annotate hotspot/src/share/vm/opto/parse1.cpp @ 211:e2b60448c234

6667610: (Escape Analysis) retry compilation without EA if it fails Summary: During split unique types EA could exceed nodes limit and fail the method compilation. Reviewed-by: rasbold
author kvn
date Thu, 06 Mar 2008 10:30:17 -0800
parents 489c9b5090e2
children 2954744d7bba
rev   line source
duke@1 1 /*
duke@1 2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation.
duke@1 8 *
duke@1 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 13 * accompanied this code).
duke@1 14 *
duke@1 15 * You should have received a copy of the GNU General Public License version
duke@1 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 18 *
duke@1 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 21 * have any questions.
duke@1 22 *
duke@1 23 */
duke@1 24
duke@1 25 #include "incls/_precompiled.incl"
duke@1 26 #include "incls/_parse1.cpp.incl"
duke@1 27
duke@1 28 // Static array so we can figure out which bytecodes stop us from compiling
duke@1 29 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
duke@1 30 // and eventually should be encapsulated in a proper class (gri 8/18/98).
duke@1 31
duke@1 32 int nodes_created = 0; int nodes_created_old = 0;
duke@1 33 int methods_parsed = 0; int methods_parsed_old = 0;
duke@1 34 int methods_seen = 0; int methods_seen_old = 0;
duke@1 35
duke@1 36 int explicit_null_checks_inserted = 0, explicit_null_checks_inserted_old = 0;
duke@1 37 int explicit_null_checks_elided = 0, explicit_null_checks_elided_old = 0;
duke@1 38 int all_null_checks_found = 0, implicit_null_checks = 0;
duke@1 39 int implicit_null_throws = 0;
duke@1 40
duke@1 41 int parse_idx = 0;
duke@1 42 size_t parse_arena = 0;
duke@1 43 int reclaim_idx = 0;
duke@1 44 int reclaim_in = 0;
duke@1 45 int reclaim_node = 0;
duke@1 46
duke@1 47 #ifndef PRODUCT
duke@1 48 bool Parse::BytecodeParseHistogram::_initialized = false;
duke@1 49 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
duke@1 50 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
duke@1 51 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
duke@1 52 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes];
duke@1 53 #endif
duke@1 54
duke@1 55 //------------------------------print_statistics-------------------------------
duke@1 56 #ifndef PRODUCT
duke@1 57 void Parse::print_statistics() {
duke@1 58 tty->print_cr("--- Compiler Statistics ---");
duke@1 59 tty->print("Methods seen: %d Methods parsed: %d", methods_seen, methods_parsed);
duke@1 60 tty->print(" Nodes created: %d", nodes_created);
duke@1 61 tty->cr();
duke@1 62 if (methods_seen != methods_parsed)
duke@1 63 tty->print_cr("Reasons for parse failures (NOT cumulative):");
duke@1 64
duke@1 65 if( explicit_null_checks_inserted )
duke@1 66 tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
duke@1 67 if( all_null_checks_found )
duke@1 68 tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
duke@1 69 (100*implicit_null_checks)/all_null_checks_found);
duke@1 70 if( implicit_null_throws )
duke@1 71 tty->print_cr("%d implicit null exceptions at runtime",
duke@1 72 implicit_null_throws);
duke@1 73
duke@1 74 if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
duke@1 75 BytecodeParseHistogram::print();
duke@1 76 }
duke@1 77 }
duke@1 78 #endif
duke@1 79
duke@1 80 //------------------------------ON STACK REPLACEMENT---------------------------
duke@1 81
duke@1 82 // Construct a node which can be used to get incoming state for
duke@1 83 // on stack replacement.
duke@1 84 Node *Parse::fetch_interpreter_state(int index,
duke@1 85 BasicType bt,
duke@1 86 Node *local_addrs,
duke@1 87 Node *local_addrs_base) {
duke@1 88 Node *mem = memory(Compile::AliasIdxRaw);
duke@1 89 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
duke@1 90
duke@1 91 // Very similar to LoadNode::make, except we handle un-aligned longs and
duke@1 92 // doubles on Sparc. Intel can handle them just fine directly.
duke@1 93 Node *l;
duke@1 94 switch( bt ) { // Signature is flattened
duke@1 95 case T_INT: l = new (C, 3) LoadINode( 0, mem, adr, TypeRawPtr::BOTTOM ); break;
duke@1 96 case T_FLOAT: l = new (C, 3) LoadFNode( 0, mem, adr, TypeRawPtr::BOTTOM ); break;
duke@1 97 case T_ADDRESS:
duke@1 98 case T_OBJECT: l = new (C, 3) LoadPNode( 0, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM ); break;
duke@1 99 case T_LONG:
duke@1 100 case T_DOUBLE: {
duke@1 101 // Since arguments are in reverse order, the argument address 'adr'
duke@1 102 // refers to the back half of the long/double. Recompute adr.
duke@1 103 adr = basic_plus_adr( local_addrs_base, local_addrs, -(index+1)*wordSize );
duke@1 104 if( Matcher::misaligned_doubles_ok ) {
duke@1 105 l = (bt == T_DOUBLE)
duke@1 106 ? (Node*)new (C, 3) LoadDNode( 0, mem, adr, TypeRawPtr::BOTTOM )
duke@1 107 : (Node*)new (C, 3) LoadLNode( 0, mem, adr, TypeRawPtr::BOTTOM );
duke@1 108 } else {
duke@1 109 l = (bt == T_DOUBLE)
duke@1 110 ? (Node*)new (C, 3) LoadD_unalignedNode( 0, mem, adr, TypeRawPtr::BOTTOM )
duke@1 111 : (Node*)new (C, 3) LoadL_unalignedNode( 0, mem, adr, TypeRawPtr::BOTTOM );
duke@1 112 }
duke@1 113 break;
duke@1 114 }
duke@1 115 default: ShouldNotReachHere();
duke@1 116 }
duke@1 117 return _gvn.transform(l);
duke@1 118 }
duke@1 119
duke@1 120 // Helper routine to prevent the interpreter from handing
duke@1 121 // unexpected typestate to an OSR method.
duke@1 122 // The Node l is a value newly dug out of the interpreter frame.
duke@1 123 // The type is the type predicted by ciTypeFlow. Note that it is
duke@1 124 // not a general type, but can only come from Type::get_typeflow_type.
duke@1 125 // The safepoint is a map which will feed an uncommon trap.
duke@1 126 Node* Parse::check_interpreter_type(Node* l, const Type* type,
duke@1 127 SafePointNode* &bad_type_exit) {
duke@1 128
duke@1 129 const TypeOopPtr* tp = type->isa_oopptr();
duke@1 130
duke@1 131 // TypeFlow may assert null-ness if a type appears unloaded.
duke@1 132 if (type == TypePtr::NULL_PTR ||
duke@1 133 (tp != NULL && !tp->klass()->is_loaded())) {
duke@1 134 // Value must be null, not a real oop.
duke@1 135 Node* chk = _gvn.transform( new (C, 3) CmpPNode(l, null()) );
duke@1 136 Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, BoolTest::eq) );
duke@1 137 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
duke@1 138 set_control(_gvn.transform( new (C, 1) IfTrueNode(iff) ));
duke@1 139 Node* bad_type = _gvn.transform( new (C, 1) IfFalseNode(iff) );
duke@1 140 bad_type_exit->control()->add_req(bad_type);
duke@1 141 l = null();
duke@1 142 }
duke@1 143
duke@1 144 // Typeflow can also cut off paths from the CFG, based on
duke@1 145 // types which appear unloaded, or call sites which appear unlinked.
duke@1 146 // When paths are cut off, values at later merge points can rise
duke@1 147 // toward more specific classes. Make sure these specific classes
duke@1 148 // are still in effect.
duke@1 149 if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
duke@1 150 // TypeFlow asserted a specific object type. Value must have that type.
duke@1 151 Node* bad_type_ctrl = NULL;
duke@1 152 l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
duke@1 153 bad_type_exit->control()->add_req(bad_type_ctrl);
duke@1 154 }
duke@1 155
duke@1 156 BasicType bt_l = _gvn.type(l)->basic_type();
duke@1 157 BasicType bt_t = type->basic_type();
duke@1 158 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
duke@1 159 return l;
duke@1 160 }
duke@1 161
duke@1 162 // Helper routine which sets up elements of the initial parser map when
duke@1 163 // performing a parse for on stack replacement. Add values into map.
duke@1 164 // The only parameter contains the address of a interpreter arguments.
duke@1 165 void Parse::load_interpreter_state(Node* osr_buf) {
duke@1 166 int index;
duke@1 167 int max_locals = jvms()->loc_size();
duke@1 168 int max_stack = jvms()->stk_size();
duke@1 169
duke@1 170
duke@1 171 // Mismatch between method and jvms can occur since map briefly held
duke@1 172 // an OSR entry state (which takes up one RawPtr word).
duke@1 173 assert(max_locals == method()->max_locals(), "sanity");
duke@1 174 assert(max_stack >= method()->max_stack(), "sanity");
duke@1 175 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
duke@1 176 assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
duke@1 177
duke@1 178 // Find the start block.
duke@1 179 Block* osr_block = start_block();
duke@1 180 assert(osr_block->start() == osr_bci(), "sanity");
duke@1 181
duke@1 182 // Set initial BCI.
duke@1 183 set_parse_bci(osr_block->start());
duke@1 184
duke@1 185 // Set initial stack depth.
duke@1 186 set_sp(osr_block->start_sp());
duke@1 187
duke@1 188 // Check bailouts. We currently do not perform on stack replacement
duke@1 189 // of loops in catch blocks or loops which branch with a non-empty stack.
duke@1 190 if (sp() != 0) {
duke@1 191 C->record_method_not_compilable("OSR starts with non-empty stack");
duke@1 192 return;
duke@1 193 }
duke@1 194 // Do not OSR inside finally clauses:
duke@1 195 if (osr_block->has_trap_at(osr_block->start())) {
duke@1 196 C->record_method_not_compilable("OSR starts with an immediate trap");
duke@1 197 return;
duke@1 198 }
duke@1 199
duke@1 200 // Commute monitors from interpreter frame to compiler frame.
duke@1 201 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
duke@1 202 int mcnt = osr_block->flow()->monitor_count();
duke@1 203 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
duke@1 204 for (index = 0; index < mcnt; index++) {
duke@1 205 // Make a BoxLockNode for the monitor.
duke@1 206 Node *box = _gvn.transform(new (C, 1) BoxLockNode(next_monitor()));
duke@1 207
duke@1 208
duke@1 209 // Displaced headers and locked objects are interleaved in the
duke@1 210 // temp OSR buffer. We only copy the locked objects out here.
duke@1 211 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
duke@1 212 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
duke@1 213 // Try and copy the displaced header to the BoxNode
duke@1 214 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
duke@1 215
duke@1 216
duke@1 217 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw);
duke@1 218
duke@1 219 // Build a bogus FastLockNode (no code will be generated) and push the
duke@1 220 // monitor into our debug info.
duke@1 221 const FastLockNode *flock = _gvn.transform(new (C, 3) FastLockNode( 0, lock_object, box ))->as_FastLock();
duke@1 222 map()->push_monitor(flock);
duke@1 223
duke@1 224 // If the lock is our method synchronization lock, tuck it away in
duke@1 225 // _sync_lock for return and rethrow exit paths.
duke@1 226 if (index == 0 && method()->is_synchronized()) {
duke@1 227 _synch_lock = flock;
duke@1 228 }
duke@1 229 }
duke@1 230
duke@1 231 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
duke@1 232 if (!live_locals.is_valid()) {
duke@1 233 // Degenerate or breakpointed method.
duke@1 234 C->record_method_not_compilable("OSR in empty or breakpointed method");
duke@1 235 return;
duke@1 236 }
duke@1 237
duke@1 238 // Extract the needed locals from the interpreter frame.
duke@1 239 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
duke@1 240
duke@1 241 // find all the locals that the interpreter thinks contain live oops
duke@1 242 const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
duke@1 243 for (index = 0; index < max_locals; index++) {
duke@1 244
duke@1 245 if (!live_locals.at(index)) {
duke@1 246 continue;
duke@1 247 }
duke@1 248
duke@1 249 const Type *type = osr_block->local_type_at(index);
duke@1 250
duke@1 251 if (type->isa_oopptr() != NULL) {
duke@1 252
duke@1 253 // 6403625: Verify that the interpreter oopMap thinks that the oop is live
duke@1 254 // else we might load a stale oop if the MethodLiveness disagrees with the
duke@1 255 // result of the interpreter. If the interpreter says it is dead we agree
duke@1 256 // by making the value go to top.
duke@1 257 //
duke@1 258
duke@1 259 if (!live_oops.at(index)) {
duke@1 260 if (C->log() != NULL) {
duke@1 261 C->log()->elem("OSR_mismatch local_index='%d'",index);
duke@1 262 }
duke@1 263 set_local(index, null());
duke@1 264 // and ignore it for the loads
duke@1 265 continue;
duke@1 266 }
duke@1 267 }
duke@1 268
duke@1 269 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.)
duke@1 270 if (type == Type::TOP || type == Type::HALF) {
duke@1 271 continue;
duke@1 272 }
duke@1 273 // If the type falls to bottom, then this must be a local that
duke@1 274 // is mixing ints and oops or some such. Forcing it to top
duke@1 275 // makes it go dead.
duke@1 276 if (type == Type::BOTTOM) {
duke@1 277 continue;
duke@1 278 }
duke@1 279 // Construct code to access the appropriate local.
duke@1 280 Node *value = fetch_interpreter_state(index, type->basic_type(), locals_addr, osr_buf);
duke@1 281 set_local(index, value);
duke@1 282 }
duke@1 283
duke@1 284 // Extract the needed stack entries from the interpreter frame.
duke@1 285 for (index = 0; index < sp(); index++) {
duke@1 286 const Type *type = osr_block->stack_type_at(index);
duke@1 287 if (type != Type::TOP) {
duke@1 288 // Currently the compiler bails out when attempting to on stack replace
duke@1 289 // at a bci with a non-empty stack. We should not reach here.
duke@1 290 ShouldNotReachHere();
duke@1 291 }
duke@1 292 }
duke@1 293
duke@1 294 // End the OSR migration
duke@1 295 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
duke@1 296 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
duke@1 297 "OSR_migration_end", TypeRawPtr::BOTTOM,
duke@1 298 osr_buf);
duke@1 299
duke@1 300 // Now that the interpreter state is loaded, make sure it will match
duke@1 301 // at execution time what the compiler is expecting now:
duke@1 302 SafePointNode* bad_type_exit = clone_map();
duke@1 303 bad_type_exit->set_control(new (C, 1) RegionNode(1));
duke@1 304
duke@1 305 for (index = 0; index < max_locals; index++) {
duke@1 306 if (stopped()) break;
duke@1 307 Node* l = local(index);
duke@1 308 if (l->is_top()) continue; // nothing here
duke@1 309 const Type *type = osr_block->local_type_at(index);
duke@1 310 if (type->isa_oopptr() != NULL) {
duke@1 311 if (!live_oops.at(index)) {
duke@1 312 // skip type check for dead oops
duke@1 313 continue;
duke@1 314 }
duke@1 315 }
duke@1 316 set_local(index, check_interpreter_type(l, type, bad_type_exit));
duke@1 317 }
duke@1 318
duke@1 319 for (index = 0; index < sp(); index++) {
duke@1 320 if (stopped()) break;
duke@1 321 Node* l = stack(index);
duke@1 322 if (l->is_top()) continue; // nothing here
duke@1 323 const Type *type = osr_block->stack_type_at(index);
duke@1 324 set_stack(index, check_interpreter_type(l, type, bad_type_exit));
duke@1 325 }
duke@1 326
duke@1 327 if (bad_type_exit->control()->req() > 1) {
duke@1 328 // Build an uncommon trap here, if any inputs can be unexpected.
duke@1 329 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
duke@1 330 record_for_igvn(bad_type_exit->control());
duke@1 331 SafePointNode* types_are_good = map();
duke@1 332 set_map(bad_type_exit);
duke@1 333 // The unexpected type happens because a new edge is active
duke@1 334 // in the CFG, which typeflow had previously ignored.
duke@1 335 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
duke@1 336 // This x will be typed as Integer if notReached is not yet linked.
duke@1 337 uncommon_trap(Deoptimization::Reason_unreached,
duke@1 338 Deoptimization::Action_reinterpret);
duke@1 339 set_map(types_are_good);
duke@1 340 }
duke@1 341 }
duke@1 342
duke@1 343 //------------------------------Parse------------------------------------------
duke@1 344 // Main parser constructor.
duke@1 345 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
duke@1 346 : _exits(caller)
duke@1 347 {
duke@1 348 // Init some variables
duke@1 349 _caller = caller;
duke@1 350 _method = parse_method;
duke@1 351 _expected_uses = expected_uses;
duke@1 352 _depth = 1 + (caller->has_method() ? caller->depth() : 0);
duke@1 353 _wrote_final = false;
duke@1 354 _entry_bci = InvocationEntryBci;
duke@1 355 _tf = NULL;
duke@1 356 _block = NULL;
duke@1 357 debug_only(_block_count = -1);
duke@1 358 debug_only(_blocks = (Block*)-1);
duke@1 359 #ifndef PRODUCT
duke@1 360 if (PrintCompilation || PrintOpto) {
duke@1 361 // Make sure I have an inline tree, so I can print messages about it.
duke@1 362 JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
duke@1 363 InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method, true);
duke@1 364 }
duke@1 365 _max_switch_depth = 0;
duke@1 366 _est_switch_depth = 0;
duke@1 367 #endif
duke@1 368
duke@1 369 _tf = TypeFunc::make(method());
duke@1 370 _iter.reset_to_method(method());
duke@1 371 _flow = method()->get_flow_analysis();
duke@1 372 if (_flow->failing()) {
duke@1 373 C->record_method_not_compilable_all_tiers(_flow->failure_reason());
duke@1 374 }
duke@1 375
duke@1 376 if (_expected_uses <= 0) {
duke@1 377 _prof_factor = 1;
duke@1 378 } else {
duke@1 379 float prof_total = parse_method->interpreter_invocation_count();
duke@1 380 if (prof_total <= _expected_uses) {
duke@1 381 _prof_factor = 1;
duke@1 382 } else {
duke@1 383 _prof_factor = _expected_uses / prof_total;
duke@1 384 }
duke@1 385 }
duke@1 386
duke@1 387 CompileLog* log = C->log();
duke@1 388 if (log != NULL) {
duke@1 389 log->begin_head("parse method='%d' uses='%g'",
duke@1 390 log->identify(parse_method), expected_uses);
duke@1 391 if (depth() == 1 && C->is_osr_compilation()) {
duke@1 392 log->print(" osr_bci='%d'", C->entry_bci());
duke@1 393 }
duke@1 394 log->stamp();
duke@1 395 log->end_head();
duke@1 396 }
duke@1 397
duke@1 398 // Accumulate deoptimization counts.
duke@1 399 // (The range_check and store_check counts are checked elsewhere.)
duke@1 400 ciMethodData* md = method()->method_data();
duke@1 401 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
duke@1 402 uint md_count = md->trap_count(reason);
duke@1 403 if (md_count != 0) {
duke@1 404 if (md_count == md->trap_count_limit())
duke@1 405 md_count += md->overflow_trap_count();
duke@1 406 uint total_count = C->trap_count(reason);
duke@1 407 uint old_count = total_count;
duke@1 408 total_count += md_count;
duke@1 409 // Saturate the add if it overflows.
duke@1 410 if (total_count < old_count || total_count < md_count)
duke@1 411 total_count = (uint)-1;
duke@1 412 C->set_trap_count(reason, total_count);
duke@1 413 if (log != NULL)
duke@1 414 log->elem("observe trap='%s' count='%d' total='%d'",
duke@1 415 Deoptimization::trap_reason_name(reason),
duke@1 416 md_count, total_count);
duke@1 417 }
duke@1 418 }
duke@1 419 // Accumulate total sum of decompilations, also.
duke@1 420 C->set_decompile_count(C->decompile_count() + md->decompile_count());
duke@1 421
duke@1 422 _count_invocations = C->do_count_invocations();
duke@1 423 _method_data_update = C->do_method_data_update();
duke@1 424
duke@1 425 if (log != NULL && method()->has_exception_handlers()) {
duke@1 426 log->elem("observe that='has_exception_handlers'");
duke@1 427 }
duke@1 428
duke@1 429 assert(method()->can_be_compiled(), "Can not parse this method, cutout earlier");
duke@1 430 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
duke@1 431
duke@1 432 // Always register dependence if JVMTI is enabled, because
duke@1 433 // either breakpoint setting or hotswapping of methods may
duke@1 434 // cause deoptimization.
duke@1 435 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@1 436 C->dependencies()->assert_evol_method(method());
duke@1 437 }
duke@1 438
duke@1 439 methods_seen++;
duke@1 440
duke@1 441 // Do some special top-level things.
duke@1 442 if (depth() == 1 && C->is_osr_compilation()) {
duke@1 443 _entry_bci = C->entry_bci();
duke@1 444 _flow = method()->get_osr_flow_analysis(osr_bci());
duke@1 445 if (_flow->failing()) {
duke@1 446 C->record_method_not_compilable(_flow->failure_reason());
duke@1 447 #ifndef PRODUCT
duke@1 448 if (PrintOpto && (Verbose || WizardMode)) {
duke@1 449 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
duke@1 450 if (Verbose) {
duke@1 451 method()->print_oop();
duke@1 452 method()->print_codes();
duke@1 453 _flow->print();
duke@1 454 }
duke@1 455 }
duke@1 456 #endif
duke@1 457 }
duke@1 458 _tf = C->tf(); // the OSR entry type is different
duke@1 459 }
duke@1 460
duke@1 461 #ifdef ASSERT
duke@1 462 if (depth() == 1) {
duke@1 463 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
duke@1 464 if (C->tf() != tf()) {
duke@1 465 MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
duke@1 466 assert(C->env()->system_dictionary_modification_counter_changed(),
duke@1 467 "Must invalidate if TypeFuncs differ");
duke@1 468 }
duke@1 469 } else {
duke@1 470 assert(!this->is_osr_parse(), "no recursive OSR");
duke@1 471 }
duke@1 472 #endif
duke@1 473
duke@1 474 methods_parsed++;
duke@1 475 #ifndef PRODUCT
duke@1 476 // add method size here to guarantee that inlined methods are added too
duke@1 477 if (TimeCompiler)
duke@1 478 _total_bytes_compiled += method()->code_size();
duke@1 479
duke@1 480 show_parse_info();
duke@1 481 #endif
duke@1 482
duke@1 483 if (failing()) {
duke@1 484 if (log) log->done("parse");
duke@1 485 return;
duke@1 486 }
duke@1 487
duke@1 488 gvn().set_type(root(), root()->bottom_type());
duke@1 489 gvn().transform(top());
duke@1 490
duke@1 491 // Import the results of the ciTypeFlow.
duke@1 492 init_blocks();
duke@1 493
duke@1 494 // Merge point for all normal exits
duke@1 495 build_exits();
duke@1 496
duke@1 497 // Setup the initial JVM state map.
duke@1 498 SafePointNode* entry_map = create_entry_map();
duke@1 499
duke@1 500 // Check for bailouts during map initialization
duke@1 501 if (failing() || entry_map == NULL) {
duke@1 502 if (log) log->done("parse");
duke@1 503 return;
duke@1 504 }
duke@1 505
duke@1 506 Node_Notes* caller_nn = C->default_node_notes();
duke@1 507 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
duke@1 508 if (DebugInlinedCalls || depth() == 1) {
duke@1 509 C->set_default_node_notes(make_node_notes(caller_nn));
duke@1 510 }
duke@1 511
duke@1 512 if (is_osr_parse()) {
duke@1 513 Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
duke@1 514 entry_map->set_req(TypeFunc::Parms+0, top());
duke@1 515 set_map(entry_map);
duke@1 516 load_interpreter_state(osr_buf);
duke@1 517 } else {
duke@1 518 set_map(entry_map);
duke@1 519 do_method_entry();
duke@1 520 }
duke@1 521
duke@1 522 // Check for bailouts during method entry.
duke@1 523 if (failing()) {
duke@1 524 if (log) log->done("parse");
duke@1 525 C->set_default_node_notes(caller_nn);
duke@1 526 return;
duke@1 527 }
duke@1 528
duke@1 529 entry_map = map(); // capture any changes performed by method setup code
duke@1 530 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
duke@1 531
duke@1 532 // We begin parsing as if we have just encountered a jump to the
duke@1 533 // method entry.
duke@1 534 Block* entry_block = start_block();
duke@1 535 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
duke@1 536 set_map_clone(entry_map);
duke@1 537 merge_common(entry_block, entry_block->next_path_num());
duke@1 538
duke@1 539 #ifndef PRODUCT
duke@1 540 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
duke@1 541 set_parse_histogram( parse_histogram_obj );
duke@1 542 #endif
duke@1 543
duke@1 544 // Parse all the basic blocks.
duke@1 545 do_all_blocks();
duke@1 546
duke@1 547 C->set_default_node_notes(caller_nn);
duke@1 548
duke@1 549 // Check for bailouts during conversion to graph
duke@1 550 if (failing()) {
duke@1 551 if (log) log->done("parse");
duke@1 552 return;
duke@1 553 }
duke@1 554
duke@1 555 // Fix up all exiting control flow.
duke@1 556 set_map(entry_map);
duke@1 557 do_exits();
duke@1 558
duke@1 559 // Collect a few more statistics.
duke@1 560 parse_idx += C->unique();
duke@1 561 parse_arena += C->node_arena()->used();
duke@1 562
duke@1 563 if (log) log->done("parse nodes='%d' memory='%d'",
duke@1 564 C->unique(), C->node_arena()->used());
duke@1 565 }
duke@1 566
duke@1 567 //---------------------------do_all_blocks-------------------------------------
duke@1 568 void Parse::do_all_blocks() {
duke@1 569 _blocks_merged = 0;
duke@1 570 _blocks_parsed = 0;
duke@1 571
duke@1 572 int old_blocks_merged = -1;
duke@1 573 int old_blocks_parsed = -1;
duke@1 574
duke@1 575 for (int tries = 0; ; tries++) {
duke@1 576 visit_blocks();
duke@1 577 if (failing()) return; // Check for bailout
duke@1 578
duke@1 579 // No need for a work list. The outer loop is hardly ever repeated.
duke@1 580 // The following loop traverses the blocks in a reasonable pre-order,
duke@1 581 // as produced by the ciTypeFlow pass.
duke@1 582
duke@1 583 // This loop can be taken more than once if there are two entries to
duke@1 584 // a loop (irreduceable CFG), and the edge which ciTypeFlow chose
duke@1 585 // as the first predecessor to the loop goes dead in the parser,
duke@1 586 // due to parse-time optimization. (Could happen with obfuscated code.)
duke@1 587
duke@1 588 // Look for progress, or the lack of it:
duke@1 589 if (_blocks_parsed == block_count()) {
duke@1 590 // That's all, folks.
duke@1 591 if (TraceOptoParse) {
duke@1 592 tty->print_cr("All blocks parsed.");
duke@1 593 }
duke@1 594 break;
duke@1 595 }
duke@1 596
duke@1 597 // How much work was done this time around?
duke@1 598 int new_blocks_merged = _blocks_merged - old_blocks_merged;
duke@1 599 int new_blocks_parsed = _blocks_parsed - old_blocks_parsed;
duke@1 600 if (new_blocks_merged == 0) {
duke@1 601 if (TraceOptoParse) {
duke@1 602 tty->print_cr("All live blocks parsed; %d dead blocks.", block_count() - _blocks_parsed);
duke@1 603 }
duke@1 604 // No new blocks have become parseable. Some blocks are just dead.
duke@1 605 break;
duke@1 606 }
duke@1 607 assert(new_blocks_parsed > 0, "must make progress");
duke@1 608 assert(tries < block_count(), "the pre-order cannot be this bad!");
duke@1 609
duke@1 610 old_blocks_merged = _blocks_merged;
duke@1 611 old_blocks_parsed = _blocks_parsed;
duke@1 612 }
duke@1 613
duke@1 614 #ifndef PRODUCT
duke@1 615 // Make sure there are no half-processed blocks remaining.
duke@1 616 // Every remaining unprocessed block is dead and may be ignored now.
duke@1 617 for (int po = 0; po < block_count(); po++) {
duke@1 618 Block* block = pre_order_at(po);
duke@1 619 if (!block->is_parsed()) {
duke@1 620 if (TraceOptoParse) {
duke@1 621 tty->print("Skipped dead block %d at bci:%d", po, block->start());
duke@1 622 assert(!block->is_merged(), "no half-processed blocks");
duke@1 623 }
duke@1 624 }
duke@1 625 }
duke@1 626 #endif
duke@1 627 }
duke@1 628
duke@1 629 //---------------------------visit_blocks--------------------------------------
duke@1 630 void Parse::visit_blocks() {
duke@1 631 // Walk over all blocks, parsing every one that has been reached (merged).
duke@1 632 for (int po = 0; po < block_count(); po++) {
duke@1 633 Block* block = pre_order_at(po);
duke@1 634
duke@1 635 if (block->is_parsed()) {
duke@1 636 // Do not parse twice.
duke@1 637 continue;
duke@1 638 }
duke@1 639
duke@1 640 if (!block->is_merged()) {
duke@1 641 // No state on this block. It had not yet been reached.
duke@1 642 // Delay reaching it until later.
duke@1 643 continue;
duke@1 644 }
duke@1 645
duke@1 646 // Prepare to parse this block.
duke@1 647 load_state_from(block);
duke@1 648
duke@1 649 if (stopped()) {
duke@1 650 // Block is dead.
duke@1 651 continue;
duke@1 652 }
duke@1 653
duke@1 654 if (!block->is_ready() || block->is_handler()) {
duke@1 655 // Not all preds have been parsed. We must build phis everywhere.
duke@1 656 // (Note that dead locals do not get phis built, ever.)
duke@1 657 ensure_phis_everywhere();
duke@1 658
duke@1 659 // Leave behind an undisturbed copy of the map, for future merges.
duke@1 660 set_map(clone_map());
duke@1 661 }
duke@1 662
duke@1 663 // Ready or not, parse the block.
duke@1 664 do_one_block();
duke@1 665
duke@1 666 // Check for bailouts.
duke@1 667 if (failing()) return;
duke@1 668 }
duke@1 669 }
duke@1 670
duke@1 671 //-------------------------------build_exits----------------------------------
duke@1 672 // Build normal and exceptional exit merge points.
duke@1 673 void Parse::build_exits() {
duke@1 674 // make a clone of caller to prevent sharing of side-effects
duke@1 675 _exits.set_map(_exits.clone_map());
duke@1 676 _exits.clean_stack(_exits.sp());
duke@1 677 _exits.sync_jvms();
duke@1 678
duke@1 679 RegionNode* region = new (C, 1) RegionNode(1);
duke@1 680 record_for_igvn(region);
duke@1 681 gvn().set_type_bottom(region);
duke@1 682 _exits.set_control(region);
duke@1 683
duke@1 684 // Note: iophi and memphi are not transformed until do_exits.
duke@1 685 Node* iophi = new (C, region->req()) PhiNode(region, Type::ABIO);
duke@1 686 Node* memphi = new (C, region->req()) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
duke@1 687 _exits.set_i_o(iophi);
duke@1 688 _exits.set_all_memory(memphi);
duke@1 689
duke@1 690 // Add a return value to the exit state. (Do not push it yet.)
duke@1 691 if (tf()->range()->cnt() > TypeFunc::Parms) {
duke@1 692 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
duke@1 693 // Don't "bind" an unloaded return klass to the ret_phi. If the klass
duke@1 694 // becomes loaded during the subsequent parsing, the loaded and unloaded
duke@1 695 // types will not join when we transform and push in do_exits().
duke@1 696 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
duke@1 697 if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
duke@1 698 ret_type = TypeOopPtr::BOTTOM;
duke@1 699 }
duke@1 700 int ret_size = type2size[ret_type->basic_type()];
duke@1 701 Node* ret_phi = new (C, region->req()) PhiNode(region, ret_type);
duke@1 702 _exits.ensure_stack(ret_size);
duke@1 703 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
duke@1 704 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
duke@1 705 _exits.set_argument(0, ret_phi); // here is where the parser finds it
duke@1 706 // Note: ret_phi is not yet pushed, until do_exits.
duke@1 707 }
duke@1 708 }
duke@1 709
duke@1 710
duke@1 711 //----------------------------build_start_state-------------------------------
duke@1 712 // Construct a state which contains only the incoming arguments from an
duke@1 713 // unknown caller. The method & bci will be NULL & InvocationEntryBci.
duke@1 714 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
duke@1 715 int arg_size = tf->domain()->cnt();
duke@1 716 int max_size = MAX2(arg_size, (int)tf->range()->cnt());
duke@1 717 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms);
duke@1 718 SafePointNode* map = new (this, max_size) SafePointNode(max_size, NULL);
duke@1 719 record_for_igvn(map);
duke@1 720 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
duke@1 721 Node_Notes* old_nn = default_node_notes();
duke@1 722 if (old_nn != NULL && has_method()) {
duke@1 723 Node_Notes* entry_nn = old_nn->clone(this);
duke@1 724 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
duke@1 725 entry_jvms->set_offsets(0);
duke@1 726 entry_jvms->set_bci(entry_bci());
duke@1 727 entry_nn->set_jvms(entry_jvms);
duke@1 728 set_default_node_notes(entry_nn);
duke@1 729 }
duke@1 730 uint i;
duke@1 731 for (i = 0; i < (uint)arg_size; i++) {
duke@1 732 Node* parm = initial_gvn()->transform(new (this, 1) ParmNode(start, i));
duke@1 733 map->init_req(i, parm);
duke@1 734 // Record all these guys for later GVN.
duke@1 735 record_for_igvn(parm);
duke@1 736 }
duke@1 737 for (; i < map->req(); i++) {
duke@1 738 map->init_req(i, top());
duke@1 739 }
duke@1 740 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
duke@1 741 set_default_node_notes(old_nn);
duke@1 742 map->set_jvms(jvms);
duke@1 743 jvms->set_map(map);
duke@1 744 return jvms;
duke@1 745 }
duke@1 746
duke@1 747 //-----------------------------make_node_notes---------------------------------
duke@1 748 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
duke@1 749 if (caller_nn == NULL) return NULL;
duke@1 750 Node_Notes* nn = caller_nn->clone(C);
duke@1 751 JVMState* caller_jvms = nn->jvms();
duke@1 752 JVMState* jvms = new (C) JVMState(method(), caller_jvms);
duke@1 753 jvms->set_offsets(0);
duke@1 754 jvms->set_bci(_entry_bci);
duke@1 755 nn->set_jvms(jvms);
duke@1 756 return nn;
duke@1 757 }
duke@1 758
duke@1 759
duke@1 760 //--------------------------return_values--------------------------------------
duke@1 761 void Compile::return_values(JVMState* jvms) {
duke@1 762 GraphKit kit(jvms);
duke@1 763 Node* ret = new (this, TypeFunc::Parms) ReturnNode(TypeFunc::Parms,
duke@1 764 kit.control(),
duke@1 765 kit.i_o(),
duke@1 766 kit.reset_memory(),
duke@1 767 kit.frameptr(),
duke@1 768 kit.returnadr());
duke@1 769 // Add zero or 1 return values
duke@1 770 int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
duke@1 771 if (ret_size > 0) {
duke@1 772 kit.inc_sp(-ret_size); // pop the return value(s)
duke@1 773 kit.sync_jvms();
duke@1 774 ret->add_req(kit.argument(0));
duke@1 775 // Note: The second dummy edge is not needed by a ReturnNode.
duke@1 776 }
duke@1 777 // bind it to root
duke@1 778 root()->add_req(ret);
duke@1 779 record_for_igvn(ret);
duke@1 780 initial_gvn()->transform_no_reclaim(ret);
duke@1 781 }
duke@1 782
duke@1 783 //------------------------rethrow_exceptions-----------------------------------
duke@1 784 // Bind all exception states in the list into a single RethrowNode.
duke@1 785 void Compile::rethrow_exceptions(JVMState* jvms) {
duke@1 786 GraphKit kit(jvms);
duke@1 787 if (!kit.has_exceptions()) return; // nothing to generate
duke@1 788 // Load my combined exception state into the kit, with all phis transformed:
duke@1 789 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
duke@1 790 Node* ex_oop = kit.use_exception_state(ex_map);
duke@1 791 RethrowNode* exit = new (this, TypeFunc::Parms + 1) RethrowNode(kit.control(),
duke@1 792 kit.i_o(), kit.reset_memory(),
duke@1 793 kit.frameptr(), kit.returnadr(),
duke@1 794 // like a return but with exception input
duke@1 795 ex_oop);
duke@1 796 // bind to root
duke@1 797 root()->add_req(exit);
duke@1 798 record_for_igvn(exit);
duke@1 799 initial_gvn()->transform_no_reclaim(exit);
duke@1 800 }
duke@1 801
duke@1 802 bool Parse::can_rerun_bytecode() {
duke@1 803 switch (bc()) {
duke@1 804 case Bytecodes::_ldc:
duke@1 805 case Bytecodes::_ldc_w:
duke@1 806 case Bytecodes::_ldc2_w:
duke@1 807 case Bytecodes::_getfield:
duke@1 808 case Bytecodes::_putfield:
duke@1 809 case Bytecodes::_getstatic:
duke@1 810 case Bytecodes::_putstatic:
duke@1 811 case Bytecodes::_arraylength:
duke@1 812 case Bytecodes::_baload:
duke@1 813 case Bytecodes::_caload:
duke@1 814 case Bytecodes::_iaload:
duke@1 815 case Bytecodes::_saload:
duke@1 816 case Bytecodes::_faload:
duke@1 817 case Bytecodes::_aaload:
duke@1 818 case Bytecodes::_laload:
duke@1 819 case Bytecodes::_daload:
duke@1 820 case Bytecodes::_bastore:
duke@1 821 case Bytecodes::_castore:
duke@1 822 case Bytecodes::_iastore:
duke@1 823 case Bytecodes::_sastore:
duke@1 824 case Bytecodes::_fastore:
duke@1 825 case Bytecodes::_aastore:
duke@1 826 case Bytecodes::_lastore:
duke@1 827 case Bytecodes::_dastore:
duke@1 828 case Bytecodes::_irem:
duke@1 829 case Bytecodes::_idiv:
duke@1 830 case Bytecodes::_lrem:
duke@1 831 case Bytecodes::_ldiv:
duke@1 832 case Bytecodes::_frem:
duke@1 833 case Bytecodes::_fdiv:
duke@1 834 case Bytecodes::_drem:
duke@1 835 case Bytecodes::_ddiv:
duke@1 836 case Bytecodes::_checkcast:
duke@1 837 case Bytecodes::_instanceof:
duke@1 838 case Bytecodes::_athrow:
duke@1 839 case Bytecodes::_anewarray:
duke@1 840 case Bytecodes::_newarray:
duke@1 841 case Bytecodes::_multianewarray:
duke@1 842 case Bytecodes::_new:
duke@1 843 case Bytecodes::_monitorenter: // can re-run initial null check, only
duke@1 844 case Bytecodes::_return:
duke@1 845 return true;
duke@1 846 break;
duke@1 847
duke@1 848 case Bytecodes::_invokestatic:
duke@1 849 case Bytecodes::_invokespecial:
duke@1 850 case Bytecodes::_invokevirtual:
duke@1 851 case Bytecodes::_invokeinterface:
duke@1 852 return false;
duke@1 853 break;
duke@1 854
duke@1 855 default:
duke@1 856 assert(false, "unexpected bytecode produced an exception");
duke@1 857 return true;
duke@1 858 }
duke@1 859 }
duke@1 860
duke@1 861 //---------------------------do_exceptions-------------------------------------
duke@1 862 // Process exceptions arising from the current bytecode.
duke@1 863 // Send caught exceptions to the proper handler within this method.
duke@1 864 // Unhandled exceptions feed into _exit.
duke@1 865 void Parse::do_exceptions() {
duke@1 866 if (!has_exceptions()) return;
duke@1 867
duke@1 868 if (failing()) {
duke@1 869 // Pop them all off and throw them away.
duke@1 870 while (pop_exception_state() != NULL) ;
duke@1 871 return;
duke@1 872 }
duke@1 873
duke@1 874 // Make sure we can classify this bytecode if we need to.
duke@1 875 debug_only(can_rerun_bytecode());
duke@1 876
duke@1 877 PreserveJVMState pjvms(this, false);
duke@1 878
duke@1 879 SafePointNode* ex_map;
duke@1 880 while ((ex_map = pop_exception_state()) != NULL) {
duke@1 881 if (!method()->has_exception_handlers()) {
duke@1 882 // Common case: Transfer control outward.
duke@1 883 // Doing it this early allows the exceptions to common up
duke@1 884 // even between adjacent method calls.
duke@1 885 throw_to_exit(ex_map);
duke@1 886 } else {
duke@1 887 // Have to look at the exception first.
duke@1 888 assert(stopped(), "catch_inline_exceptions trashes the map");
duke@1 889 catch_inline_exceptions(ex_map);
duke@1 890 stop_and_kill_map(); // we used up this exception state; kill it
duke@1 891 }
duke@1 892 }
duke@1 893
duke@1 894 // We now return to our regularly scheduled program:
duke@1 895 }
duke@1 896
duke@1 897 //---------------------------throw_to_exit-------------------------------------
duke@1 898 // Merge the given map into an exception exit from this method.
duke@1 899 // The exception exit will handle any unlocking of receiver.
duke@1 900 // The ex_oop must be saved within the ex_map, unlike merge_exception.
duke@1 901 void Parse::throw_to_exit(SafePointNode* ex_map) {
duke@1 902 // Pop the JVMS to (a copy of) the caller.
duke@1 903 GraphKit caller;
duke@1 904 caller.set_map_clone(_caller->map());
duke@1 905 caller.set_bci(_caller->bci());
duke@1 906 caller.set_sp(_caller->sp());
duke@1 907 // Copy out the standard machine state:
duke@1 908 for (uint i = 0; i < TypeFunc::Parms; i++) {
duke@1 909 caller.map()->set_req(i, ex_map->in(i));
duke@1 910 }
duke@1 911 // ...and the exception:
duke@1 912 Node* ex_oop = saved_ex_oop(ex_map);
duke@1 913 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
duke@1 914 // Finally, collect the new exception state in my exits:
duke@1 915 _exits.add_exception_state(caller_ex_map);
duke@1 916 }
duke@1 917
duke@1 918 //------------------------------do_exits---------------------------------------
duke@1 919 void Parse::do_exits() {
duke@1 920 set_parse_bci(InvocationEntryBci);
duke@1 921
duke@1 922 // Now peephole on the return bits
duke@1 923 Node* region = _exits.control();
duke@1 924 _exits.set_control(gvn().transform(region));
duke@1 925
duke@1 926 Node* iophi = _exits.i_o();
duke@1 927 _exits.set_i_o(gvn().transform(iophi));
duke@1 928
duke@1 929 if (wrote_final()) {
duke@1 930 // This method (which must be a constructor by the rules of Java)
duke@1 931 // wrote a final. The effects of all initializations must be
duke@1 932 // committed to memory before any code after the constructor
duke@1 933 // publishes the reference to the newly constructor object.
duke@1 934 // Rather than wait for the publication, we simply block the
duke@1 935 // writes here. Rather than put a barrier on only those writes
duke@1 936 // which are required to complete, we force all writes to complete.
duke@1 937 //
duke@1 938 // "All bets are off" unless the first publication occurs after a
duke@1 939 // normal return from the constructor. We do not attempt to detect
duke@1 940 // such unusual early publications. But no barrier is needed on
duke@1 941 // exceptional returns, since they cannot publish normally.
duke@1 942 //
duke@1 943 _exits.insert_mem_bar(Op_MemBarRelease);
duke@1 944 #ifndef PRODUCT
duke@1 945 if (PrintOpto && (Verbose || WizardMode)) {
duke@1 946 method()->print_name();
duke@1 947 tty->print_cr(" writes finals and needs a memory barrier");
duke@1 948 }
duke@1 949 #endif
duke@1 950 }
duke@1 951
duke@1 952 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
duke@1 953 // transform each slice of the original memphi:
duke@1 954 mms.set_memory(_gvn.transform(mms.memory()));
duke@1 955 }
duke@1 956
duke@1 957 if (tf()->range()->cnt() > TypeFunc::Parms) {
duke@1 958 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
duke@1 959 Node* ret_phi = _gvn.transform( _exits.argument(0) );
duke@1 960 assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
duke@1 961 _exits.push_node(ret_type->basic_type(), ret_phi);
duke@1 962 }
duke@1 963
duke@1 964 // Note: Logic for creating and optimizing the ReturnNode is in Compile.
duke@1 965
duke@1 966 // Unlock along the exceptional paths.
duke@1 967 // This is done late so that we can common up equivalent exceptions
duke@1 968 // (e.g., null checks) arising from multiple points within this method.
duke@1 969 // See GraphKit::add_exception_state, which performs the commoning.
duke@1 970 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
duke@1 971
duke@1 972 // record exit from a method if compiled while Dtrace is turned on.
duke@1 973 if (do_synch || DTraceMethodProbes) {
duke@1 974 // First move the exception list out of _exits:
duke@1 975 GraphKit kit(_exits.transfer_exceptions_into_jvms());
duke@1 976 SafePointNode* normal_map = kit.map(); // keep this guy safe
duke@1 977 // Now re-collect the exceptions into _exits:
duke@1 978 SafePointNode* ex_map;
duke@1 979 while ((ex_map = kit.pop_exception_state()) != NULL) {
duke@1 980 Node* ex_oop = kit.use_exception_state(ex_map);
duke@1 981 // Force the exiting JVM state to have this method at InvocationEntryBci.
duke@1 982 // The exiting JVM state is otherwise a copy of the calling JVMS.
duke@1 983 JVMState* caller = kit.jvms();
duke@1 984 JVMState* ex_jvms = caller->clone_shallow(C);
duke@1 985 ex_jvms->set_map(kit.clone_map());
duke@1 986 ex_jvms->map()->set_jvms(ex_jvms);
duke@1 987 ex_jvms->set_bci( InvocationEntryBci);
duke@1 988 kit.set_jvms(ex_jvms);
duke@1 989 if (do_synch) {
duke@1 990 // Add on the synchronized-method box/object combo
duke@1 991 kit.map()->push_monitor(_synch_lock);
duke@1 992 // Unlock!
duke@1 993 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
duke@1 994 }
duke@1 995 if (DTraceMethodProbes) {
duke@1 996 kit.make_dtrace_method_exit(method());
duke@1 997 }
duke@1 998 // Done with exception-path processing.
duke@1 999 ex_map = kit.make_exception_state(ex_oop);
duke@1 1000 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
duke@1 1001 // Pop the last vestige of this method:
duke@1 1002 ex_map->set_jvms(caller->clone_shallow(C));
duke@1 1003 ex_map->jvms()->set_map(ex_map);
duke@1 1004 _exits.push_exception_state(ex_map);
duke@1 1005 }
duke@1 1006 assert(_exits.map() == normal_map, "keep the same return state");
duke@1 1007 }
duke@1 1008
duke@1 1009 {
duke@1 1010 // Capture very early exceptions (receiver null checks) from caller JVMS
duke@1 1011 GraphKit caller(_caller);
duke@1 1012 SafePointNode* ex_map;
duke@1 1013 while ((ex_map = caller.pop_exception_state()) != NULL) {
duke@1 1014 _exits.add_exception_state(ex_map);
duke@1 1015 }
duke@1 1016 }
duke@1 1017 }
duke@1 1018
duke@1 1019 //-----------------------------create_entry_map-------------------------------
duke@1 1020 // Initialize our parser map to contain the types at method entry.
duke@1 1021 // For OSR, the map contains a single RawPtr parameter.
duke@1 1022 // Initial monitor locking for sync. methods is performed by do_method_entry.
duke@1 1023 SafePointNode* Parse::create_entry_map() {
duke@1 1024 // Check for really stupid bail-out cases.
duke@1 1025 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
duke@1 1026 if (len >= 32760) {
duke@1 1027 C->record_method_not_compilable_all_tiers("too many local variables");
duke@1 1028 return NULL;
duke@1 1029 }
duke@1 1030
duke@1 1031 // If this is an inlined method, we may have to do a receiver null check.
duke@1 1032 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
duke@1 1033 GraphKit kit(_caller);
duke@1 1034 kit.null_check_receiver(method());
duke@1 1035 _caller = kit.transfer_exceptions_into_jvms();
duke@1 1036 if (kit.stopped()) {
duke@1 1037 _exits.add_exception_states_from(_caller);
duke@1 1038 _exits.set_jvms(_caller);
duke@1 1039 return NULL;
duke@1 1040 }
duke@1 1041 }
duke@1 1042
duke@1 1043 assert(method() != NULL, "parser must have a method");
duke@1 1044
duke@1 1045 // Create an initial safepoint to hold JVM state during parsing
duke@1 1046 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
duke@1 1047 set_map(new (C, len) SafePointNode(len, jvms));
duke@1 1048 jvms->set_map(map());
duke@1 1049 record_for_igvn(map());
duke@1 1050 assert(jvms->endoff() == len, "correct jvms sizing");
duke@1 1051
duke@1 1052 SafePointNode* inmap = _caller->map();
duke@1 1053 assert(inmap != NULL, "must have inmap");
duke@1 1054
duke@1 1055 uint i;
duke@1 1056
duke@1 1057 // Pass thru the predefined input parameters.
duke@1 1058 for (i = 0; i < TypeFunc::Parms; i++) {
duke@1 1059 map()->init_req(i, inmap->in(i));
duke@1 1060 }
duke@1 1061
duke@1 1062 if (depth() == 1) {
duke@1 1063 assert(map()->memory()->Opcode() == Op_Parm, "");
duke@1 1064 // Insert the memory aliasing node
duke@1 1065 set_all_memory(reset_memory());
duke@1 1066 }
duke@1 1067 assert(merged_memory(), "");
duke@1 1068
duke@1 1069 // Now add the locals which are initially bound to arguments:
duke@1 1070 uint arg_size = tf()->domain()->cnt();
duke@1 1071 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args
duke@1 1072 for (i = TypeFunc::Parms; i < arg_size; i++) {
duke@1 1073 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
duke@1 1074 }
duke@1 1075
duke@1 1076 // Clear out the rest of the map (locals and stack)
duke@1 1077 for (i = arg_size; i < len; i++) {
duke@1 1078 map()->init_req(i, top());
duke@1 1079 }
duke@1 1080
duke@1 1081 SafePointNode* entry_map = stop();
duke@1 1082 return entry_map;
duke@1 1083 }
duke@1 1084
duke@1 1085 //-----------------------------do_method_entry--------------------------------
duke@1 1086 // Emit any code needed in the pseudo-block before BCI zero.
duke@1 1087 // The main thing to do is lock the receiver of a synchronized method.
duke@1 1088 void Parse::do_method_entry() {
duke@1 1089 set_parse_bci(InvocationEntryBci); // Pseudo-BCP
duke@1 1090 set_sp(0); // Java Stack Pointer
duke@1 1091
duke@1 1092 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
duke@1 1093
duke@1 1094 if (DTraceMethodProbes) {
duke@1 1095 make_dtrace_method_entry(method());
duke@1 1096 }
duke@1 1097
duke@1 1098 // If the method is synchronized, we need to construct a lock node, attach
duke@1 1099 // it to the Start node, and pin it there.
duke@1 1100 if (method()->is_synchronized()) {
duke@1 1101 // Insert a FastLockNode right after the Start which takes as arguments
duke@1 1102 // the current thread pointer, the "this" pointer & the address of the
duke@1 1103 // stack slot pair used for the lock. The "this" pointer is a projection
duke@1 1104 // off the start node, but the locking spot has to be constructed by
duke@1 1105 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode
duke@1 1106 // becomes the second argument to the FastLockNode call. The
duke@1 1107 // FastLockNode becomes the new control parent to pin it to the start.
duke@1 1108
duke@1 1109 // Setup Object Pointer
duke@1 1110 Node *lock_obj = NULL;
duke@1 1111 if(method()->is_static()) {
duke@1 1112 ciInstance* mirror = _method->holder()->java_mirror();
duke@1 1113 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
duke@1 1114 lock_obj = makecon(t_lock);
duke@1 1115 } else { // Else pass the "this" pointer,
duke@1 1116 lock_obj = local(0); // which is Parm0 from StartNode
duke@1 1117 }
duke@1 1118 // Clear out dead values from the debug info.
duke@1 1119 kill_dead_locals();
duke@1 1120 // Build the FastLockNode
duke@1 1121 _synch_lock = shared_lock(lock_obj);
duke@1 1122 }
duke@1 1123
duke@1 1124 if (depth() == 1) {
duke@1 1125 increment_and_test_invocation_counter(Tier2CompileThreshold);
duke@1 1126 }
duke@1 1127 }
duke@1 1128
duke@1 1129 //------------------------------init_blocks------------------------------------
duke@1 1130 // Initialize our parser map to contain the types/monitors at method entry.
duke@1 1131 void Parse::init_blocks() {
duke@1 1132 // Create the blocks.
duke@1 1133 _block_count = flow()->block_count();
duke@1 1134 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
duke@1 1135 Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
duke@1 1136
duke@1 1137 int po;
duke@1 1138
duke@1 1139 // Initialize the structs.
duke@1 1140 for (po = 0; po < block_count(); po++) {
duke@1 1141 Block* block = pre_order_at(po);
duke@1 1142 block->init_node(this, po);
duke@1 1143 }
duke@1 1144
duke@1 1145 // Collect predecessor and successor information.
duke@1 1146 for (po = 0; po < block_count(); po++) {
duke@1 1147 Block* block = pre_order_at(po);
duke@1 1148 block->init_graph(this);
duke@1 1149 }
duke@1 1150 }
duke@1 1151
duke@1 1152 //-------------------------------init_node-------------------------------------
duke@1 1153 void Parse::Block::init_node(Parse* outer, int po) {
duke@1 1154 _flow = outer->flow()->pre_order_at(po);
duke@1 1155 _pred_count = 0;
duke@1 1156 _preds_parsed = 0;
duke@1 1157 _count = 0;
duke@1 1158 assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
duke@1 1159 assert(!(is_merged() || is_parsed() || is_handler()), "sanity");
duke@1 1160 assert(_live_locals.size() == 0, "sanity");
duke@1 1161
duke@1 1162 // entry point has additional predecessor
duke@1 1163 if (flow()->is_start()) _pred_count++;
duke@1 1164 assert(flow()->is_start() == (this == outer->start_block()), "");
duke@1 1165 }
duke@1 1166
duke@1 1167 //-------------------------------init_graph------------------------------------
duke@1 1168 void Parse::Block::init_graph(Parse* outer) {
duke@1 1169 // Create the successor list for this parser block.
duke@1 1170 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
duke@1 1171 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
duke@1 1172 int ns = tfs->length();
duke@1 1173 int ne = tfe->length();
duke@1 1174 _num_successors = ns;
duke@1 1175 _all_successors = ns+ne;
duke@1 1176 _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
duke@1 1177 int p = 0;
duke@1 1178 for (int i = 0; i < ns+ne; i++) {
duke@1 1179 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
duke@1 1180 Block* block2 = outer->pre_order_at(tf2->pre_order());
duke@1 1181 _successors[i] = block2;
duke@1 1182
duke@1 1183 // Accumulate pred info for the other block, too.
duke@1 1184 if (i < ns) {
duke@1 1185 block2->_pred_count++;
duke@1 1186 } else {
duke@1 1187 block2->_is_handler = true;
duke@1 1188 }
duke@1 1189
duke@1 1190 #ifdef ASSERT
duke@1 1191 // A block's successors must be distinguishable by BCI.
duke@1 1192 // That is, no bytecode is allowed to branch to two different
duke@1 1193 // clones of the same code location.
duke@1 1194 for (int j = 0; j < i; j++) {
duke@1 1195 Block* block1 = _successors[j];
duke@1 1196 if (block1 == block2) continue; // duplicates are OK
duke@1 1197 assert(block1->start() != block2->start(), "successors have unique bcis");
duke@1 1198 }
duke@1 1199 #endif
duke@1 1200 }
duke@1 1201
duke@1 1202 // Note: We never call next_path_num along exception paths, so they
duke@1 1203 // never get processed as "ready". Also, the input phis of exception
duke@1 1204 // handlers get specially processed, so that
duke@1 1205 }
duke@1 1206
duke@1 1207 //---------------------------successor_for_bci---------------------------------
duke@1 1208 Parse::Block* Parse::Block::successor_for_bci(int bci) {
duke@1 1209 for (int i = 0; i < all_successors(); i++) {
duke@1 1210 Block* block2 = successor_at(i);
duke@1 1211 if (block2->start() == bci) return block2;
duke@1 1212 }
duke@1 1213 // We can actually reach here if ciTypeFlow traps out a block
duke@1 1214 // due to an unloaded class, and concurrently with compilation the
duke@1 1215 // class is then loaded, so that a later phase of the parser is
duke@1 1216 // able to see more of the bytecode CFG. Or, the flow pass and
duke@1 1217 // the parser can have a minor difference of opinion about executability
duke@1 1218 // of bytecodes. For example, "obj.field = null" is executable even
duke@1 1219 // if the field's type is an unloaded class; the flow pass used to
duke@1 1220 // make a trap for such code.
duke@1 1221 return NULL;
duke@1 1222 }
duke@1 1223
duke@1 1224
duke@1 1225 //-----------------------------stack_type_at-----------------------------------
duke@1 1226 const Type* Parse::Block::stack_type_at(int i) const {
duke@1 1227 return get_type(flow()->stack_type_at(i));
duke@1 1228 }
duke@1 1229
duke@1 1230
duke@1 1231 //-----------------------------local_type_at-----------------------------------
duke@1 1232 const Type* Parse::Block::local_type_at(int i) const {
duke@1 1233 // Make dead locals fall to bottom.
duke@1 1234 if (_live_locals.size() == 0) {
duke@1 1235 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
duke@1 1236 // This bitmap can be zero length if we saw a breakpoint.
duke@1 1237 // In such cases, pretend they are all live.
duke@1 1238 ((Block*)this)->_live_locals = live_locals;
duke@1 1239 }
duke@1 1240 if (_live_locals.size() > 0 && !_live_locals.at(i))
duke@1 1241 return Type::BOTTOM;
duke@1 1242
duke@1 1243 return get_type(flow()->local_type_at(i));
duke@1 1244 }
duke@1 1245
duke@1 1246
duke@1 1247 #ifndef PRODUCT
duke@1 1248
duke@1 1249 //----------------------------name_for_bc--------------------------------------
duke@1 1250 // helper method for BytecodeParseHistogram
duke@1 1251 static const char* name_for_bc(int i) {
duke@1 1252 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
duke@1 1253 }
duke@1 1254
duke@1 1255 //----------------------------BytecodeParseHistogram------------------------------------
duke@1 1256 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
duke@1 1257 _parser = p;
duke@1 1258 _compiler = c;
duke@1 1259 if( ! _initialized ) { _initialized = true; reset(); }
duke@1 1260 }
duke@1 1261
duke@1 1262 //----------------------------current_count------------------------------------
duke@1 1263 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
duke@1 1264 switch( bph_type ) {
duke@1 1265 case BPH_transforms: { return _parser->gvn().made_progress(); }
duke@1 1266 case BPH_values: { return _parser->gvn().made_new_values(); }
duke@1 1267 default: { ShouldNotReachHere(); return 0; }
duke@1 1268 }
duke@1 1269 }
duke@1 1270
duke@1 1271 //----------------------------initialized--------------------------------------
duke@1 1272 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
duke@1 1273
duke@1 1274 //----------------------------reset--------------------------------------------
duke@1 1275 void Parse::BytecodeParseHistogram::reset() {
duke@1 1276 int i = Bytecodes::number_of_codes;
duke@1 1277 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
duke@1 1278 }
duke@1 1279
duke@1 1280 //----------------------------set_initial_state--------------------------------
duke@1 1281 // Record info when starting to parse one bytecode
duke@1 1282 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
duke@1 1283 if( PrintParseStatistics && !_parser->is_osr_parse() ) {
duke@1 1284 _initial_bytecode = bc;
duke@1 1285 _initial_node_count = _compiler->unique();
duke@1 1286 _initial_transforms = current_count(BPH_transforms);
duke@1 1287 _initial_values = current_count(BPH_values);
duke@1 1288 }
duke@1 1289 }
duke@1 1290
duke@1 1291 //----------------------------record_change--------------------------------
duke@1 1292 // Record results of parsing one bytecode
duke@1 1293 void Parse::BytecodeParseHistogram::record_change() {
duke@1 1294 if( PrintParseStatistics && !_parser->is_osr_parse() ) {
duke@1 1295 ++_bytecodes_parsed[_initial_bytecode];
duke@1 1296 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
duke@1 1297 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
duke@1 1298 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values);
duke@1 1299 }
duke@1 1300 }
duke@1 1301
duke@1 1302
duke@1 1303 //----------------------------print--------------------------------------------
duke@1 1304 void Parse::BytecodeParseHistogram::print(float cutoff) {
duke@1 1305 ResourceMark rm;
duke@1 1306 // print profile
duke@1 1307 int total = 0;
duke@1 1308 int i = 0;
duke@1 1309 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
duke@1 1310 int abs_sum = 0;
duke@1 1311 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789
duke@1 1312 tty->print_cr("Histogram of %d parsed bytecodes:", total);
duke@1 1313 if( total == 0 ) { return; }
duke@1 1314 tty->cr();
duke@1 1315 tty->print_cr("absolute: count of compiled bytecodes of this type");
duke@1 1316 tty->print_cr("relative: percentage contribution to compiled nodes");
duke@1 1317 tty->print_cr("nodes : Average number of nodes constructed per bytecode");
duke@1 1318 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)");
duke@1 1319 tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
duke@1 1320 tty->print_cr("values : Average number of node values improved per bytecode");
duke@1 1321 tty->print_cr("name : Bytecode name");
duke@1 1322 tty->cr();
duke@1 1323 tty->print_cr(" absolute relative nodes rnodes transforms values name");
duke@1 1324 tty->print_cr("----------------------------------------------------------------------");
duke@1 1325 while (--i > 0) {
duke@1 1326 int abs = _bytecodes_parsed[i];
duke@1 1327 float rel = abs * 100.0F / total;
duke@1 1328 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
duke@1 1329 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes;
duke@1 1330 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
duke@1 1331 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i];
duke@1 1332 if (cutoff <= rel) {
duke@1 1333 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
duke@1 1334 abs_sum += abs;
duke@1 1335 }
duke@1 1336 }
duke@1 1337 tty->print_cr("----------------------------------------------------------------------");
duke@1 1338 float rel_sum = abs_sum * 100.0F / total;
duke@1 1339 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
duke@1 1340 tty->print_cr("----------------------------------------------------------------------");
duke@1 1341 tty->cr();
duke@1 1342 }
duke@1 1343 #endif
duke@1 1344
duke@1 1345 //----------------------------load_state_from----------------------------------
duke@1 1346 // Load block/map/sp. But not do not touch iter/bci.
duke@1 1347 void Parse::load_state_from(Block* block) {
duke@1 1348 set_block(block);
duke@1 1349 // load the block's JVM state:
duke@1 1350 set_map(block->start_map());
duke@1 1351 set_sp( block->start_sp());
duke@1 1352 }
duke@1 1353
duke@1 1354
duke@1 1355 //-----------------------------record_state------------------------------------
duke@1 1356 void Parse::Block::record_state(Parse* p) {
duke@1 1357 assert(!is_merged(), "can only record state once, on 1st inflow");
duke@1 1358 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
duke@1 1359 set_start_map(p->stop());
duke@1 1360 }
duke@1 1361
duke@1 1362
duke@1 1363 //------------------------------do_one_block-----------------------------------
duke@1 1364 void Parse::do_one_block() {
duke@1 1365 if (TraceOptoParse) {
duke@1 1366 Block *b = block();
duke@1 1367 int ns = b->num_successors();
duke@1 1368 int nt = b->all_successors();
duke@1 1369
duke@1 1370 tty->print("Parsing block #%d at bci [%d,%d), successors: ",
duke@1 1371 block()->pre_order(), block()->start(), block()->limit());
duke@1 1372 for (int i = 0; i < nt; i++) {
duke@1 1373 tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->pre_order());
duke@1 1374 }
duke@1 1375 tty->print_cr("");
duke@1 1376 }
duke@1 1377
duke@1 1378 assert(block()->is_merged(), "must be merged before being parsed");
duke@1 1379 block()->mark_parsed();
duke@1 1380 ++_blocks_parsed;
duke@1 1381
duke@1 1382 // Set iterator to start of block.
duke@1 1383 iter().reset_to_bci(block()->start());
duke@1 1384
duke@1 1385 CompileLog* log = C->log();
duke@1 1386
duke@1 1387 // Parse bytecodes
duke@1 1388 while (!stopped() && !failing()) {
duke@1 1389 iter().next();
duke@1 1390
duke@1 1391 // Learn the current bci from the iterator:
duke@1 1392 set_parse_bci(iter().cur_bci());
duke@1 1393
duke@1 1394 if (bci() == block()->limit()) {
duke@1 1395 // Do not walk into the next block until directed by do_all_blocks.
duke@1 1396 merge(bci());
duke@1 1397 break;
duke@1 1398 }
duke@1 1399 assert(bci() < block()->limit(), "bci still in block");
duke@1 1400
duke@1 1401 if (log != NULL) {
duke@1 1402 // Output an optional context marker, to help place actions
duke@1 1403 // that occur during parsing of this BC. If there is no log
duke@1 1404 // output until the next context string, this context string
duke@1 1405 // will be silently ignored.
duke@1 1406 log->context()->reset();
duke@1 1407 log->context()->print_cr("<bc code='%d' bci='%d'/>", (int)bc(), bci());
duke@1 1408 }
duke@1 1409
duke@1 1410 if (block()->has_trap_at(bci())) {
duke@1 1411 // We must respect the flow pass's traps, because it will refuse
duke@1 1412 // to produce successors for trapping blocks.
duke@1 1413 int trap_index = block()->flow()->trap_index();
duke@1 1414 assert(trap_index != 0, "trap index must be valid");
duke@1 1415 uncommon_trap(trap_index);
duke@1 1416 break;
duke@1 1417 }
duke@1 1418
duke@1 1419 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
duke@1 1420
duke@1 1421 #ifdef ASSERT
duke@1 1422 int pre_bc_sp = sp();
duke@1 1423 int inputs, depth;
duke@1 1424 bool have_se = !stopped() && compute_stack_effects(inputs, depth);
duke@1 1425 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC");
duke@1 1426 #endif //ASSERT
duke@1 1427
duke@1 1428 do_one_bytecode();
duke@1 1429
duke@1 1430 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, "correct depth prediction");
duke@1 1431
duke@1 1432 do_exceptions();
duke@1 1433
duke@1 1434 NOT_PRODUCT( parse_histogram()->record_change(); );
duke@1 1435
duke@1 1436 if (log != NULL) log->context()->reset(); // done w/ this one
duke@1 1437
duke@1 1438 // Fall into next bytecode. Each bytecode normally has 1 sequential
duke@1 1439 // successor which is typically made ready by visiting this bytecode.
duke@1 1440 // If the successor has several predecessors, then it is a merge
duke@1 1441 // point, starts a new basic block, and is handled like other basic blocks.
duke@1 1442 }
duke@1 1443 }
duke@1 1444
duke@1 1445
duke@1 1446 //------------------------------merge------------------------------------------
duke@1 1447 void Parse::set_parse_bci(int bci) {
duke@1 1448 set_bci(bci);
duke@1 1449 Node_Notes* nn = C->default_node_notes();
duke@1 1450 if (nn == NULL) return;
duke@1 1451
duke@1 1452 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
duke@1 1453 if (!DebugInlinedCalls && depth() > 1) {
duke@1 1454 return;
duke@1 1455 }
duke@1 1456
duke@1 1457 // Update the JVMS annotation, if present.
duke@1 1458 JVMState* jvms = nn->jvms();
duke@1 1459 if (jvms != NULL && jvms->bci() != bci) {
duke@1 1460 // Update the JVMS.
duke@1 1461 jvms = jvms->clone_shallow(C);
duke@1 1462 jvms->set_bci(bci);
duke@1 1463 nn->set_jvms(jvms);
duke@1 1464 }
duke@1 1465 }
duke@1 1466
duke@1 1467 //------------------------------merge------------------------------------------
duke@1 1468 // Merge the current mapping into the basic block starting at bci
duke@1 1469 void Parse::merge(int target_bci) {
duke@1 1470 Block* target = successor_for_bci(target_bci);
duke@1 1471 if (target == NULL) { handle_missing_successor(target_bci); return; }
duke@1 1472 assert(!target->is_ready(), "our arrival must be expected");
duke@1 1473 int pnum = target->next_path_num();
duke@1 1474 merge_common(target, pnum);
duke@1 1475 }
duke@1 1476
duke@1 1477 //-------------------------merge_new_path--------------------------------------
duke@1 1478 // Merge the current mapping into the basic block, using a new path
duke@1 1479 void Parse::merge_new_path(int target_bci) {
duke@1 1480 Block* target = successor_for_bci(target_bci);
duke@1 1481 if (target == NULL) { handle_missing_successor(target_bci); return; }
duke@1 1482 assert(!target->is_ready(), "new path into frozen graph");
duke@1 1483 int pnum = target->add_new_path();
duke@1 1484 merge_common(target, pnum);
duke@1 1485 }
duke@1 1486
duke@1 1487 //-------------------------merge_exception-------------------------------------
duke@1 1488 // Merge the current mapping into the basic block starting at bci
duke@1 1489 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
duke@1 1490 void Parse::merge_exception(int target_bci) {
duke@1 1491 assert(sp() == 1, "must have only the throw exception on the stack");
duke@1 1492 Block* target = successor_for_bci(target_bci);
duke@1 1493 if (target == NULL) { handle_missing_successor(target_bci); return; }
duke@1 1494 assert(target->is_handler(), "exceptions are handled by special blocks");
duke@1 1495 int pnum = target->add_new_path();
duke@1 1496 merge_common(target, pnum);
duke@1 1497 }
duke@1 1498
duke@1 1499 //--------------------handle_missing_successor---------------------------------
duke@1 1500 void Parse::handle_missing_successor(int target_bci) {
duke@1 1501 #ifndef PRODUCT
duke@1 1502 Block* b = block();
duke@1 1503 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
duke@1 1504 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->pre_order(), trap_bci);
duke@1 1505 #endif
duke@1 1506 ShouldNotReachHere();
duke@1 1507 }
duke@1 1508
duke@1 1509 //--------------------------merge_common---------------------------------------
duke@1 1510 void Parse::merge_common(Parse::Block* target, int pnum) {
duke@1 1511 if (TraceOptoParse) {
duke@1 1512 tty->print("Merging state at block #%d bci:%d", target->pre_order(), target->start());
duke@1 1513 }
duke@1 1514
duke@1 1515 // Zap extra stack slots to top
duke@1 1516 assert(sp() == target->start_sp(), "");
duke@1 1517 clean_stack(sp());
duke@1 1518
duke@1 1519 if (!target->is_merged()) { // No prior mapping at this bci
duke@1 1520 if (TraceOptoParse) { tty->print(" with empty state"); }
duke@1 1521
duke@1 1522 // If this path is dead, do not bother capturing it as a merge.
duke@1 1523 // It is "as if" we had 1 fewer predecessors from the beginning.
duke@1 1524 if (stopped()) {
duke@1 1525 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count");
duke@1 1526 return;
duke@1 1527 }
duke@1 1528
duke@1 1529 // Record that a new block has been merged.
duke@1 1530 ++_blocks_merged;
duke@1 1531
duke@1 1532 // Make a region if we know there are multiple or unpredictable inputs.
duke@1 1533 // (Also, if this is a plain fall-through, we might see another region,
duke@1 1534 // which must not be allowed into this block's map.)
duke@1 1535 if (pnum > PhiNode::Input // Known multiple inputs.
duke@1 1536 || target->is_handler() // These have unpredictable inputs.
duke@1 1537 || control()->is_Region()) { // We must hide this guy.
duke@1 1538 // Add a Region to start the new basic block. Phis will be added
duke@1 1539 // later lazily.
duke@1 1540 int edges = target->pred_count();
duke@1 1541 if (edges < pnum) edges = pnum; // might be a new path!
duke@1 1542 Node *r = new (C, edges+1) RegionNode(edges+1);
duke@1 1543 gvn().set_type(r, Type::CONTROL);
duke@1 1544 record_for_igvn(r);
duke@1 1545 // zap all inputs to NULL for debugging (done in Node(uint) constructor)
duke@1 1546 // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
duke@1 1547 r->init_req(pnum, control());
duke@1 1548 set_control(r);
duke@1 1549 }
duke@1 1550
duke@1 1551 // Convert the existing Parser mapping into a mapping at this bci.
duke@1 1552 store_state_to(target);
duke@1 1553 assert(target->is_merged(), "do not come here twice");
duke@1 1554
duke@1 1555 } else { // Prior mapping at this bci
duke@1 1556 if (TraceOptoParse) { tty->print(" with previous state"); }
duke@1 1557
duke@1 1558 // We must not manufacture more phis if the target is already parsed.
duke@1 1559 bool nophi = target->is_parsed();
duke@1 1560
duke@1 1561 SafePointNode* newin = map();// Hang on to incoming mapping
duke@1 1562 Block* save_block = block(); // Hang on to incoming block;
duke@1 1563 load_state_from(target); // Get prior mapping
duke@1 1564
duke@1 1565 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
duke@1 1566 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
duke@1 1567 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
duke@1 1568 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
duke@1 1569
duke@1 1570 // Iterate over my current mapping and the old mapping.
duke@1 1571 // Where different, insert Phi functions.
duke@1 1572 // Use any existing Phi functions.
duke@1 1573 assert(control()->is_Region(), "must be merging to a region");
duke@1 1574 RegionNode* r = control()->as_Region();
duke@1 1575
duke@1 1576 // Compute where to merge into
duke@1 1577 // Merge incoming control path
duke@1 1578 r->set_req(pnum, newin->control());
duke@1 1579
duke@1 1580 if (pnum == 1) { // Last merge for this Region?
duke@1 1581 _gvn.transform_no_reclaim(r);
duke@1 1582 record_for_igvn(r);
duke@1 1583 }
duke@1 1584
duke@1 1585 // Update all the non-control inputs to map:
duke@1 1586 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
duke@1 1587 for (uint j = 1; j < newin->req(); j++) {
duke@1 1588 Node* m = map()->in(j); // Current state of target.
duke@1 1589 Node* n = newin->in(j); // Incoming change to target state.
duke@1 1590 PhiNode* phi;
duke@1 1591 if (m->is_Phi() && m->as_Phi()->region() == r)
duke@1 1592 phi = m->as_Phi();
duke@1 1593 else
duke@1 1594 phi = NULL;
duke@1 1595 if (m != n) { // Different; must merge
duke@1 1596 switch (j) {
duke@1 1597 // Frame pointer and Return Address never changes
duke@1 1598 case TypeFunc::FramePtr:// Drop m, use the original value
duke@1 1599 case TypeFunc::ReturnAdr:
duke@1 1600 break;
duke@1 1601 case TypeFunc::Memory: // Merge inputs to the MergeMem node
duke@1 1602 assert(phi == NULL, "the merge contains phis, not vice versa");
duke@1 1603 merge_memory_edges(n->as_MergeMem(), pnum, nophi);
duke@1 1604 continue;
duke@1 1605 default: // All normal stuff
duke@1 1606 if (phi == NULL) phi = ensure_phi(j, nophi);
duke@1 1607 break;
duke@1 1608 }
duke@1 1609 }
duke@1 1610 // At this point, n might be top if:
duke@1 1611 // - there is no phi (because TypeFlow detected a conflict), or
duke@1 1612 // - the corresponding control edges is top (a dead incoming path)
duke@1 1613 // It is a bug if we create a phi which sees a garbage value on a live path.
duke@1 1614
duke@1 1615 if (phi != NULL) {
duke@1 1616 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
duke@1 1617 assert(phi->region() == r, "");
duke@1 1618 phi->set_req(pnum, n); // Then add 'n' to the merge
duke@1 1619 if (pnum == PhiNode::Input) {
duke@1 1620 // Last merge for this Phi.
duke@1 1621 // So far, Phis have had a reasonable type from ciTypeFlow.
duke@1 1622 // Now _gvn will join that with the meet of current inputs.
duke@1 1623 // BOTTOM is never permissible here, 'cause pessimistically
duke@1 1624 // Phis of pointers cannot lose the basic pointer type.
duke@1 1625 debug_only(const Type* bt1 = phi->bottom_type());
duke@1 1626 assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
duke@1 1627 map()->set_req(j, _gvn.transform_no_reclaim(phi));
duke@1 1628 debug_only(const Type* bt2 = phi->bottom_type());
duke@1 1629 assert(bt2->higher_equal(bt1), "must be consistent with type-flow");
duke@1 1630 record_for_igvn(phi);
duke@1 1631 }
duke@1 1632 }
duke@1 1633 } // End of for all values to be merged
duke@1 1634
duke@1 1635 if (pnum == PhiNode::Input &&
duke@1 1636 !r->in(0)) { // The occasional useless Region
duke@1 1637 assert(control() == r, "");
duke@1 1638 set_control(r->nonnull_req());
duke@1 1639 }
duke@1 1640
duke@1 1641 // newin has been subsumed into the lazy merge, and is now dead.
duke@1 1642 set_block(save_block);
duke@1 1643
duke@1 1644 stop(); // done with this guy, for now
duke@1 1645 }
duke@1 1646
duke@1 1647 if (TraceOptoParse) {
duke@1 1648 tty->print_cr(" on path %d", pnum);
duke@1 1649 }
duke@1 1650
duke@1 1651 // Done with this parser state.
duke@1 1652 assert(stopped(), "");
duke@1 1653 }
duke@1 1654
duke@1 1655
duke@1 1656 //--------------------------merge_memory_edges---------------------------------
duke@1 1657 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
duke@1 1658 // (nophi means we must not create phis, because we already parsed here)
duke@1 1659 assert(n != NULL, "");
duke@1 1660 // Merge the inputs to the MergeMems
duke@1 1661 MergeMemNode* m = merged_memory();
duke@1 1662
duke@1 1663 assert(control()->is_Region(), "must be merging to a region");
duke@1 1664 RegionNode* r = control()->as_Region();
duke@1 1665
duke@1 1666 PhiNode* base = NULL;
duke@1 1667 MergeMemNode* remerge = NULL;
duke@1 1668 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
duke@1 1669 Node *p = mms.force_memory();
duke@1 1670 Node *q = mms.memory2();
duke@1 1671 if (mms.is_empty() && nophi) {
duke@1 1672 // Trouble: No new splits allowed after a loop body is parsed.
duke@1 1673 // Instead, wire the new split into a MergeMem on the backedge.
duke@1 1674 // The optimizer will sort it out, slicing the phi.
duke@1 1675 if (remerge == NULL) {
duke@1 1676 assert(base != NULL, "");
duke@1 1677 assert(base->in(0) != NULL, "should not be xformed away");
duke@1 1678 remerge = MergeMemNode::make(C, base->in(pnum));
duke@1 1679 gvn().set_type(remerge, Type::MEMORY);
duke@1 1680 base->set_req(pnum, remerge);
duke@1 1681 }
duke@1 1682 remerge->set_memory_at(mms.alias_idx(), q);
duke@1 1683 continue;
duke@1 1684 }
duke@1 1685 assert(!q->is_MergeMem(), "");
duke@1 1686 PhiNode* phi;
duke@1 1687 if (p != q) {
duke@1 1688 phi = ensure_memory_phi(mms.alias_idx(), nophi);
duke@1 1689 } else {
duke@1 1690 if (p->is_Phi() && p->as_Phi()->region() == r)
duke@1 1691 phi = p->as_Phi();
duke@1 1692 else
duke@1 1693 phi = NULL;
duke@1 1694 }
duke@1 1695 // Insert q into local phi
duke@1 1696 if (phi != NULL) {
duke@1 1697 assert(phi->region() == r, "");
duke@1 1698 p = phi;
duke@1 1699 phi->set_req(pnum, q);
duke@1 1700 if (mms.at_base_memory()) {
duke@1 1701 base = phi; // delay transforming it
duke@1 1702 } else if (pnum == 1) {
duke@1 1703 record_for_igvn(phi);
duke@1 1704 p = _gvn.transform_no_reclaim(phi);
duke@1 1705 }
duke@1 1706 mms.set_memory(p);// store back through the iterator
duke@1 1707 }
duke@1 1708 }
duke@1 1709 // Transform base last, in case we must fiddle with remerging.
duke@1 1710 if (base != NULL && pnum == 1) {
duke@1 1711 record_for_igvn(base);
duke@1 1712 m->set_base_memory( _gvn.transform_no_reclaim(base) );
duke@1 1713 }
duke@1 1714 }
duke@1 1715
duke@1 1716
duke@1 1717 //------------------------ensure_phis_everywhere-------------------------------
duke@1 1718 void Parse::ensure_phis_everywhere() {
duke@1 1719 ensure_phi(TypeFunc::I_O);
duke@1 1720
duke@1 1721 // Ensure a phi on all currently known memories.
duke@1 1722 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
duke@1 1723 ensure_memory_phi(mms.alias_idx());
duke@1 1724 debug_only(mms.set_memory()); // keep the iterator happy
duke@1 1725 }
duke@1 1726
duke@1 1727 // Note: This is our only chance to create phis for memory slices.
duke@1 1728 // If we miss a slice that crops up later, it will have to be
duke@1 1729 // merged into the base-memory phi that we are building here.
duke@1 1730 // Later, the optimizer will comb out the knot, and build separate
duke@1 1731 // phi-loops for each memory slice that matters.
duke@1 1732
duke@1 1733 // Monitors must nest nicely and not get confused amongst themselves.
duke@1 1734 // Phi-ify everything up to the monitors, though.
duke@1 1735 uint monoff = map()->jvms()->monoff();
duke@1 1736 uint nof_monitors = map()->jvms()->nof_monitors();
duke@1 1737
duke@1 1738 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
duke@1 1739 for (uint i = TypeFunc::Parms; i < monoff; i++) {
duke@1 1740 ensure_phi(i);
duke@1 1741 }
duke@1 1742 // Even monitors need Phis, though they are well-structured.
duke@1 1743 // This is true for OSR methods, and also for the rare cases where
duke@1 1744 // a monitor object is the subject of a replace_in_map operation.
duke@1 1745 // See bugs 4426707 and 5043395.
duke@1 1746 for (uint m = 0; m < nof_monitors; m++) {
duke@1 1747 ensure_phi(map()->jvms()->monitor_obj_offset(m));
duke@1 1748 }
duke@1 1749 }
duke@1 1750
duke@1 1751
duke@1 1752 //-----------------------------add_new_path------------------------------------
duke@1 1753 // Add a previously unaccounted predecessor to this block.
duke@1 1754 int Parse::Block::add_new_path() {
duke@1 1755 // If there is no map, return the lowest unused path number.
duke@1 1756 if (!is_merged()) return pred_count()+1; // there will be a map shortly
duke@1 1757
duke@1 1758 SafePointNode* map = start_map();
duke@1 1759 if (!map->control()->is_Region())
duke@1 1760 return pred_count()+1; // there may be a region some day
duke@1 1761 RegionNode* r = map->control()->as_Region();
duke@1 1762
duke@1 1763 // Add new path to the region.
duke@1 1764 uint pnum = r->req();
duke@1 1765 r->add_req(NULL);
duke@1 1766
duke@1 1767 for (uint i = 1; i < map->req(); i++) {
duke@1 1768 Node* n = map->in(i);
duke@1 1769 if (i == TypeFunc::Memory) {
duke@1 1770 // Ensure a phi on all currently known memories.
duke@1 1771 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
duke@1 1772 Node* phi = mms.memory();
duke@1 1773 if (phi->is_Phi() && phi->as_Phi()->region() == r) {
duke@1 1774 assert(phi->req() == pnum, "must be same size as region");
duke@1 1775 phi->add_req(NULL);
duke@1 1776 }
duke@1 1777 }
duke@1 1778 } else {
duke@1 1779 if (n->is_Phi() && n->as_Phi()->region() == r) {
duke@1 1780 assert(n->req() == pnum, "must be same size as region");
duke@1 1781 n->add_req(NULL);
duke@1 1782 }
duke@1 1783 }
duke@1 1784 }
duke@1 1785
duke@1 1786 return pnum;
duke@1 1787 }
duke@1 1788
duke@1 1789 //------------------------------ensure_phi-------------------------------------
duke@1 1790 // Turn the idx'th entry of the current map into a Phi
duke@1 1791 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
duke@1 1792 SafePointNode* map = this->map();
duke@1 1793 Node* region = map->control();
duke@1 1794 assert(region->is_Region(), "");
duke@1 1795
duke@1 1796 Node* o = map->in(idx);
duke@1 1797 assert(o != NULL, "");
duke@1 1798
duke@1 1799 if (o == top()) return NULL; // TOP always merges into TOP
duke@1 1800
duke@1 1801 if (o->is_Phi() && o->as_Phi()->region() == region) {
duke@1 1802 return o->as_Phi();
duke@1 1803 }
duke@1 1804
duke@1 1805 // Now use a Phi here for merging
duke@1 1806 assert(!nocreate, "Cannot build a phi for a block already parsed.");
duke@1 1807 const JVMState* jvms = map->jvms();
duke@1 1808 const Type* t;
duke@1 1809 if (jvms->is_loc(idx)) {
duke@1 1810 t = block()->local_type_at(idx - jvms->locoff());
duke@1 1811 } else if (jvms->is_stk(idx)) {
duke@1 1812 t = block()->stack_type_at(idx - jvms->stkoff());
duke@1 1813 } else if (jvms->is_mon(idx)) {
duke@1 1814 assert(!jvms->is_monitor_box(idx), "no phis for boxes");
duke@1 1815 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
duke@1 1816 } else if ((uint)idx < TypeFunc::Parms) {
duke@1 1817 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like.
duke@1 1818 } else {
duke@1 1819 assert(false, "no type information for this phi");
duke@1 1820 }
duke@1 1821
duke@1 1822 // If the type falls to bottom, then this must be a local that
duke@1 1823 // is mixing ints and oops or some such. Forcing it to top
duke@1 1824 // makes it go dead.
duke@1 1825 if (t == Type::BOTTOM) {
duke@1 1826 map->set_req(idx, top());
duke@1 1827 return NULL;
duke@1 1828 }
duke@1 1829
duke@1 1830 // Do not create phis for top either.
duke@1 1831 // A top on a non-null control flow must be an unused even after the.phi.
duke@1 1832 if (t == Type::TOP || t == Type::HALF) {
duke@1 1833 map->set_req(idx, top());
duke@1 1834 return NULL;
duke@1 1835 }
duke@1 1836
duke@1 1837 PhiNode* phi = PhiNode::make(region, o, t);
duke@1 1838 gvn().set_type(phi, t);
kvn@211 1839 if (C->do_escape_analysis()) record_for_igvn(phi);
duke@1 1840 map->set_req(idx, phi);
duke@1 1841 return phi;
duke@1 1842 }
duke@1 1843
duke@1 1844 //--------------------------ensure_memory_phi----------------------------------
duke@1 1845 // Turn the idx'th slice of the current memory into a Phi
duke@1 1846 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
duke@1 1847 MergeMemNode* mem = merged_memory();
duke@1 1848 Node* region = control();
duke@1 1849 assert(region->is_Region(), "");
duke@1 1850
duke@1 1851 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
duke@1 1852 assert(o != NULL && o != top(), "");
duke@1 1853
duke@1 1854 PhiNode* phi;
duke@1 1855 if (o->is_Phi() && o->as_Phi()->region() == region) {
duke@1 1856 phi = o->as_Phi();
duke@1 1857 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
duke@1 1858 // clone the shared base memory phi to make a new memory split
duke@1 1859 assert(!nocreate, "Cannot build a phi for a block already parsed.");
duke@1 1860 const Type* t = phi->bottom_type();
duke@1 1861 const TypePtr* adr_type = C->get_adr_type(idx);
duke@1 1862 phi = phi->slice_memory(adr_type);
duke@1 1863 gvn().set_type(phi, t);
duke@1 1864 }
duke@1 1865 return phi;
duke@1 1866 }
duke@1 1867
duke@1 1868 // Now use a Phi here for merging
duke@1 1869 assert(!nocreate, "Cannot build a phi for a block already parsed.");
duke@1 1870 const Type* t = o->bottom_type();
duke@1 1871 const TypePtr* adr_type = C->get_adr_type(idx);
duke@1 1872 phi = PhiNode::make(region, o, t, adr_type);
duke@1 1873 gvn().set_type(phi, t);
duke@1 1874 if (idx == Compile::AliasIdxBot)
duke@1 1875 mem->set_base_memory(phi);
duke@1 1876 else
duke@1 1877 mem->set_memory_at(idx, phi);
duke@1 1878 return phi;
duke@1 1879 }
duke@1 1880
duke@1 1881 //------------------------------call_register_finalizer-----------------------
duke@1 1882 // Check the klass of the receiver and call register_finalizer if the
duke@1 1883 // class need finalization.
duke@1 1884 void Parse::call_register_finalizer() {
duke@1 1885 Node* receiver = local(0);
duke@1 1886 assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
duke@1 1887 "must have non-null instance type");
duke@1 1888
duke@1 1889 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
duke@1 1890 if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
duke@1 1891 // The type isn't known exactly so see if CHA tells us anything.
duke@1 1892 ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
duke@1 1893 if (!Dependencies::has_finalizable_subclass(ik)) {
duke@1 1894 // No finalizable subclasses so skip the dynamic check.
duke@1 1895 C->dependencies()->assert_has_no_finalizable_subclasses(ik);
duke@1 1896 return;
duke@1 1897 }
duke@1 1898 }
duke@1 1899
duke@1 1900 // Insert a dynamic test for whether the instance needs
duke@1 1901 // finalization. In general this will fold up since the concrete
duke@1 1902 // class is often visible so the access flags are constant.
duke@1 1903 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
duke@1 1904 Node* klass = _gvn.transform(new (C, 3) LoadKlassNode(NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
duke@1 1905
duke@1 1906 Node* access_flags_addr = basic_plus_adr(klass, klass, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
duke@1 1907 Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT);
duke@1 1908
duke@1 1909 Node* mask = _gvn.transform(new (C, 3) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
duke@1 1910 Node* check = _gvn.transform(new (C, 3) CmpINode(mask, intcon(0)));
duke@1 1911 Node* test = _gvn.transform(new (C, 2) BoolNode(check, BoolTest::ne));
duke@1 1912
duke@1 1913 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
duke@1 1914
duke@1 1915 RegionNode* result_rgn = new (C, 3) RegionNode(3);
duke@1 1916 record_for_igvn(result_rgn);
duke@1 1917
duke@1 1918 Node *skip_register = _gvn.transform(new (C, 1) IfFalseNode(iff));
duke@1 1919 result_rgn->init_req(1, skip_register);
duke@1 1920
duke@1 1921 Node *needs_register = _gvn.transform(new (C, 1) IfTrueNode(iff));
duke@1 1922 set_control(needs_register);
duke@1 1923 if (stopped()) {
duke@1 1924 // There is no slow path.
duke@1 1925 result_rgn->init_req(2, top());
duke@1 1926 } else {
duke@1 1927 Node *call = make_runtime_call(RC_NO_LEAF,
duke@1 1928 OptoRuntime::register_finalizer_Type(),
duke@1 1929 OptoRuntime::register_finalizer_Java(),
duke@1 1930 NULL, TypePtr::BOTTOM,
duke@1 1931 receiver);
duke@1 1932 make_slow_call_ex(call, env()->Throwable_klass(), true);
duke@1 1933
duke@1 1934 Node* fast_io = call->in(TypeFunc::I_O);
duke@1 1935 Node* fast_mem = call->in(TypeFunc::Memory);
duke@1 1936 // These two phis are pre-filled with copies of of the fast IO and Memory
duke@1 1937 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
duke@1 1938 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
duke@1 1939
duke@1 1940 result_rgn->init_req(2, control());
duke@1 1941 io_phi ->init_req(2, i_o());
duke@1 1942 mem_phi ->init_req(2, reset_memory());
duke@1 1943
duke@1 1944 set_all_memory( _gvn.transform(mem_phi) );
duke@1 1945 set_i_o( _gvn.transform(io_phi) );
duke@1 1946 }
duke@1 1947
duke@1 1948 set_control( _gvn.transform(result_rgn) );
duke@1 1949 }
duke@1 1950
duke@1 1951 //------------------------------return_current---------------------------------
duke@1 1952 // Append current _map to _exit_return
duke@1 1953 void Parse::return_current(Node* value) {
duke@1 1954 if (RegisterFinalizersAtInit &&
duke@1 1955 method()->intrinsic_id() == vmIntrinsics::_Object_init) {
duke@1 1956 call_register_finalizer();
duke@1 1957 }
duke@1 1958
duke@1 1959 // Do not set_parse_bci, so that return goo is credited to the return insn.
duke@1 1960 set_bci(InvocationEntryBci);
duke@1 1961 if (method()->is_synchronized() && GenerateSynchronizationCode) {
duke@1 1962 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
duke@1 1963 }
duke@1 1964 if (DTraceMethodProbes) {
duke@1 1965 make_dtrace_method_exit(method());
duke@1 1966 }
duke@1 1967 SafePointNode* exit_return = _exits.map();
duke@1 1968 exit_return->in( TypeFunc::Control )->add_req( control() );
duke@1 1969 exit_return->in( TypeFunc::I_O )->add_req( i_o () );
duke@1 1970 Node *mem = exit_return->in( TypeFunc::Memory );
duke@1 1971 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
duke@1 1972 if (mms.is_empty()) {
duke@1 1973 // get a copy of the base memory, and patch just this one input
duke@1 1974 const TypePtr* adr_type = mms.adr_type(C);
duke@1 1975 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
duke@1 1976 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
duke@1 1977 gvn().set_type_bottom(phi);
duke@1 1978 phi->del_req(phi->req()-1); // prepare to re-patch
duke@1 1979 mms.set_memory(phi);
duke@1 1980 }
duke@1 1981 mms.memory()->add_req(mms.memory2());
duke@1 1982 }
duke@1 1983
duke@1 1984 // frame pointer is always same, already captured
duke@1 1985 if (value != NULL) {
duke@1 1986 // If returning oops to an interface-return, there is a silent free
duke@1 1987 // cast from oop to interface allowed by the Verifier. Make it explicit
duke@1 1988 // here.
duke@1 1989 Node* phi = _exits.argument(0);
duke@1 1990 const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
duke@1 1991 if( tr && tr->klass()->is_loaded() &&
duke@1 1992 tr->klass()->is_interface() ) {
duke@1 1993 const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
duke@1 1994 if (tp && tp->klass()->is_loaded() &&
duke@1 1995 !tp->klass()->is_interface()) {
duke@1 1996 // sharpen the type eagerly; this eases certain assert checking
duke@1 1997 if (tp->higher_equal(TypeInstPtr::NOTNULL))
duke@1 1998 tr = tr->join(TypeInstPtr::NOTNULL)->is_instptr();
duke@1 1999 value = _gvn.transform(new (C, 2) CheckCastPPNode(0,value,tr));
duke@1 2000 }
duke@1 2001 }
duke@1 2002 phi->add_req(value);
duke@1 2003 }
duke@1 2004
duke@1 2005 stop_and_kill_map(); // This CFG path dies here
duke@1 2006 }
duke@1 2007
duke@1 2008
duke@1 2009 //------------------------------add_safepoint----------------------------------
duke@1 2010 void Parse::add_safepoint() {
duke@1 2011 // See if we can avoid this safepoint. No need for a SafePoint immediately
duke@1 2012 // after a Call (except Leaf Call) or another SafePoint.
duke@1 2013 Node *proj = control();
duke@1 2014 bool add_poll_param = SafePointNode::needs_polling_address_input();
duke@1 2015 uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
duke@1 2016 if( proj->is_Proj() ) {
duke@1 2017 Node *n0 = proj->in(0);
duke@1 2018 if( n0->is_Catch() ) {
duke@1 2019 n0 = n0->in(0)->in(0);
duke@1 2020 assert( n0->is_Call(), "expect a call here" );
duke@1 2021 }
duke@1 2022 if( n0->is_Call() ) {
duke@1 2023 if( n0->as_Call()->guaranteed_safepoint() )
duke@1 2024 return;
duke@1 2025 } else if( n0->is_SafePoint() && n0->req() >= parms ) {
duke@1 2026 return;
duke@1 2027 }
duke@1 2028 }
duke@1 2029
duke@1 2030 // Clear out dead values from the debug info.
duke@1 2031 kill_dead_locals();
duke@1 2032
duke@1 2033 // Clone the JVM State
duke@1 2034 SafePointNode *sfpnt = new (C, parms) SafePointNode(parms, NULL);
duke@1 2035
duke@1 2036 // Capture memory state BEFORE a SafePoint. Since we can block at a
duke@1 2037 // SafePoint we need our GC state to be safe; i.e. we need all our current
duke@1 2038 // write barriers (card marks) to not float down after the SafePoint so we
duke@1 2039 // must read raw memory. Likewise we need all oop stores to match the card
duke@1 2040 // marks. If deopt can happen, we need ALL stores (we need the correct JVM
duke@1 2041 // state on a deopt).
duke@1 2042
duke@1 2043 // We do not need to WRITE the memory state after a SafePoint. The control
duke@1 2044 // edge will keep card-marks and oop-stores from floating up from below a
duke@1 2045 // SafePoint and our true dependency added here will keep them from floating
duke@1 2046 // down below a SafePoint.
duke@1 2047
duke@1 2048 // Clone the current memory state
duke@1 2049 Node* mem = MergeMemNode::make(C, map()->memory());
duke@1 2050
duke@1 2051 mem = _gvn.transform(mem);
duke@1 2052
duke@1 2053 // Pass control through the safepoint
duke@1 2054 sfpnt->init_req(TypeFunc::Control , control());
duke@1 2055 // Fix edges normally used by a call
duke@1 2056 sfpnt->init_req(TypeFunc::I_O , top() );
duke@1 2057 sfpnt->init_req(TypeFunc::Memory , mem );
duke@1 2058 sfpnt->init_req(TypeFunc::ReturnAdr, top() );
duke@1 2059 sfpnt->init_req(TypeFunc::FramePtr , top() );
duke@1 2060
duke@1 2061 // Create a node for the polling address
duke@1 2062 if( add_poll_param ) {
duke@1 2063 Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
duke@1 2064 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
duke@1 2065 }
duke@1 2066
duke@1 2067 // Fix up the JVM State edges
duke@1 2068 add_safepoint_edges(sfpnt);
duke@1 2069 Node *transformed_sfpnt = _gvn.transform(sfpnt);
duke@1 2070 set_control(transformed_sfpnt);
duke@1 2071
duke@1 2072 // Provide an edge from root to safepoint. This makes the safepoint
duke@1 2073 // appear useful until the parse has completed.
duke@1 2074 if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
duke@1 2075 assert(C->root() != NULL, "Expect parse is still valid");
duke@1 2076 C->root()->add_prec(transformed_sfpnt);
duke@1 2077 }
duke@1 2078 }
duke@1 2079
duke@1 2080 #ifndef PRODUCT
duke@1 2081 //------------------------show_parse_info--------------------------------------
duke@1 2082 void Parse::show_parse_info() {
duke@1 2083 InlineTree* ilt = NULL;
duke@1 2084 if (C->ilt() != NULL) {
duke@1 2085 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
duke@1 2086 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
duke@1 2087 }
duke@1 2088 if (PrintCompilation && Verbose) {
duke@1 2089 if (depth() == 1) {
duke@1 2090 if( ilt->count_inlines() ) {
duke@1 2091 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
duke@1 2092 ilt->count_inline_bcs());
duke@1 2093 tty->cr();
duke@1 2094 }
duke@1 2095 } else {
duke@1 2096 if (method()->is_synchronized()) tty->print("s");
duke@1 2097 if (method()->has_exception_handlers()) tty->print("!");
duke@1 2098 // Check this is not the final compiled version
duke@1 2099 if (C->trap_can_recompile()) {
duke@1 2100 tty->print("-");
duke@1 2101 } else {
duke@1 2102 tty->print(" ");
duke@1 2103 }
duke@1 2104 method()->print_short_name();
duke@1 2105 if (is_osr_parse()) {
duke@1 2106 tty->print(" @ %d", osr_bci());
duke@1 2107 }
duke@1 2108 tty->print(" (%d bytes)",method()->code_size());
duke@1 2109 if (ilt->count_inlines()) {
duke@1 2110 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
duke@1 2111 ilt->count_inline_bcs());
duke@1 2112 }
duke@1 2113 tty->cr();
duke@1 2114 }
duke@1 2115 }
duke@1 2116 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
duke@1 2117 // Print that we succeeded; suppress this message on the first osr parse.
duke@1 2118
duke@1 2119 if (method()->is_synchronized()) tty->print("s");
duke@1 2120 if (method()->has_exception_handlers()) tty->print("!");
duke@1 2121 // Check this is not the final compiled version
duke@1 2122 if (C->trap_can_recompile() && depth() == 1) {
duke@1 2123 tty->print("-");
duke@1 2124 } else {
duke@1 2125 tty->print(" ");
duke@1 2126 }
duke@1 2127 if( depth() != 1 ) { tty->print(" "); } // missing compile count
duke@1 2128 for (int i = 1; i < depth(); ++i) { tty->print(" "); }
duke@1 2129 method()->print_short_name();
duke@1 2130 if (is_osr_parse()) {
duke@1 2131 tty->print(" @ %d", osr_bci());
duke@1 2132 }
duke@1 2133 if (ilt->caller_bci() != -1) {
duke@1 2134 tty->print(" @ %d", ilt->caller_bci());
duke@1 2135 }
duke@1 2136 tty->print(" (%d bytes)",method()->code_size());
duke@1 2137 if (ilt->count_inlines()) {
duke@1 2138 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
duke@1 2139 ilt->count_inline_bcs());
duke@1 2140 }
duke@1 2141 tty->cr();
duke@1 2142 }
duke@1 2143 }
duke@1 2144
duke@1 2145
duke@1 2146 //------------------------------dump-------------------------------------------
duke@1 2147 // Dump information associated with the bytecodes of current _method
duke@1 2148 void Parse::dump() {
duke@1 2149 if( method() != NULL ) {
duke@1 2150 // Iterate over bytecodes
duke@1 2151 ciBytecodeStream iter(method());
duke@1 2152 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
duke@1 2153 dump_bci( iter.cur_bci() );
duke@1 2154 tty->cr();
duke@1 2155 }
duke@1 2156 }
duke@1 2157 }
duke@1 2158
duke@1 2159 // Dump information associated with a byte code index, 'bci'
duke@1 2160 void Parse::dump_bci(int bci) {
duke@1 2161 // Output info on merge-points, cloning, and within _jsr..._ret
duke@1 2162 // NYI
duke@1 2163 tty->print(" bci:%d", bci);
duke@1 2164 }
duke@1 2165
duke@1 2166 #endif