duke@1: /* mikael@22234: * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved. duke@1: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@1: * duke@1: * This code is free software; you can redistribute it and/or modify it duke@1: * under the terms of the GNU General Public License version 2 only, as duke@1: * published by the Free Software Foundation. duke@1: * duke@1: * This code is distributed in the hope that it will be useful, but WITHOUT duke@1: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@1: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@1: * version 2 for more details (a copy is included in the LICENSE file that duke@1: * accompanied this code). duke@1: * duke@1: * You should have received a copy of the GNU General Public License version duke@1: * 2 along with this work; if not, write to the Free Software Foundation, duke@1: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@1: * trims@5547: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@5547: * or visit www.oracle.com if you need additional information or have any trims@5547: * questions. duke@1: * duke@1: */ duke@1: stefank@7397: #ifndef SHARE_VM_OPTO_GRAPHKIT_HPP stefank@7397: #define SHARE_VM_OPTO_GRAPHKIT_HPP stefank@7397: stefank@7397: #include "ci/ciEnv.hpp" stefank@7397: #include "ci/ciMethodData.hpp" stefank@7397: #include "opto/addnode.hpp" stefank@7397: #include "opto/callnode.hpp" stefank@7397: #include "opto/cfgnode.hpp" stefank@7397: #include "opto/compile.hpp" stefank@7397: #include "opto/divnode.hpp" stefank@7397: #include "opto/mulnode.hpp" stefank@7397: #include "opto/phaseX.hpp" stefank@7397: #include "opto/subnode.hpp" stefank@7397: #include "opto/type.hpp" stefank@7397: #include "runtime/deoptimization.hpp" stefank@7397: duke@1: class FastLockNode; duke@1: class FastUnlockNode; ysr@1374: class IdealKit; twisti@14621: class LibraryCallKit; duke@1: class Parse; duke@1: class RootNode; duke@1: duke@1: //----------------------------------------------------------------------------- duke@1: //----------------------------GraphKit----------------------------------------- duke@1: // Toolkit for building the common sorts of subgraphs. duke@1: // Does not know about bytecode parsing or type-flow results. duke@1: // It is able to create graphs implementing the semantics of most duke@1: // or all bytecodes, so that it can expand intrinsics and calls. duke@1: // It may depend on JVMState structure, but it must not depend duke@1: // on specific bytecode streams. duke@1: class GraphKit : public Phase { duke@1: friend class PreserveJVMState; duke@1: duke@1: protected: duke@1: ciEnv* _env; // Compilation environment duke@1: PhaseGVN &_gvn; // Some optimizations while parsing duke@1: SafePointNode* _map; // Parser map from JVM to Nodes duke@1: SafePointNode* _exceptions;// Parser map(s) for exception state(s) duke@1: int _bci; // JVM Bytecode Pointer duke@1: ciMethod* _method; // JVM Current Method duke@1: duke@1: private: twisti@14621: int _sp; // JVM Expression Stack Pointer; don't modify directly! twisti@14621: twisti@14621: private: duke@1: SafePointNode* map_not_null() const { duke@1: assert(_map != NULL, "must call stopped() to test for reset compiler map"); duke@1: return _map; duke@1: } duke@1: duke@1: public: duke@1: GraphKit(); // empty constructor duke@1: GraphKit(JVMState* jvms); // the JVM state on which to operate duke@1: duke@1: #ifdef ASSERT duke@1: ~GraphKit() { duke@1: assert(!has_exceptions(), "user must call transfer_exceptions_into_jvms"); duke@1: } duke@1: #endif duke@1: twisti@14621: virtual Parse* is_Parse() const { return NULL; } twisti@14621: virtual LibraryCallKit* is_LibraryCallKit() const { return NULL; } duke@1: duke@1: ciEnv* env() const { return _env; } duke@1: PhaseGVN& gvn() const { return _gvn; } duke@1: duke@1: void record_for_igvn(Node* n) const { C->record_for_igvn(n); } // delegate to Compile duke@1: duke@1: // Handy well-known nodes: duke@1: Node* null() const { return zerocon(T_OBJECT); } duke@1: Node* top() const { return C->top(); } duke@1: RootNode* root() const { return C->root(); } duke@1: duke@1: // Create or find a constant node duke@1: Node* intcon(jint con) const { return _gvn.intcon(con); } duke@1: Node* longcon(jlong con) const { return _gvn.longcon(con); } duke@1: Node* makecon(const Type *t) const { return _gvn.makecon(t); } duke@1: Node* zerocon(BasicType bt) const { return _gvn.zerocon(bt); } duke@1: // (See also macro MakeConX in type.hpp, which uses intcon or longcon.) duke@1: never@2027: // Helper for byte_map_base never@2027: Node* byte_map_base_node() { never@2027: // Get base of card map never@2027: CardTableModRefBS* ct = (CardTableModRefBS*)(Universe::heap()->barrier_set()); never@2027: assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust users of this code"); never@2027: if (ct->byte_map_base != NULL) { never@2027: return makecon(TypeRawPtr::make((address)ct->byte_map_base)); never@2027: } else { never@2027: return null(); never@2027: } never@2027: } never@2027: duke@1: jint find_int_con(Node* n, jint value_if_unknown) { duke@1: return _gvn.find_int_con(n, value_if_unknown); duke@1: } duke@1: jlong find_long_con(Node* n, jlong value_if_unknown) { duke@1: return _gvn.find_long_con(n, value_if_unknown); duke@1: } duke@1: // (See also macro find_intptr_t_con in type.hpp, which uses one of these.) duke@1: duke@1: // JVM State accessors: duke@1: // Parser mapping from JVM indices into Nodes. duke@1: // Low slots are accessed by the StartNode::enum. duke@1: // Then come the locals at StartNode::Parms to StartNode::Parms+max_locals(); duke@1: // Then come JVM stack slots. duke@1: // Finally come the monitors, if any. duke@1: // See layout accessors in class JVMState. duke@1: duke@1: SafePointNode* map() const { return _map; } duke@1: bool has_exceptions() const { return _exceptions != NULL; } duke@1: JVMState* jvms() const { return map_not_null()->_jvms; } duke@1: int sp() const { return _sp; } duke@1: int bci() const { return _bci; } duke@1: Bytecodes::Code java_bc() const; duke@1: ciMethod* method() const { return _method; } duke@1: duke@1: void set_jvms(JVMState* jvms) { set_map(jvms->map()); duke@1: assert(jvms == this->jvms(), "sanity"); duke@1: _sp = jvms->sp(); duke@1: _bci = jvms->bci(); duke@1: _method = jvms->has_method() ? jvms->method() : NULL; } duke@1: void set_map(SafePointNode* m) { _map = m; debug_only(verify_map()); } twisti@14621: void set_sp(int sp) { assert(sp >= 0, err_msg_res("sp must be non-negative: %d", sp)); _sp = sp; } duke@1: void clean_stack(int from_sp); // clear garbage beyond from_sp to top duke@1: duke@1: void inc_sp(int i) { set_sp(sp() + i); } twisti@13391: void dec_sp(int i) { set_sp(sp() - i); } duke@1: void set_bci(int bci) { _bci = bci; } duke@1: duke@1: // Make sure jvms has current bci & sp. twisti@14621: JVMState* sync_jvms() const; twisti@14621: JVMState* sync_jvms_for_reexecute(); twisti@14621: duke@1: #ifdef ASSERT duke@1: // Make sure JVMS has an updated copy of bci and sp. duke@1: // Also sanity-check method, depth, and monitor depth. duke@1: bool jvms_in_sync() const; duke@1: duke@1: // Make sure the map looks OK. duke@1: void verify_map() const; duke@1: duke@1: // Make sure a proposed exception state looks OK. duke@1: static void verify_exception_state(SafePointNode* ex_map); duke@1: #endif duke@1: duke@1: // Clone the existing map state. (Implements PreserveJVMState.) duke@1: SafePointNode* clone_map(); duke@1: duke@1: // Set the map to a clone of the given one. duke@1: void set_map_clone(SafePointNode* m); duke@1: duke@1: // Tell if the compilation is failing. duke@1: bool failing() const { return C->failing(); } duke@1: duke@1: // Set _map to NULL, signalling a stop to further bytecode execution. duke@1: // Preserve the map intact for future use, and return it back to the caller. duke@1: SafePointNode* stop() { SafePointNode* m = map(); set_map(NULL); return m; } duke@1: duke@1: // Stop, but first smash the map's inputs to NULL, to mark it dead. duke@1: void stop_and_kill_map(); duke@1: duke@1: // Tell if _map is NULL, or control is top. duke@1: bool stopped(); duke@1: duke@1: // Tell if this method or any caller method has exception handlers. duke@1: bool has_ex_handler(); duke@1: duke@1: // Save an exception without blowing stack contents or other JVM state. duke@1: // (The extra pointer is stuck with add_req on the map, beyond the JVMS.) duke@1: static void set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop); duke@1: duke@1: // Recover a saved exception from its map. duke@1: static Node* saved_ex_oop(SafePointNode* ex_map); duke@1: duke@1: // Recover a saved exception from its map, and remove it from the map. duke@1: static Node* clear_saved_ex_oop(SafePointNode* ex_map); duke@1: duke@1: #ifdef ASSERT duke@1: // Recover a saved exception from its map, and remove it from the map. duke@1: static bool has_saved_ex_oop(SafePointNode* ex_map); duke@1: #endif duke@1: duke@1: // Push an exception in the canonical position for handlers (stack(0)). duke@1: void push_ex_oop(Node* ex_oop) { duke@1: ensure_stack(1); // ensure room to push the exception duke@1: set_stack(0, ex_oop); duke@1: set_sp(1); duke@1: clean_stack(1); duke@1: } duke@1: duke@1: // Detach and return an exception state. duke@1: SafePointNode* pop_exception_state() { duke@1: SafePointNode* ex_map = _exceptions; duke@1: if (ex_map != NULL) { duke@1: _exceptions = ex_map->next_exception(); duke@1: ex_map->set_next_exception(NULL); duke@1: debug_only(verify_exception_state(ex_map)); duke@1: } duke@1: return ex_map; duke@1: } duke@1: duke@1: // Add an exception, using the given JVM state, without commoning. duke@1: void push_exception_state(SafePointNode* ex_map) { duke@1: debug_only(verify_exception_state(ex_map)); duke@1: ex_map->set_next_exception(_exceptions); duke@1: _exceptions = ex_map; duke@1: } duke@1: duke@1: // Turn the current JVM state into an exception state, appending the ex_oop. duke@1: SafePointNode* make_exception_state(Node* ex_oop); duke@1: duke@1: // Add an exception, using the given JVM state. duke@1: // Combine all exceptions with a common exception type into a single state. duke@1: // (This is done via combine_exception_states.) duke@1: void add_exception_state(SafePointNode* ex_map); duke@1: duke@1: // Combine all exceptions of any sort whatever into a single master state. duke@1: SafePointNode* combine_and_pop_all_exception_states() { duke@1: if (_exceptions == NULL) return NULL; duke@1: SafePointNode* phi_map = pop_exception_state(); duke@1: SafePointNode* ex_map; duke@1: while ((ex_map = pop_exception_state()) != NULL) { duke@1: combine_exception_states(ex_map, phi_map); duke@1: } duke@1: return phi_map; duke@1: } duke@1: duke@1: // Combine the two exception states, building phis as necessary. duke@1: // The second argument is updated to include contributions from the first. duke@1: void combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map); duke@1: duke@1: // Reset the map to the given state. If there are any half-finished phis duke@1: // in it (created by combine_exception_states), transform them now. duke@1: // Returns the exception oop. (Caller must call push_ex_oop if required.) duke@1: Node* use_exception_state(SafePointNode* ex_map); duke@1: duke@1: // Collect exceptions from a given JVM state into my exception list. duke@1: void add_exception_states_from(JVMState* jvms); duke@1: duke@1: // Collect all raised exceptions into the current JVM state. duke@1: // Clear the current exception list and map, returns the combined states. duke@1: JVMState* transfer_exceptions_into_jvms(); duke@1: duke@1: // Helper to throw a built-in exception. duke@1: // Range checks take the offending index. duke@1: // Cast and array store checks take the offending class. duke@1: // Others do not take the optional argument. duke@1: // The JVMS must allow the bytecode to be re-executed duke@1: // via an uncommon trap. duke@1: void builtin_throw(Deoptimization::DeoptReason reason, Node* arg = NULL); duke@1: dcubed@4761: // Helper to check the JavaThread::_should_post_on_exceptions flag dcubed@4761: // and branch to an uncommon_trap if it is true (with the specified reason and must_throw) dcubed@4761: void uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason, dcubed@4761: bool must_throw) ; dcubed@4761: duke@1: // Helper Functions for adding debug information duke@1: void kill_dead_locals(); duke@1: #ifdef ASSERT duke@1: bool dead_locals_are_killed(); duke@1: #endif duke@1: // The call may deoptimize. Supply required JVM state as debug info. duke@1: // If must_throw is true, the call is guaranteed not to return normally. duke@1: void add_safepoint_edges(SafePointNode* call, duke@1: bool must_throw = false); duke@1: duke@1: // How many stack inputs does the current BC consume? duke@1: // And, how does the stack change after the bytecode? duke@1: // Returns false if unknown. twisti@14621: bool compute_stack_effects(int& inputs, int& depth); duke@1: duke@1: // Add a fixed offset to a pointer duke@1: Node* basic_plus_adr(Node* base, Node* ptr, intptr_t offset) { duke@1: return basic_plus_adr(base, ptr, MakeConX(offset)); duke@1: } duke@1: Node* basic_plus_adr(Node* base, intptr_t offset) { duke@1: return basic_plus_adr(base, base, MakeConX(offset)); duke@1: } duke@1: // Add a variable offset to a pointer duke@1: Node* basic_plus_adr(Node* base, Node* offset) { duke@1: return basic_plus_adr(base, base, offset); duke@1: } duke@1: Node* basic_plus_adr(Node* base, Node* ptr, Node* offset); duke@1: never@4450: never@4450: // Some convenient shortcuts for common nodes thartmann@24923: Node* IfTrue(IfNode* iff) { return _gvn.transform(new IfTrueNode(iff)); } thartmann@24923: Node* IfFalse(IfNode* iff) { return _gvn.transform(new IfFalseNode(iff)); } never@4450: thartmann@24923: Node* AddI(Node* l, Node* r) { return _gvn.transform(new AddINode(l, r)); } thartmann@24923: Node* SubI(Node* l, Node* r) { return _gvn.transform(new SubINode(l, r)); } thartmann@24923: Node* MulI(Node* l, Node* r) { return _gvn.transform(new MulINode(l, r)); } thartmann@24923: Node* DivI(Node* ctl, Node* l, Node* r) { return _gvn.transform(new DivINode(ctl, l, r)); } never@4450: thartmann@24923: Node* AndI(Node* l, Node* r) { return _gvn.transform(new AndINode(l, r)); } thartmann@24923: Node* OrI(Node* l, Node* r) { return _gvn.transform(new OrINode(l, r)); } thartmann@24923: Node* XorI(Node* l, Node* r) { return _gvn.transform(new XorINode(l, r)); } never@4450: thartmann@24923: Node* MaxI(Node* l, Node* r) { return _gvn.transform(new MaxINode(l, r)); } thartmann@24923: Node* MinI(Node* l, Node* r) { return _gvn.transform(new MinINode(l, r)); } never@4450: thartmann@24923: Node* LShiftI(Node* l, Node* r) { return _gvn.transform(new LShiftINode(l, r)); } thartmann@24923: Node* RShiftI(Node* l, Node* r) { return _gvn.transform(new RShiftINode(l, r)); } thartmann@24923: Node* URShiftI(Node* l, Node* r) { return _gvn.transform(new URShiftINode(l, r)); } never@4450: thartmann@24923: Node* CmpI(Node* l, Node* r) { return _gvn.transform(new CmpINode(l, r)); } thartmann@24923: Node* CmpL(Node* l, Node* r) { return _gvn.transform(new CmpLNode(l, r)); } thartmann@24923: Node* CmpP(Node* l, Node* r) { return _gvn.transform(new CmpPNode(l, r)); } thartmann@24923: Node* Bool(Node* cmp, BoolTest::mask relop) { return _gvn.transform(new BoolNode(cmp, relop)); } never@4450: thartmann@24923: Node* AddP(Node* b, Node* a, Node* o) { return _gvn.transform(new AddPNode(b, a, o)); } never@4450: duke@1: // Convert between int and long, and size_t. duke@1: // (See macros ConvI2X, etc., in type.hpp for ConvI2X, etc.) duke@1: Node* ConvI2L(Node* offset); poonam@23495: Node* ConvI2UL(Node* offset); duke@1: Node* ConvL2I(Node* offset); duke@1: // Find out the klass of an object. duke@1: Node* load_object_klass(Node* object); duke@1: // Find out the length of an array. duke@1: Node* load_array_length(Node* array); twisti@14621: twisti@14621: duke@1: // Helper function to do a NULL pointer check or ZERO check based on type. duke@1: // Throw an exception if a given value is null. duke@1: // Return the value cast to not-null. duke@1: // Be clever about equivalent dominating null checks. twisti@14621: Node* null_check_common(Node* value, BasicType type, roland@23525: bool assert_null = false, roland@23525: Node* *null_control = NULL, roland@23525: bool speculative = false); twisti@14621: Node* null_check(Node* value, BasicType type = T_OBJECT) { roland@23525: return null_check_common(value, type, false, NULL, !_gvn.type(value)->speculative_maybe_null()); twisti@14621: } twisti@14621: Node* null_check_receiver() { twisti@14621: assert(argument(0)->bottom_type()->isa_ptr(), "must be"); twisti@14621: return null_check(argument(0)); twisti@14621: } twisti@14621: Node* zero_check_int(Node* value) { twisti@14621: assert(value->bottom_type()->basic_type() == T_INT, twisti@14621: err_msg_res("wrong type: %s", type2name(value->bottom_type()->basic_type()))); twisti@14621: return null_check_common(value, T_INT); twisti@14621: } twisti@14621: Node* zero_check_long(Node* value) { twisti@14621: assert(value->bottom_type()->basic_type() == T_LONG, twisti@14621: err_msg_res("wrong type: %s", type2name(value->bottom_type()->basic_type()))); twisti@14621: return null_check_common(value, T_LONG); duke@1: } duke@1: // Throw an uncommon trap if a given value is __not__ null. duke@1: // Return the value cast to null, and be clever about dominating checks. twisti@14621: Node* null_assert(Node* value, BasicType type = T_OBJECT) { twisti@14621: return null_check_common(value, type, true); duke@1: } twisti@14621: duke@1: // Null check oop. Return null-path control into (*null_control). duke@1: // Return a cast-not-null node which depends on the not-null control. duke@1: // If never_see_null, use an uncommon trap (*null_control sees a top). duke@1: // The cast is not valid along the null path; keep a copy of the original. roland@20696: // If safe_for_replace, then we can replace the value with the cast roland@20696: // in the parsing map (the cast is guaranteed to dominate the map) duke@1: Node* null_check_oop(Node* value, Node* *null_control, roland@23525: bool never_see_null = false, roland@23525: bool safe_for_replace = false, roland@23525: bool speculative = false); duke@1: jrose@6416: // Check the null_seen bit. roland@23525: bool seems_never_null(Node* obj, ciProfileData* data, bool& speculating); jrose@6416: roland@21099: // Check for unique class for receiver at call roland@21099: ciKlass* profile_has_unique_klass() { roland@21099: ciCallProfile profile = method()->call_profile_at_bci(bci()); roland@21099: if (profile.count() >= 0 && // no cast failures here roland@21099: profile.has_receiver(0) && roland@21099: profile.morphism() == 1) { roland@21099: return profile.receiver(0); roland@21099: } roland@21099: return NULL; roland@21099: } roland@21099: roland@21099: // record type from profiling with the type system roland@23525: Node* record_profile_for_speculation(Node* n, ciKlass* exact_kls, bool maybe_null); roland@21099: void record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc); roland@21099: void record_profiled_parameters_for_speculation(); roland@23525: void record_profiled_return_for_speculation(); roland@23525: Node* record_profiled_receiver_for_speculation(Node* n); roland@21099: jrose@6416: // Use the type profile to narrow an object type. jrose@6416: Node* maybe_cast_profiled_receiver(Node* not_null_obj, roland@21099: ciKlass* require_klass, roland@22916: ciKlass* spec, roland@21099: bool safe_for_replace); roland@21099: roland@21099: // Cast obj to type and emit guard unless we had too many traps here already roland@21099: Node* maybe_cast_profiled_obj(Node* obj, roland@21099: ciKlass* type, roland@21099: bool not_null = false); jrose@6416: duke@1: // Cast obj to not-null on this path duke@1: Node* cast_not_null(Node* obj, bool do_replace_in_map = true); duke@1: // Replace all occurrences of one node by another. duke@1: void replace_in_map(Node* old, Node* neww); duke@1: twisti@14621: void push(Node* n) { map_not_null(); _map->set_stack(_map->_jvms, _sp++ , n); } twisti@14621: Node* pop() { map_not_null(); return _map->stack( _map->_jvms, --_sp ); } twisti@14621: Node* peek(int off = 0) { map_not_null(); return _map->stack( _map->_jvms, _sp - off - 1 ); } duke@1: duke@1: void push_pair(Node* ldval) { duke@1: push(ldval); duke@1: push(top()); // the halfword is merely a placeholder duke@1: } duke@1: void push_pair_local(int i) { duke@1: // longs are stored in locals in "push" order duke@1: push( local(i+0) ); // the real value duke@1: assert(local(i+1) == top(), ""); duke@1: push(top()); // halfword placeholder duke@1: } duke@1: Node* pop_pair() { duke@1: // the second half is pushed last & popped first; it contains exactly nothing duke@1: Node* halfword = pop(); duke@1: assert(halfword == top(), ""); duke@1: // the long bits are pushed first & popped last: duke@1: return pop(); duke@1: } duke@1: void set_pair_local(int i, Node* lval) { duke@1: // longs are stored in locals as a value/half pair (like doubles) duke@1: set_local(i+0, lval); duke@1: set_local(i+1, top()); duke@1: } duke@1: duke@1: // Push the node, which may be zero, one, or two words. duke@1: void push_node(BasicType n_type, Node* n) { duke@1: int n_size = type2size[n_type]; duke@1: if (n_size == 1) push( n ); // T_INT, ... duke@1: else if (n_size == 2) push_pair( n ); // T_DOUBLE, T_LONG duke@1: else { assert(n_size == 0, "must be T_VOID"); } duke@1: } duke@1: duke@1: Node* pop_node(BasicType n_type) { duke@1: int n_size = type2size[n_type]; duke@1: if (n_size == 1) return pop(); duke@1: else if (n_size == 2) return pop_pair(); duke@1: else return NULL; duke@1: } duke@1: duke@1: Node* control() const { return map_not_null()->control(); } duke@1: Node* i_o() const { return map_not_null()->i_o(); } duke@1: Node* returnadr() const { return map_not_null()->returnadr(); } duke@1: Node* frameptr() const { return map_not_null()->frameptr(); } duke@1: Node* local(uint idx) const { map_not_null(); return _map->local( _map->_jvms, idx); } duke@1: Node* stack(uint idx) const { map_not_null(); return _map->stack( _map->_jvms, idx); } duke@1: Node* argument(uint idx) const { map_not_null(); return _map->argument( _map->_jvms, idx); } duke@1: Node* monitor_box(uint idx) const { map_not_null(); return _map->monitor_box(_map->_jvms, idx); } duke@1: Node* monitor_obj(uint idx) const { map_not_null(); return _map->monitor_obj(_map->_jvms, idx); } duke@1: duke@1: void set_control (Node* c) { map_not_null()->set_control(c); } duke@1: void set_i_o (Node* c) { map_not_null()->set_i_o(c); } duke@1: void set_local(uint idx, Node* c) { map_not_null(); _map->set_local( _map->_jvms, idx, c); } duke@1: void set_stack(uint idx, Node* c) { map_not_null(); _map->set_stack( _map->_jvms, idx, c); } duke@1: void set_argument(uint idx, Node* c){ map_not_null(); _map->set_argument(_map->_jvms, idx, c); } duke@1: void ensure_stack(uint stk_size) { map_not_null(); _map->ensure_stack(_map->_jvms, stk_size); } duke@1: duke@1: // Access unaliased memory duke@1: Node* memory(uint alias_idx); duke@1: Node* memory(const TypePtr *tp) { return memory(C->get_alias_index(tp)); } duke@1: Node* memory(Node* adr) { return memory(_gvn.type(adr)->is_ptr()); } duke@1: duke@1: // Access immutable memory duke@1: Node* immutable_memory() { return C->immutable_memory(); } duke@1: duke@1: // Set unaliased memory duke@1: void set_memory(Node* c, uint alias_idx) { merged_memory()->set_memory_at(alias_idx, c); } duke@1: void set_memory(Node* c, const TypePtr *tp) { set_memory(c,C->get_alias_index(tp)); } duke@1: void set_memory(Node* c, Node* adr) { set_memory(c,_gvn.type(adr)->is_ptr()); } duke@1: duke@1: // Get the entire memory state (probably a MergeMemNode), and reset it duke@1: // (The resetting prevents somebody from using the dangling Node pointer.) duke@1: Node* reset_memory(); duke@1: duke@1: // Get the entire memory state, asserted to be a MergeMemNode. duke@1: MergeMemNode* merged_memory() { duke@1: Node* mem = map_not_null()->memory(); duke@1: assert(mem->is_MergeMem(), "parse memory is always pre-split"); duke@1: return mem->as_MergeMem(); duke@1: } duke@1: duke@1: // Set the entire memory state; produce a new MergeMemNode. duke@1: void set_all_memory(Node* newmem); duke@1: duke@1: // Create a memory projection from the call, then set_all_memory. never@4450: void set_all_memory_call(Node* call, bool separate_io_proj = false); duke@1: duke@1: // Create a LoadNode, reading from the parser's memory state. duke@1: // (Note: require_atomic_access is useful only with T_LONG.) goetz@22845: // goetz@22845: // We choose the unordered semantics by default because we have goetz@22845: // adapted the `do_put_xxx' and `do_get_xxx' procedures for the case goetz@22845: // of volatile fields. duke@1: Node* make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, goetz@22845: MemNode::MemOrd mo, bool require_atomic_access = false) { duke@1: // This version computes alias_index from bottom_type duke@1: return make_load(ctl, adr, t, bt, adr->bottom_type()->is_ptr(), goetz@22845: mo, require_atomic_access); duke@1: } goetz@22845: Node* make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, const TypePtr* adr_type, goetz@22845: MemNode::MemOrd mo, bool require_atomic_access = false) { duke@1: // This version computes alias_index from an address type duke@1: assert(adr_type != NULL, "use other make_load factory"); duke@1: return make_load(ctl, adr, t, bt, C->get_alias_index(adr_type), goetz@22845: mo, require_atomic_access); duke@1: } duke@1: // This is the base version which is given an alias index. goetz@22845: Node* make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, int adr_idx, goetz@22845: MemNode::MemOrd mo, bool require_atomic_access = false); duke@1: duke@1: // Create & transform a StoreNode and store the effect into the duke@1: // parser's memory state. goetz@22845: // goetz@22845: // We must ensure that stores of object references will be visible goetz@22845: // only after the object's initialization. So the clients of this goetz@22845: // procedure must indicate that the store requires `release' goetz@22845: // semantics, if the stored value is an object reference that might goetz@22845: // point to a new object and may become externally visible. duke@1: Node* store_to_memory(Node* ctl, Node* adr, Node* val, BasicType bt, duke@1: const TypePtr* adr_type, goetz@22845: MemNode::MemOrd mo, duke@1: bool require_atomic_access = false) { duke@1: // This version computes alias_index from an address type duke@1: assert(adr_type != NULL, "use other store_to_memory factory"); duke@1: return store_to_memory(ctl, adr, val, bt, duke@1: C->get_alias_index(adr_type), goetz@22845: mo, require_atomic_access); duke@1: } duke@1: // This is the base version which is given alias index duke@1: // Return the new StoreXNode duke@1: Node* store_to_memory(Node* ctl, Node* adr, Node* val, BasicType bt, duke@1: int adr_idx, goetz@22845: MemNode::MemOrd, duke@1: bool require_atomic_access = false); duke@1: duke@1: duke@1: // All in one pre-barrier, store, post_barrier duke@1: // Insert a write-barrier'd store. This is to let generational GC duke@1: // work; we have to flag all oop-stores before the next GC point. duke@1: // duke@1: // It comes in 3 flavors of store to an object, array, or unknown. duke@1: // We use precise card marks for arrays to avoid scanning the entire duke@1: // array. We use imprecise for object. We use precise for unknown duke@1: // since we don't know if we have an array or and object or even duke@1: // where the object starts. duke@1: // duke@1: // If val==NULL, it is taken to be a completely unknown value. QQQ duke@1: kvn@3268: Node* store_oop(Node* ctl, kvn@3268: Node* obj, // containing obj goetz@22845: Node* adr, // actual adress to store val at kvn@3268: const TypePtr* adr_type, kvn@3268: Node* val, kvn@3268: const TypeOopPtr* val_type, kvn@3268: BasicType bt, goetz@22845: bool use_precise, goetz@22845: MemNode::MemOrd mo); kvn@3268: duke@1: Node* store_oop_to_object(Node* ctl, duke@1: Node* obj, // containing obj goetz@22845: Node* adr, // actual adress to store val at duke@1: const TypePtr* adr_type, duke@1: Node* val, never@3178: const TypeOopPtr* val_type, goetz@22845: BasicType bt, goetz@22845: MemNode::MemOrd mo) { goetz@22845: return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, false, mo); kvn@3268: } duke@1: duke@1: Node* store_oop_to_array(Node* ctl, duke@1: Node* obj, // containing obj goetz@22845: Node* adr, // actual adress to store val at duke@1: const TypePtr* adr_type, duke@1: Node* val, never@3178: const TypeOopPtr* val_type, goetz@22845: BasicType bt, goetz@22845: MemNode::MemOrd mo) { goetz@22845: return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo); kvn@3268: } duke@1: duke@1: // Could be an array or object we don't know at compile time (unsafe ref.) duke@1: Node* store_oop_to_unknown(Node* ctl, duke@1: Node* obj, // containing obj goetz@22845: Node* adr, // actual adress to store val at duke@1: const TypePtr* adr_type, duke@1: Node* val, goetz@22845: BasicType bt, goetz@22845: MemNode::MemOrd mo); duke@1: duke@1: // For the few case where the barriers need special help johnc@9176: void pre_barrier(bool do_load, Node* ctl, johnc@9176: Node* obj, Node* adr, uint adr_idx, Node* val, const TypeOopPtr* val_type, johnc@9176: Node* pre_val, johnc@9176: BasicType bt); duke@1: duke@1: void post_barrier(Node* ctl, Node* store, Node* obj, Node* adr, uint adr_idx, duke@1: Node* val, BasicType bt, bool use_precise); duke@1: duke@1: // Return addressing for an array element. duke@1: Node* array_element_address(Node* ary, Node* idx, BasicType elembt, duke@1: // Optional constraint on the array size: duke@1: const TypeInt* sizetype = NULL); duke@1: duke@1: // Return a load of array element at idx. duke@1: Node* load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype); duke@1: duke@1: //---------------- Dtrace support -------------------- duke@1: void make_dtrace_method_entry_exit(ciMethod* method, bool is_entry); duke@1: void make_dtrace_method_entry(ciMethod* method) { duke@1: make_dtrace_method_entry_exit(method, true); duke@1: } duke@1: void make_dtrace_method_exit(ciMethod* method) { duke@1: make_dtrace_method_entry_exit(method, false); duke@1: } duke@1: duke@1: //--------------- stub generation ------------------- duke@1: public: duke@1: void gen_stub(address C_function, duke@1: const char *name, duke@1: int is_fancy_jump, duke@1: bool pass_tls, duke@1: bool return_pc); duke@1: duke@1: //---------- help for generating calls -------------- duke@1: twisti@14621: // Do a null check on the receiver as it would happen before the call to twisti@14621: // callee (with all arguments still on the stack). twisti@14621: Node* null_check_receiver_before_call(ciMethod* callee) { duke@1: assert(!callee->is_static(), "must be a virtual method"); twisti@14621: const int nargs = callee->arg_size(); twisti@14621: inc_sp(nargs); twisti@14621: Node* n = null_check_receiver(); twisti@14621: dec_sp(nargs); twisti@14621: return n; duke@1: } duke@1: duke@1: // Fill in argument edges for the call from argument(0), argument(1), ... duke@1: // (The next step is to call set_edges_for_java_call.) duke@1: void set_arguments_for_java_call(CallJavaNode* call); duke@1: duke@1: // Fill in non-argument edges for the call. duke@1: // Transform the call, and update the basics: control, i_o, memory. duke@1: // (The next step is usually to call set_results_for_java_call.) duke@1: void set_edges_for_java_call(CallJavaNode* call, never@4450: bool must_throw = false, bool separate_io_proj = false); duke@1: duke@1: // Finish up a java call that was started by set_edges_for_java_call. duke@1: // Call add_exception on any throw arising from the call. duke@1: // Return the call result (transformed). never@4450: Node* set_results_for_java_call(CallJavaNode* call, bool separate_io_proj = false); duke@1: duke@1: // Similar to set_edges_for_java_call, but simplified for runtime calls. duke@1: void set_predefined_output_for_runtime_call(Node* call) { duke@1: set_predefined_output_for_runtime_call(call, NULL, NULL); duke@1: } duke@1: void set_predefined_output_for_runtime_call(Node* call, duke@1: Node* keep_mem, duke@1: const TypePtr* hook_mem); duke@1: Node* set_predefined_input_for_runtime_call(SafePointNode* call); duke@1: never@4450: // Replace the call with the current state of the kit. Requires never@4450: // that the call was generated with separate io_projs so that never@4450: // exceptional control flow can be handled properly. never@4450: void replace_call(CallNode* call, Node* result); never@4450: duke@1: // helper functions for statistics duke@1: void increment_counter(address counter_addr); // increment a debug counter duke@1: void increment_counter(Node* counter_addr); // increment a debug counter duke@1: duke@1: // Bail out to the interpreter right now duke@1: // The optional klass is the one causing the trap. duke@1: // The optional reason is debug information written to the compile log. duke@1: // Optional must_throw is the same as with add_safepoint_edges. duke@1: void uncommon_trap(int trap_request, duke@1: ciKlass* klass = NULL, const char* reason_string = NULL, duke@1: bool must_throw = false, bool keep_exact_action = false); duke@1: duke@1: // Shorthand, to avoid saying "Deoptimization::" so many times. duke@1: void uncommon_trap(Deoptimization::DeoptReason reason, duke@1: Deoptimization::DeoptAction action, duke@1: ciKlass* klass = NULL, const char* reason_string = NULL, duke@1: bool must_throw = false, bool keep_exact_action = false) { duke@1: uncommon_trap(Deoptimization::make_trap_request(reason, action), duke@1: klass, reason_string, must_throw, keep_exact_action); duke@1: } duke@1: twisti@14621: // SP when bytecode needs to be reexecuted. twisti@14621: virtual int reexecute_sp() { return sp(); } twisti@14621: duke@1: // Report if there were too many traps at the current method and bci. duke@1: // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. duke@1: // If there is no MDO at all, report no trap unless told to assume it. duke@1: bool too_many_traps(Deoptimization::DeoptReason reason) { duke@1: return C->too_many_traps(method(), bci(), reason); duke@1: } duke@1: duke@1: // Report if there were too many recompiles at the current method and bci. duke@1: bool too_many_recompiles(Deoptimization::DeoptReason reason) { duke@1: return C->too_many_recompiles(method(), bci(), reason); duke@1: } duke@1: duke@1: // Returns the object (if any) which was created the moment before. duke@1: Node* just_allocated_object(Node* current_control); duke@1: duke@1: static bool use_ReduceInitialCardMarks() { duke@1: return (ReduceInitialCardMarks duke@1: && Universe::heap()->can_elide_tlab_store_barriers()); duke@1: } duke@1: kvn@9100: // Sync Ideal and Graph kits. kvn@3268: void sync_kit(IdealKit& ideal); kvn@9100: void final_sync(IdealKit& ideal); kvn@3268: kvn@3268: // vanilla/CMS post barrier cfang@3904: void write_barrier_post(Node *store, Node* obj, cfang@3904: Node* adr, uint adr_idx, Node* val, bool use_precise); kvn@3268: kvn@19719: // Allow reordering of pre-barrier with oop store and/or post-barrier. kvn@19719: // Used for load_store operations which loads old value. kvn@19719: bool can_move_pre_barrier() const; kvn@19719: ysr@1374: // G1 pre/post barriers johnc@9176: void g1_write_barrier_pre(bool do_load, johnc@9176: Node* obj, ysr@1374: Node* adr, ysr@1374: uint alias_idx, ysr@1374: Node* val, never@3178: const TypeOopPtr* val_type, johnc@9176: Node* pre_val, ysr@1374: BasicType bt); ysr@1374: ysr@1374: void g1_write_barrier_post(Node* store, ysr@1374: Node* obj, ysr@1374: Node* adr, ysr@1374: uint alias_idx, ysr@1374: Node* val, ysr@1374: BasicType bt, ysr@1374: bool use_precise); ysr@1374: // Helper function for g1 ysr@1374: private: cfang@3904: void g1_mark_card(IdealKit& ideal, Node* card_adr, Node* store, uint oop_alias_idx, cfang@3904: Node* index, Node* index_adr, ysr@1374: Node* buffer, const TypeFunc* tf); ysr@1374: ysr@1374: public: duke@1: // Helper function to round double arguments before a call duke@1: void round_double_arguments(ciMethod* dest_method); duke@1: void round_double_result(ciMethod* dest_method); duke@1: duke@1: // rounding for strict float precision conformance duke@1: Node* precision_rounding(Node* n); duke@1: duke@1: // rounding for strict double precision conformance duke@1: Node* dprecision_rounding(Node* n); duke@1: duke@1: // rounding for non-strict double stores duke@1: Node* dstore_rounding(Node* n); duke@1: duke@1: // Helper functions for fast/slow path codes duke@1: Node* opt_iff(Node* region, Node* iff); duke@1: Node* make_runtime_call(int flags, duke@1: const TypeFunc* call_type, address call_addr, duke@1: const char* call_name, duke@1: const TypePtr* adr_type, // NULL if no memory effects duke@1: Node* parm0 = NULL, Node* parm1 = NULL, duke@1: Node* parm2 = NULL, Node* parm3 = NULL, duke@1: Node* parm4 = NULL, Node* parm5 = NULL, duke@1: Node* parm6 = NULL, Node* parm7 = NULL); duke@1: enum { // flag values for make_runtime_call duke@1: RC_NO_FP = 1, // CallLeafNoFPNode duke@1: RC_NO_IO = 2, // do not hook IO edges duke@1: RC_NO_LEAF = 4, // CallStaticJavaNode duke@1: RC_MUST_THROW = 8, // flag passed to add_safepoint_edges duke@1: RC_NARROW_MEM = 16, // input memory is same as output duke@1: RC_UNCOMMON = 32, // freq. expected to be like uncommon trap duke@1: RC_LEAF = 0 // null value: no flags set duke@1: }; duke@1: duke@1: // merge in all memory slices from new_mem, along the given path duke@1: void merge_memory(Node* new_mem, Node* region, int new_path); duke@1: void make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj); duke@1: duke@1: // Helper functions to build synchronizations duke@1: int next_monitor(); duke@1: Node* insert_mem_bar(int opcode, Node* precedent = NULL); duke@1: Node* insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent = NULL); duke@1: // Optional 'precedent' is appended as an extra edge, to force ordering. duke@1: FastLockNode* shared_lock(Node* obj); duke@1: void shared_unlock(Node* box, Node* obj); duke@1: duke@1: // helper functions for the fast path/slow path idioms coleenp@13728: Node* fast_and_slow(Node* in, const Type *result_type, Node* null_result, IfNode* fast_test, Node* fast_result, address slow_call, const TypeFunc *slow_call_type, Node* slow_arg, Klass* ex_klass, Node* slow_result); duke@1: duke@1: // Generate an instance-of idiom. Used by both the instance-of bytecode duke@1: // and the reflective instance-of call. roland@21099: Node* gen_instanceof(Node *subobj, Node* superkls, bool safe_for_replace = false); duke@1: duke@1: // Generate a check-cast idiom. Used by both the check-cast bytecode duke@1: // and the array-store bytecode duke@1: Node* gen_checkcast( Node *subobj, Node* superkls, duke@1: Node* *failure_control = NULL ); duke@1: duke@1: // Generate a subtyping check. Takes as input the subtype and supertype. duke@1: // Returns 2 values: sets the default control() to the true path and duke@1: // returns the false path. Only reads from constant memory taken from the duke@1: // default memory; does not write anything. It also doesn't take in an duke@1: // Object; if you wish to check an Object you need to load the Object's duke@1: // class prior to coming here. duke@1: Node* gen_subtype_check(Node* subklass, Node* superklass); duke@1: duke@1: // Static parse-time type checking logic for gen_subtype_check: duke@1: enum { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; duke@1: int static_subtype_check(ciKlass* superk, ciKlass* subk); duke@1: duke@1: // Exact type check used for predicted calls and casts. duke@1: // Rewrites (*casted_receiver) to be casted to the stronger type. duke@1: // (Caller is responsible for doing replace_in_map.) duke@1: Node* type_check_receiver(Node* receiver, ciKlass* klass, float prob, duke@1: Node* *casted_receiver); duke@1: duke@1: // implementation of object creation duke@1: Node* set_output_for_allocation(AllocateNode* alloc, kvn@9327: const TypeOopPtr* oop_type); duke@1: Node* get_layout_helper(Node* klass_node, jint& constant_value); duke@1: Node* new_instance(Node* klass_node, duke@1: Node* slow_test = NULL, duke@1: Node* *return_size_val = NULL); cfang@2574: Node* new_array(Node* klass_node, Node* count_val, int nargs, kvn@9327: Node* *return_size_val = NULL); duke@1: kvn@12623: // java.lang.String helpers kvn@12623: Node* load_String_offset(Node* ctrl, Node* str); kvn@12623: Node* load_String_length(Node* ctrl, Node* str); kvn@12623: Node* load_String_value(Node* ctrl, Node* str); kvn@12623: void store_String_offset(Node* ctrl, Node* str, Node* value); kvn@12623: void store_String_length(Node* ctrl, Node* str, Node* value); kvn@12623: void store_String_value(Node* ctrl, Node* str, Node* value); kvn@12623: duke@1: // Handy for making control flow duke@1: IfNode* create_and_map_if(Node* ctrl, Node* tst, float prob, float cnt) { thartmann@24923: IfNode* iff = new IfNode(ctrl, tst, prob, cnt);// New IfNode's duke@1: _gvn.set_type(iff, iff->Value(&_gvn)); // Value may be known at parse-time duke@1: // Place 'if' on worklist if it will be in graph duke@1: if (!tst->is_Con()) record_for_igvn(iff); // Range-check and Null-check removal is later duke@1: return iff; duke@1: } duke@1: duke@1: IfNode* create_and_xform_if(Node* ctrl, Node* tst, float prob, float cnt) { thartmann@24923: IfNode* iff = new IfNode(ctrl, tst, prob, cnt);// New IfNode's duke@1: _gvn.transform(iff); // Value may be known at parse-time duke@1: // Place 'if' on worklist if it will be in graph duke@1: if (!tst->is_Con()) record_for_igvn(iff); // Range-check and Null-check removal is later duke@1: return iff; duke@1: } kvn@8732: kvn@8732: // Insert a loop predicate into the graph kvn@8732: void add_predicate(int nargs = 0); kvn@8732: void add_predicate_impl(Deoptimization::DeoptReason reason, int nargs); vlivanov@19770: vlivanov@19770: // Produce new array node of stable type vlivanov@19770: Node* cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type); duke@1: }; duke@1: duke@1: // Helper class to support building of control flow branches. Upon duke@1: // creation the map and sp at bci are cloned and restored upon de- duke@1: // struction. Typical use: duke@1: // duke@1: // { PreserveJVMState pjvms(this); duke@1: // // code of new branch duke@1: // } duke@1: // // here the JVM state at bci is established duke@1: duke@1: class PreserveJVMState: public StackObj { duke@1: protected: duke@1: GraphKit* _kit; duke@1: #ifdef ASSERT duke@1: int _block; // PO of current block, if a Parse duke@1: int _bci; duke@1: #endif duke@1: SafePointNode* _map; duke@1: uint _sp; duke@1: duke@1: public: duke@1: PreserveJVMState(GraphKit* kit, bool clone_map = true); duke@1: ~PreserveJVMState(); duke@1: }; duke@1: duke@1: // Helper class to build cutouts of the form if (p) ; else {x...}. duke@1: // The code {x...} must not fall through. duke@1: // The kit's main flow of control is set to the "then" continuation of if(p). duke@1: class BuildCutout: public PreserveJVMState { duke@1: public: duke@1: BuildCutout(GraphKit* kit, Node* p, float prob, float cnt = COUNT_UNKNOWN); duke@1: ~BuildCutout(); duke@1: }; cfang@3600: cfang@3600: // Helper class to preserve the original _reexecute bit and _sp and restore cfang@3600: // them back cfang@3600: class PreserveReexecuteState: public StackObj { cfang@3600: protected: cfang@3600: GraphKit* _kit; cfang@3600: uint _sp; cfang@3600: JVMState::ReexecuteState _reexecute; cfang@3600: cfang@3600: public: cfang@3600: PreserveReexecuteState(GraphKit* kit); cfang@3600: ~PreserveReexecuteState(); cfang@3600: }; stefank@7397: stefank@7397: #endif // SHARE_VM_OPTO_GRAPHKIT_HPP