 ResourceMark rm;
duke@1 2174 ResourceArea *area = Thread::current()->resource_area();
duke@1 2175 VectorSet old_space(area), new_space(area);
duke@1 2176 verify_recur(this, -1, old_space, new_space);
duke@1 2177 C->set_cached_top_node(old_top);
duke@1 2178 }
duke@1 2179 #endif
duke@1 2180
duke@1 2181
duke@1 2182 //------------------------------walk-------------------------------------------
duke@1 2183 // Graph walk, with both pre-order and post-order functions
duke@1 2184 void Node::walk(NFunc pre, NFunc post, void *env) {
duke@1 2185 VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
duke@1 2186 walk_(pre, post, env, visited);
duke@1 2187 }
duke@1 2188
duke@1 2189 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
duke@1 2190 if( visited.test_set(_idx) ) return;
duke@1 2191 pre(*this,env); // Call the pre-order walk function
duke@1 2192 for( uint i=0; i<_max; i++ )
duke@1 2193 if( in(i) ) // Input exists and is not walked?
duke@1 2194 in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
duke@1 2195 post(*this,env); // Call the post-order walk function
duke@1 2196 }
duke@1 2197
duke@1 2198 void Node::nop(Node &, void*) {}
duke@1 2199
duke@1 2200 //------------------------------Registers--------------------------------------
duke@1 2201 // Do we Match on this edge index or not? Generally false for Control
duke@1 2202 // and true for everything else. Weird for calls & returns.
duke@1 2203 uint Node::match_edge(uint idx) const {
duke@1 2204 return idx; // True for other than index 0 (control)
duke@1 2205 }
duke@1 2206
brutisso@14841 2207 static RegMask _not_used_at_all;
duke@1 2208 // Register classes are defined for specific machines
duke@1 2209 const RegMask &Node::out_RegMask() const {
duke@1 2210 ShouldNotCallThis();
brutisso@14841 2211 return _not_used_at_all;
duke@1 2212 }
duke@1 2213
duke@1 2214 const RegMask &Node::in_RegMask(uint) const {
duke@1 2215 ShouldNotCallThis();
brutisso@14841 2216 return _not_used_at_all;
duke@1 2217 }
duke@1 2218
duke@1 2219 //=============================================================================
duke@1 2220 //-----------------------------------------------------------------------------
duke@1 2221 void Node_Array::reset( Arena *new_arena ) {
duke@1 2222 _a->Afree(_nodes,_max*sizeof(Node*));
duke@1 2223 _max = 0;
duke@1 2224 _nodes = NULL;
duke@1 2225 _a = new_arena;
duke@1 2226 }
duke@1 2227
duke@1 2228 //------------------------------clear------------------------------------------
duke@1 2229 // Clear all entries in _nodes to NULL but keep storage
duke@1 2230 void Node_Array::clear() {
duke@1 2231 Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
duke@1 2232 }
duke@1 2233
duke@1 2234 //-----------------------------------------------------------------------------
duke@1 2235 void Node_Array::grow( uint i ) {
duke@1 2236 if( !_max ) {
duke@1 2237 _max = 1;
duke@1 2238 _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
duke@1 2239 _nodes[0] = NULL;
duke@1 2240 }
duke@1 2241 uint old = _max;
duke@1 2242 while( i >= _max ) _max <<= 1; // Double to fit
duke@1 2243 _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
duke@1 2244 Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
duke@1 2245 }
duke@1 2246
duke@1 2247 //-----------------------------------------------------------------------------
duke@1 2248 void Node_Array::insert( uint i, Node *n ) {
duke@1 2249 if( _nodes[_max-1] ) grow(_max); // Get more space if full
duke@1 2250 Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
duke@1 2251 _nodes[i] = n;
duke@1 2252 }
duke@1 2253
duke@1 2254 //-----------------------------------------------------------------------------
duke@1 2255 void Node_Array::remove( uint i ) {
duke@1 2256 Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
duke@1 2257 _nodes[_max-1] = NULL;
duke@1 2258 }
duke@1 2259
duke@1 2260 //-----------------------------------------------------------------------------
duke@1 2261 void Node_Array::sort( C_sort_func_t func) {
duke@1 2262 qsort( _nodes, _max, sizeof( Node* ), func );
duke@1 2263 }
duke@1 2264
duke@1 2265 //-----------------------------------------------------------------------------
duke@1 2266 void Node_Array::dump() const {
duke@1 2267 #ifndef PRODUCT
duke@1 2268 for( uint i = 0; i < _max; i++ ) {
duke@1 2269 Node *nn = _nodes[i];
duke@1 2270 if( nn != NULL ) {
duke@1 2271 tty->print("%5d--> ",i); nn->dump();
duke@1 2272 }
duke@1 2273 }
duke@1 2274 #endif
duke@1 2275 }
duke@1 2276
duke@1 2277 //--------------------------is_iteratively_computed------------------------------
duke@1 2278 // Operation appears to be iteratively computed (such as an induction variable)
duke@1 2279 // It is possible for this operation to return false for a loop-varying
duke@1 2280 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
duke@1 2281 bool Node::is_iteratively_computed() {
duke@1 2282 if (ideal_reg()) { // does operation have a result register?
duke@1 2283 for (uint i = 1; i < req(); i++) {
duke@1 2284 Node* n = in(i);
duke@1 2285 if (n != NULL && n->is_Phi()) {
duke@1 2286 for (uint j = 1; j < n->req(); j++) {
duke@1 2287 if (n->in(j) == this) {
duke@1 2288 return true;
duke@1 2289 }
duke@1 2290 }
duke@1 2291 }
duke@1 2292 }
duke@1 2293 }
duke@1 2294 return false;
duke@1 2295 }
duke@1 2296
duke@1 2297 //--------------------------find_similar------------------------------
duke@1 2298 // Return a node with opcode "opc" and same inputs as "this" if one can
duke@1 2299 // be found; Otherwise return NULL;
duke@1 2300 Node* Node::find_similar(int opc) {
duke@1 2301 if (req() >= 2) {
duke@1 2302 Node* def = in(1);
duke@1 2303 if (def && def->outcnt() >= 2) {
duke@1 2304 for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
duke@1 2305 Node* use = def->fast_out(i);
roland@38236 2306 if (use != this &&
roland@38236 2307 use->Opcode() == opc &&
duke@1 2308 use->req() == req()) {
duke@1 2309 uint j;
duke@1 2310 for (j = 0; j < use->req(); j++) {
duke@1 2311 if (use->in(j) != in(j)) {
duke@1 2312 break;
duke@1 2313 }
duke@1 2314 }
duke@1 2315 if (j == use->req()) {
duke@1 2316 return use;
duke@1 2317 }
duke@1 2318 }
duke@1 2319 }
duke@1 2320 }
duke@1 2321 }
duke@1 2322 return NULL;
duke@1 2323 }
duke@1 2324
duke@1 2325
duke@1 2326 //--------------------------unique_ctrl_out------------------------------
duke@1 2327 // Return the unique control out if only one. Null if none or more than one.
roland@30183 2328 Node* Node::unique_ctrl_out() const {
duke@1 2329 Node* found = NULL;
duke@1 2330 for (uint i = 0; i < outcnt(); i++) {
duke@1 2331 Node* use = raw_out(i);
duke@1 2332 if (use->is_CFG() && use != this) {
duke@1 2333 if (found != NULL) return NULL;
duke@1 2334 found = use;
duke@1 2335 }
duke@1 2336 }
duke@1 2337 return found;
duke@1 2338 }
duke@1 2339
roland@30300 2340 void Node::ensure_control_or_add_prec(Node* c) {
roland@30300 2341 if (in(0) == NULL) {
roland@30300 2342 set_req(0, c);
roland@30300 2343 } else if (in(0) != c) {
roland@30300 2344 add_prec(c);
roland@30300 2345 }
roland@30300 2346 }
roland@30300 2347
duke@1 2348 //=============================================================================
duke@1 2349 //------------------------------yank-------------------------------------------
duke@1 2350 // Find and remove
duke@1 2351 void Node_List::yank( Node *n ) {
duke@1 2352 uint i;
duke@1 2353 for( i = 0; i < _cnt; i++ )
duke@1 2354 if( _nodes[i] == n )
duke@1 2355 break;
duke@1 2356
duke@1 2357 if( i < _cnt )
duke@1 2358 _nodes[i] = _nodes[--_cnt];
duke@1 2359 }
duke@1 2360
duke@1 2361 //------------------------------dump-------------------------------------------
duke@1 2362 void Node_List::dump() const {
duke@1 2363 #ifndef PRODUCT
duke@1 2364 for( uint i = 0; i < _cnt; i++ )
duke@1 2365 if( _nodes[i] ) {
duke@1 2366 tty->print("%5d--> ",i);
duke@1 2367 _nodes[i]->dump();
duke@1 2368 }
duke@1 2369 #endif
duke@1 2370 }
duke@1 2371
vlivanov@35106 2372 void Node_List::dump_simple() const {
vlivanov@35106 2373 #ifndef PRODUCT
vlivanov@35106 2374 for( uint i = 0; i < _cnt; i++ )
vlivanov@35106 2375 if( _nodes[i] ) {
vlivanov@35106 2376 tty->print(" %d", _nodes[i]->_idx);
vlivanov@35106 2377 } else {
vlivanov@35106 2378 tty->print(" NULL");
vlivanov@35106 2379 }
vlivanov@35106 2380 #endif
vlivanov@35106 2381 }
vlivanov@35106 2382
duke@1 2383 //=============================================================================
duke@1 2384 //------------------------------remove-----------------------------------------
duke@1 2385 void Unique_Node_List::remove( Node *n ) {
duke@1 2386 if( _in_worklist[n->_idx] ) {
duke@1 2387 for( uint i = 0; i < size(); i++ )
duke@1 2388 if( _nodes[i] == n ) {
duke@1 2389 map(i,Node_List::pop());
duke@1 2390 _in_worklist >>= n->_idx;
duke@1 2391 return;
duke@1 2392 }
duke@1 2393 ShouldNotReachHere();
duke@1 2394 }
duke@1 2395 }
duke@1 2396
duke@1 2397 //-----------------------remove_useless_nodes----------------------------------
duke@1 2398 // Remove useless nodes from worklist
duke@1 2399 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
duke@1 2400
duke@1 2401 for( uint i = 0; i < size(); ++i ) {
duke@1 2402 Node *n = at(i);
duke@1 2403 assert( n != NULL, "Did not expect null entries in worklist");
duke@1 2404 if( ! useful.test(n->_idx) ) {
duke@1 2405 _in_worklist >>= n->_idx;
duke@1 2406 map(i,Node_List::pop());
duke@1 2407 // Node *replacement = Node_List::pop();
duke@1 2408 // if( i != size() ) { // Check if removing last entry
duke@1 2409 // _nodes[i] = replacement;
duke@1 2410 // }
duke@1 2411 --i; // Visit popped node
duke@1 2412 // If it was last entry, loop terminates since size() was also reduced
duke@1 2413 }
duke@1 2414 }
duke@1 2415 }
duke@1 2416
duke@1 2417 //=============================================================================
duke@1 2418 void Node_Stack::grow() {
duke@1 2419 size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
duke@1 2420 size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
duke@1 2421 size_t max = old_max << 1; // max * 2
duke@1 2422 _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
duke@1 2423 _inode_max = _inodes + max;
duke@1 2424 _inode_top = _inodes + old_top; // restore _top
duke@1 2425 }
duke@1 2426
kvn@10011 2427 // Node_Stack is used to map nodes.
kvn@10011 2428 Node* Node_Stack::find(uint idx) const {
kvn@10011 2429 uint sz = size();
kvn@10011 2430 for (uint i=0; i < sz; i++) {
kvn@10011 2431 if (idx == index_at(i) )
kvn@10011 2432 return node_at(i);
kvn@10011 2433 }
kvn@10011 2434 return NULL;
kvn@10011 2435 }
kvn@10011 2436
duke@1 2437 //=============================================================================
duke@1 2438 uint TypeNode::size_of() const { return sizeof(*this); }
duke@1 2439 #ifndef PRODUCT
duke@1 2440 void TypeNode::dump_spec(outputStream *st) const {
duke@1 2441 if( !Verbose && !WizardMode ) {
duke@1 2442 // standard dump does this in Verbose and WizardMode
duke@1 2443 st->print(" #"); _type->dump_on(st);
duke@1 2444 }
duke@1 2445 }
mhaupt@32084 2446
mhaupt@32084 2447 void TypeNode::dump_compact_spec(outputStream *st) const {
mhaupt@32084 2448 st->print("#");
mhaupt@32084 2449 _type->dump_on(st);
mhaupt@32084 2450 }
duke@1 2451 #endif
duke@1 2452 uint TypeNode::hash() const {
duke@1 2453 return Node::hash() + _type->hash();
duke@1 2454 }
duke@1 2455 uint TypeNode::cmp( const Node &n ) const
duke@1 2456 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
duke@1 2457 const Type *TypeNode::bottom_type() const { return _type; }
thartmann@35551 2458 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
duke@1 2459
duke@1 2460 //------------------------------ideal_reg--------------------------------------
duke@1 2461 uint TypeNode::ideal_reg() const {
coleenp@13728 2462 return _type->ideal_reg();
duke@1 2463 }