changeset 17182:b786c0de868c

8011920: Main streams implementation 8012542: Stream methods on Collection Reviewed-by: dholmes, mduigou Contributed-by: Brian Goetz <brian.goetz@oracle.com>, Mike Duigou <mike.duigou@oracle.com>, Paul Sandoz <paul.sandoz@oracle.com>
author mduigou
date Wed, 24 Apr 2013 16:15:47 -0700
parents e3d13a15c5c0
children 1e21e0bc10e7 e270761413ad
files jdk/make/docs/CORE_PKGS.gmk jdk/src/share/classes/java/util/Collection.java jdk/src/share/classes/java/util/stream/AbstractPipeline.java jdk/src/share/classes/java/util/stream/AbstractSpinedBuffer.java jdk/src/share/classes/java/util/stream/DistinctOps.java jdk/src/share/classes/java/util/stream/DoublePipeline.java jdk/src/share/classes/java/util/stream/IntPipeline.java jdk/src/share/classes/java/util/stream/LongPipeline.java jdk/src/share/classes/java/util/stream/Nodes.java jdk/src/share/classes/java/util/stream/ReduceOps.java jdk/src/share/classes/java/util/stream/ReferencePipeline.java jdk/src/share/classes/java/util/stream/SliceOps.java jdk/src/share/classes/java/util/stream/SortedOps.java jdk/src/share/classes/java/util/stream/SpinedBuffer.java jdk/src/share/classes/java/util/stream/StreamSpliterators.java jdk/src/share/classes/java/util/stream/StreamSupport.java
diffstat 16 files changed, 9890 insertions(+), 4 deletions(-) [+]
line wrap: on
line diff
--- a/jdk/make/docs/CORE_PKGS.gmk	Tue Apr 02 18:41:04 2013 -0400
+++ b/jdk/make/docs/CORE_PKGS.gmk	Wed Apr 24 16:15:47 2013 -0700
@@ -142,6 +142,7 @@
   java.util.prefs                                \
   java.util.regex                                \
   java.util.spi                                  \
+  java.util.stream                               \
   java.util.zip                                  \
   javax.accessibility                            \
   javax.activation                               \
--- a/jdk/src/share/classes/java/util/Collection.java	Tue Apr 02 18:41:04 2013 -0400
+++ b/jdk/src/share/classes/java/util/Collection.java	Wed Apr 24 16:15:47 2013 -0700
@@ -26,6 +26,8 @@
 package java.util;
 
 import java.util.function.Predicate;
+import java.util.stream.Stream;
+import java.util.stream.StreamSupport;
 
 /**
  * The root interface in the <i>collection hierarchy</i>.  A collection
@@ -499,9 +501,28 @@
     /**
      * Creates a {@link Spliterator} over the elements in this collection.
      *
-     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED}.
-     * Implementations should document the reporting of additional
-     * characteristic values.
+     * <p>The returned {@code Spliterator} must report the characteristic
+     * {@link Spliterator#SIZED}; implementations should document any additional
+     * characteristic values reported by the returned Spliterator.
+     *
+     * <p>The default implementation should be overridden by subclasses that
+     * can return a more efficient spliterator.  In order to
+     * preserve expected laziness behavior for the {@link #stream()} and
+     * {@link #parallelStream()}} methods, spliterators should either have the
+     * characteristic of {@code IMMUTABLE} or {@code CONCURRENT}, or be
+     * <em><a href="Spliterator.html#binding">late-binding</a></em>.
+     * If none of these is practical, the overriding class should describe the
+     * spliterator's documented policy of binding and structural interference,
+     * and should override the {@link #stream()} and {@link #parallelStream()}
+     * methods to create streams using a {@code Supplier} of the spliterator,
+     * as in:
+     * <pre>{@code
+     *     Stream<E> s = StreamSupport.stream(() -> spliterator(), spliteratorCharacteristics)
+     * }</pre>
+     * <p>These requirements ensure that streams produced by the
+     * {@link #stream()} and {@link #parallelStream()} methods will reflect the
+     * contents of the collection as of initiation of the terminal stream
+     * operation.
      *
      * @implSpec
      * The default implementation creates a
@@ -510,7 +531,7 @@
      * <em>fail-fast</em> properties of the collection's iterator.
      *
      * @implNote
-     * The created {@code Spliterator} additionally reports
+     * The returned {@code Spliterator} additionally reports
      * {@link Spliterator#SUBSIZED}.
      *
      * @return a {@code Spliterator} over the elements in this collection
@@ -519,4 +540,44 @@
     default Spliterator<E> spliterator() {
         return Spliterators.spliterator(this, 0);
     }
+
+    /**
+     * Returns a sequential {@code Stream} with this collection as its source.
+     *
+     * <p>This method should be overridden when the {@link #spliterator()}
+     * method cannot return a spliterator that is {@code IMMUTABLE},
+     * {@code CONCURRENT}, or <em>late-binding</em>. (See {@link #spliterator()}
+     * for details.)
+     *
+     * @implSpec
+     * The default implementation creates a sequential {@code Stream} from the
+     * collection's {@code Spliterator}.
+     *
+     * @return a sequential {@code Stream} over the elements in this collection
+     * @since 1.8
+     */
+    default Stream<E> stream() {
+        return StreamSupport.stream(spliterator());
+    }
+
+    /**
+     * Returns a possibly parallel {@code Stream} with this collection as its
+     * source.  It is allowable for this method to return a sequential stream.
+     *
+     * <p>This method should be overridden when the {@link #spliterator()}
+     * method cannot return a spliterator that is {@code IMMUTABLE},
+     * {@code CONCURRENT}, or <em>late-binding</em>. (See {@link #spliterator()}
+     * for details.)
+     *
+     * @implSpec
+     * The default implementation creates a parallel {@code Stream} from the
+     * collection's {@code Spliterator}.
+     *
+     * @return a possibly parallel {@code Stream} over the elements in this
+     * collection
+     * @since 1.8
+     */
+    default Stream<E> parallelStream() {
+        return StreamSupport.parallelStream(spliterator());
+    }
 }
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/AbstractPipeline.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,674 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.Objects;
+import java.util.Spliterator;
+import java.util.function.IntFunction;
+import java.util.function.Supplier;
+
+/**
+ * Abstract base class for "pipeline" classes, which are the core
+ * implementations of the Stream interface and its primitive specializations.
+ * Manages construction and evaluation of stream pipelines.
+ *
+ * <p>An {@code AbstractPipeline} represents an initial portion of a stream
+ * pipeline, encapsulating a stream source and zero or more intermediate
+ * operations.  The individual {@code AbstractPipeline} objects are often
+ * referred to as <em>stages</em>, where each stage describes either the stream
+ * source or an intermediate operation.
+ *
+ * <p>A concrete intermediate stage is generally built from an
+ * {@code AbstractPipeline}, a shape-specific pipeline class which extends it
+ * (e.g., {@code IntPipeline}) which is also abstract, and an operation-specific
+ * concrete class which extends that.  {@code AbstractPipeline} contains most of
+ * the mechanics of evaluating the pipeline, and implements methods that will be
+ * used by the operation; the shape-specific classes add helper methods for
+ * dealing with collection of results into the appropriate shape-specific
+ * containers.
+ *
+ * <p>After chaining a new intermediate operation, or executing a terminal
+ * operation, the stream is considered to be consumed, and no more intermediate
+ * or terminal operations are permitted on this stream instance.
+ *
+ * <p>{@code AbstractPipeline} implements a number of methods that are
+ * specified in {@link BaseStream}, though it does not implement
+ * {@code BaseStream} directly.  Subclasses of {@code AbstractPipeline}
+ * will generally implement {@code BaseStream}.
+ *
+ * @implNote
+ * <p>For sequential streams, and parallel streams without
+ * <a href="package-summary.html#StreamOps">stateful intermediate
+ * operations</a>, parallel streams, pipeline evaluation is done in a single
+ * pass that "jams" all the operations together.  For parallel streams with
+ * stateful operations, execution is divided into segments, where each
+ * stateful operations marks the end of a segment, and each segment is
+ * evaluated separately and the result used as the input to the next
+ * segment.  In all cases, the source data is not consumed until a terminal
+ * operation begins.
+ *
+ * @param <E_IN>  type of input elements
+ * @param <E_OUT> type of output elements
+ * @param <S> type of the subclass implementing {@code BaseStream}
+ * @since 1.8
+ */
+abstract class AbstractPipeline<E_IN, E_OUT, S extends BaseStream<E_OUT, S>>
+        extends PipelineHelper<E_OUT> {
+    /**
+     * Backlink to the head of the pipeline chain (self if this is the source
+     * stage).
+     */
+    private final AbstractPipeline sourceStage;
+
+    /**
+     * The "upstream" pipeline, or null if this is the source stage.
+     */
+    private final AbstractPipeline previousStage;
+
+    /**
+     * The operation flags for the intermediate operation represented by this
+     * pipeline object.
+     */
+    protected final int sourceOrOpFlags;
+
+    /**
+     * The next stage in the pipeline, or null if this is the last stage.
+     * Effectively final at the point of linking to the next pipeline.
+     */
+    private AbstractPipeline nextStage;
+
+    /**
+     * The number of intermediate operations between this pipeline object
+     * and the stream source if sequential, or the previous stateful if parallel.
+     * Valid at the point of pipeline preparation for evaluation.
+     */
+    private int depth;
+
+    /**
+     * The combined source and operation flags for the source and all operations
+     * up to and including the operation represented by this pipeline object.
+     * Valid at the point of pipeline preparation for evaluation.
+     */
+    private int combinedFlags;
+
+    /**
+     * The source spliterator. Only valid for the head pipeline.
+     * Before the pipeline is consumed if non-null then {@code sourceSupplier}
+     * must be null. After the pipeline is consumed if non-null then is set to
+     * null.
+     */
+    private Spliterator<?> sourceSpliterator;
+
+    /**
+     * The source supplier. Only valid for the head pipeline. Before the
+     * pipeline is consumed if non-null then {@code sourceSpliterator} must be
+     * null. After the pipeline is consumed if non-null then is set to null.
+     */
+    private Supplier<? extends Spliterator<?>> sourceSupplier;
+
+    /**
+     * True if this pipeline has been linked or consumed
+     */
+    private boolean linkedOrConsumed;
+
+    /**
+     * True if there are any stateful ops in the pipeline; only valid for the
+     * source stage.
+     */
+    private boolean sourceAnyStateful;
+
+    /**
+     * True if pipeline is parallel, otherwise the pipeline is sequential; only
+     * valid for the source stage.
+     */
+    private boolean parallel;
+
+    /**
+     * Constructor for the head of a stream pipeline.
+     *
+     * @param source {@code Supplier<Spliterator>} describing the stream source
+     * @param sourceFlags The source flags for the stream source, described in
+     * {@link StreamOpFlag}
+     * @param parallel True if the pipeline is parallel
+     */
+    AbstractPipeline(Supplier<? extends Spliterator<?>> source,
+                     int sourceFlags, boolean parallel) {
+        this.previousStage = null;
+        this.sourceSupplier = source;
+        this.sourceStage = this;
+        this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;
+        // The following is an optimization of:
+        // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);
+        this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;
+        this.depth = 0;
+        this.parallel = parallel;
+    }
+
+    /**
+     * Constructor for the head of a stream pipeline.
+     *
+     * @param source {@code Spliterator} describing the stream source
+     * @param sourceFlags the source flags for the stream source, described in
+     * {@link StreamOpFlag}
+     * @param parallel {@code true} if the pipeline is parallel
+     */
+    AbstractPipeline(Spliterator<?> source,
+                     int sourceFlags, boolean parallel) {
+        this.previousStage = null;
+        this.sourceSpliterator = source;
+        this.sourceStage = this;
+        this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;
+        // The following is an optimization of:
+        // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);
+        this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;
+        this.depth = 0;
+        this.parallel = parallel;
+    }
+
+    /**
+     * Constructor for appending an intermediate operation stage onto an
+     * existing pipeline.
+     *
+     * @param previousStage the upstream pipeline stage
+     * @param opFlags the operation flags for the new stage, described in
+     * {@link StreamOpFlag}
+     */
+    AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags) {
+        if (previousStage.linkedOrConsumed)
+            throw new IllegalStateException("stream has already been operated upon");
+        previousStage.linkedOrConsumed = true;
+        previousStage.nextStage = this;
+
+        this.previousStage = previousStage;
+        this.sourceOrOpFlags = opFlags & StreamOpFlag.OP_MASK;
+        this.combinedFlags = StreamOpFlag.combineOpFlags(opFlags, previousStage.combinedFlags);
+        this.sourceStage = previousStage.sourceStage;
+        if (opIsStateful())
+            sourceStage.sourceAnyStateful = true;
+        this.depth = previousStage.depth + 1;
+    }
+
+
+    // Terminal evaluation methods
+
+    /**
+     * Evaluate the pipeline with a terminal operation to produce a result.
+     *
+     * @param <R> the type of result
+     * @param terminalOp the terminal operation to be applied to the pipeline.
+     * @return the result
+     */
+    final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {
+        assert getOutputShape() == terminalOp.inputShape();
+        if (linkedOrConsumed)
+            throw new IllegalStateException("stream has already been operated upon");
+        linkedOrConsumed = true;
+
+        return isParallel()
+               ? (R) terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags()))
+               : (R) terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));
+    }
+
+    /**
+     * Collect the elements output from the pipeline stage.
+     *
+     * @param generator the array generator to be used to create array instances
+     * @return a flat array-backed Node that holds the collected output elements
+     */
+    final Node<E_OUT> evaluateToArrayNode(IntFunction<E_OUT[]> generator) {
+        if (linkedOrConsumed)
+            throw new IllegalStateException("stream has already been operated upon");
+        linkedOrConsumed = true;
+
+        // If the last intermediate operation is stateful then
+        // evaluate directly to avoid an extra collection step
+        if (isParallel() && previousStage != null && opIsStateful()) {
+            return opEvaluateParallel(previousStage, previousStage.sourceSpliterator(0), generator);
+        }
+        else {
+            return evaluate(sourceSpliterator(0), true, generator);
+        }
+    }
+
+    /**
+     * Gets the source stage spliterator if this pipeline stage is the source
+     * stage.  The pipeline is consumed after this method is called and
+     * returns successfully.
+     *
+     * @return the source stage spliterator
+     * @throws IllegalStateException if this pipeline stage is not the source
+     *         stage.
+     */
+    final Spliterator<E_OUT> sourceStageSpliterator() {
+        if (this != sourceStage)
+            throw new IllegalStateException();
+
+        if (linkedOrConsumed)
+            throw new IllegalStateException("stream has already been operated upon");
+        linkedOrConsumed = true;
+
+        if (sourceStage.sourceSpliterator != null) {
+            Spliterator<E_OUT> s = sourceStage.sourceSpliterator;
+            sourceStage.sourceSpliterator = null;
+            return s;
+        }
+        else if (sourceStage.sourceSupplier != null) {
+            Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSupplier.get();
+            sourceStage.sourceSupplier = null;
+            return s;
+        }
+        else {
+            throw new IllegalStateException("source already consumed");
+        }
+    }
+
+    // BaseStream
+
+    /**
+     * Implements {@link BaseStream#sequential()}
+     */
+    public final S sequential() {
+        sourceStage.parallel = false;
+        return (S) this;
+    }
+
+    /**
+     * Implements {@link BaseStream#parallel()}
+     */
+    public final S parallel() {
+        sourceStage.parallel = true;
+        return (S) this;
+    }
+
+    // Primitive specialization use co-variant overrides, hence is not final
+    /**
+     * Implements {@link BaseStream#spliterator()}
+     */
+    public Spliterator<E_OUT> spliterator() {
+        if (linkedOrConsumed)
+            throw new IllegalStateException("stream has already been operated upon");
+        linkedOrConsumed = true;
+
+        if (this == sourceStage) {
+            if (sourceStage.sourceSpliterator != null) {
+                Spliterator<E_OUT> s = sourceStage.sourceSpliterator;
+                sourceStage.sourceSpliterator = null;
+                return s;
+            }
+            else if (sourceStage.sourceSupplier != null) {
+                Supplier<Spliterator<E_OUT>> s = sourceStage.sourceSupplier;
+                sourceStage.sourceSupplier = null;
+                return lazySpliterator(s);
+            }
+            else {
+                throw new IllegalStateException("source already consumed");
+            }
+        }
+        else {
+            return wrap(this, () -> sourceSpliterator(0), isParallel());
+        }
+    }
+
+    /**
+     * Implements {@link BaseStream#isParallel()}
+     */
+    public final boolean isParallel() {
+        return sourceStage.parallel;
+    }
+
+
+    /**
+     * Returns the composition of stream flags of the stream source and all
+     * intermediate operations.
+     *
+     * @return the composition of stream flags of the stream source and all
+     *         intermediate operations
+     * @see StreamOpFlag
+     */
+    final int getStreamFlags() {
+        return StreamOpFlag.toStreamFlags(combinedFlags);
+    }
+
+    /**
+     * Prepare the pipeline for a parallel execution.  As the pipeline is built,
+     * the flags and depth indicators are set up for a sequential execution.
+     * If the execution is parallel, and there are any stateful operations, then
+     * some of these need to be adjusted, as well as adjusting for flags from
+     * the terminal operation (such as back-propagating UNORDERED).
+     * Need not be called for a sequential execution.
+     *
+     * @param terminalFlags Operation flags for the terminal operation
+     */
+    private void parallelPrepare(int terminalFlags) {
+        AbstractPipeline backPropagationHead = sourceStage;
+        if (sourceStage.sourceAnyStateful) {
+            int depth = 1;
+            for (AbstractPipeline u = sourceStage, p = sourceStage.nextStage;
+                 p != null;
+                 u = p, p = p.nextStage) {
+                int thisOpFlags = p.sourceOrOpFlags;
+                if (p.opIsStateful()) {
+                    // If the stateful operation is a short-circuit operation
+                    // then move the back propagation head forwards
+                    // NOTE: there are no size-injecting ops
+                    if (StreamOpFlag.SHORT_CIRCUIT.isKnown(thisOpFlags)) {
+                        backPropagationHead = p;
+                    }
+
+                    depth = 0;
+                    // The following injects size, it is equivalent to:
+                    // StreamOpFlag.combineOpFlags(StreamOpFlag.IS_SIZED, p.combinedFlags);
+                    thisOpFlags = (thisOpFlags & ~StreamOpFlag.NOT_SIZED) | StreamOpFlag.IS_SIZED;
+                }
+                p.depth = depth++;
+                p.combinedFlags = StreamOpFlag.combineOpFlags(thisOpFlags, u.combinedFlags);
+            }
+        }
+
+        // Apply the upstream terminal flags
+        if (terminalFlags != 0) {
+            int upstreamTerminalFlags = terminalFlags & StreamOpFlag.UPSTREAM_TERMINAL_OP_MASK;
+            for (AbstractPipeline p = backPropagationHead; p.nextStage != null; p = p.nextStage) {
+                p.combinedFlags = StreamOpFlag.combineOpFlags(upstreamTerminalFlags, p.combinedFlags);
+            }
+
+            combinedFlags = StreamOpFlag.combineOpFlags(terminalFlags, combinedFlags);
+        }
+    }
+
+    /**
+     * Get the source spliterator for this pipeline stage.  For a sequential or
+     * stateless parallel pipeline, this is the source spliterator.  For a
+     * stateful parallel pipeline, this is a spliterator describing the results
+     * of all computations up to and including the most recent stateful
+     * operation.
+     */
+    private Spliterator<?> sourceSpliterator(int terminalFlags) {
+        // Get the source spliterator of the pipeline
+        Spliterator<?> spliterator = null;
+        if (sourceStage.sourceSpliterator != null) {
+            spliterator = sourceStage.sourceSpliterator;
+            sourceStage.sourceSpliterator = null;
+        }
+        else if (sourceStage.sourceSupplier != null) {
+            spliterator = (Spliterator<?>) sourceStage.sourceSupplier.get();
+            sourceStage.sourceSupplier = null;
+        }
+        else {
+            throw new IllegalStateException("source already consumed");
+        }
+
+        if (isParallel()) {
+            // @@@ Merge parallelPrepare with the loop below and use the
+            //     spliterator characteristics to determine if SIZED
+            //     should be injected
+            parallelPrepare(terminalFlags);
+
+            // Adapt the source spliterator, evaluating each stateful op
+            // in the pipeline up to and including this pipeline stage
+            for (AbstractPipeline u = sourceStage, p = sourceStage.nextStage, e = this;
+                 u != e;
+                 u = p, p = p.nextStage) {
+
+                if (p.opIsStateful()) {
+                    spliterator = p.opEvaluateParallelLazy(u, spliterator);
+                }
+            }
+        }
+        else if (terminalFlags != 0)  {
+            combinedFlags = StreamOpFlag.combineOpFlags(terminalFlags, combinedFlags);
+        }
+
+        return spliterator;
+    }
+
+
+    // PipelineHelper
+
+    @Override
+    final <P_IN> long exactOutputSizeIfKnown(Spliterator<P_IN> spliterator) {
+        return StreamOpFlag.SIZED.isKnown(getStreamAndOpFlags()) ? spliterator.getExactSizeIfKnown() : -1;
+    }
+
+    @Override
+    final <P_IN, S extends Sink<E_OUT>> S wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator) {
+        copyInto(wrapSink(Objects.requireNonNull(sink)), spliterator);
+        return sink;
+    }
+
+    @Override
+    final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
+        Objects.requireNonNull(wrappedSink);
+
+        if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) {
+            wrappedSink.begin(spliterator.getExactSizeIfKnown());
+            spliterator.forEachRemaining(wrappedSink);
+            wrappedSink.end();
+        }
+        else {
+            copyIntoWithCancel(wrappedSink, spliterator);
+        }
+    }
+
+    @Override
+    final <P_IN> void copyIntoWithCancel(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
+        AbstractPipeline p = AbstractPipeline.this;
+        while (p.depth > 0) {
+            p = p.previousStage;
+        }
+        wrappedSink.begin(spliterator.getExactSizeIfKnown());
+        p.forEachWithCancel(spliterator, wrappedSink);
+        wrappedSink.end();
+    }
+
+    @Override
+    final int getStreamAndOpFlags() {
+        return combinedFlags;
+    }
+
+    final boolean isOrdered() {
+        return StreamOpFlag.ORDERED.isKnown(combinedFlags);
+    }
+
+    @Override
+    final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) {
+        Objects.requireNonNull(sink);
+
+        for (AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) {
+            sink = p.opWrapSink(p.previousStage.combinedFlags, sink);
+        }
+        return (Sink<P_IN>) sink;
+    }
+
+    @Override
+    @SuppressWarnings("unchecked")
+    final <P_IN> Node<E_OUT> evaluate(Spliterator<P_IN> spliterator,
+                                      boolean flatten,
+                                      IntFunction<E_OUT[]> generator) {
+        if (isParallel()) {
+            // @@@ Optimize if op of this pipeline stage is a stateful op
+            return evaluateToNode(this, spliterator, flatten, generator);
+        }
+        else {
+            Node.Builder<E_OUT> nb = makeNodeBuilder(
+                    exactOutputSizeIfKnown(spliterator), generator);
+            return wrapAndCopyInto(nb, spliterator).build();
+        }
+    }
+
+
+    // Shape-specific abstract methods, implemented by XxxPipeline classes
+
+    /**
+     * Get the output shape of the pipeline.  If the pipeline is the head,
+     * then it's output shape corresponds to the shape of the source.
+     * Otherwise, it's output shape corresponds to the output shape of the
+     * associated operation.
+     *
+     * @return the output shape
+     */
+    abstract StreamShape getOutputShape();
+
+    /**
+     * Collect elements output from a pipeline into a Node that holds elements
+     * of this shape.
+     *
+     * @param helper the pipeline helper describing the pipeline stages
+     * @param spliterator the source spliterator
+     * @param flattenTree true if the returned node should be flattened
+     * @param generator the array generator
+     * @return a Node holding the output of the pipeline
+     */
+    abstract <P_IN> Node<E_OUT> evaluateToNode(PipelineHelper<E_OUT> helper,
+                                               Spliterator<P_IN> spliterator,
+                                               boolean flattenTree,
+                                               IntFunction<E_OUT[]> generator);
+
+    /**
+     * Create a spliterator that wraps a source spliterator, compatible with
+     * this stream shape, and operations associated with a {@link
+     * PipelineHelper}.
+     *
+     * @param ph the pipeline helper describing the pipeline stages
+     * @param supplier the supplier of a spliterator
+     * @return a wrapping spliterator compatible with this shape
+     */
+    abstract <P_IN> Spliterator<E_OUT> wrap(PipelineHelper<E_OUT> ph,
+                                            Supplier<Spliterator<P_IN>> supplier,
+                                            boolean isParallel);
+
+    /**
+     * Create a lazy spliterator that wraps and obtains the supplied the
+     * spliterator when a method is invoked on the lazy spliterator.
+     * @param supplier the supplier of a spliterator
+     */
+    abstract Spliterator<E_OUT> lazySpliterator(Supplier<? extends Spliterator<E_OUT>> supplier);
+
+    /**
+     * Traverse the elements of a spliterator compatible with this stream shape,
+     * pushing those elements into a sink.   If the sink requests cancellation,
+     * no further elements will be pulled or pushed.
+     *
+     * @param spliterator the spliterator to pull elements from
+     * @param sink the sink to push elements to
+     */
+    abstract void forEachWithCancel(Spliterator<E_OUT> spliterator, Sink<E_OUT> sink);
+
+    /**
+     * Make a node builder compatible with this stream shape.
+     *
+     * @param exactSizeIfKnown if {@literal >=0}, then a node builder will be created that
+     * has a fixed capacity of at most sizeIfKnown elements. If {@literal < 0},
+     * then the node builder has an unfixed capacity. A fixed capacity node
+     * builder will throw exceptions if an element is added after builder has
+     * reached capacity, or is built before the builder has reached capacity.
+     * @param generator the array generator to be used to create instances of a
+     * T[] array. For implementations supporting primitive nodes, this parameter
+     * may be ignored.
+     * @return a node builder
+     */
+    abstract Node.Builder<E_OUT> makeNodeBuilder(long exactSizeIfKnown,
+                                                 IntFunction<E_OUT[]> generator);
+
+
+    // Op-specific abstract methods, implemented by the operation class
+
+    /**
+     * Returns whether this operation is stateful or not.  If it is stateful,
+     * then the method
+     * {@link #opEvaluateParallel(PipelineHelper, java.util.Spliterator, java.util.function.IntFunction)}
+     * must be overridden.
+     *
+     * @return {@code true} if this operation is stateful
+     */
+    abstract boolean opIsStateful();
+
+    /**
+     * Accepts a {@code Sink} which will receive the results of this operation,
+     * and return a {@code Sink} which accepts elements of the input type of
+     * this operation and which performs the operation, passing the results to
+     * the provided {@code Sink}.
+     *
+     * @apiNote
+     * The implementation may use the {@code flags} parameter to optimize the
+     * sink wrapping.  For example, if the input is already {@code DISTINCT},
+     * the implementation for the {@code Stream#distinct()} method could just
+     * return the sink it was passed.
+     *
+     * @param flags The combined stream and operation flags up to, but not
+     *        including, this operation
+     * @param sink sink to which elements should be sent after processing
+     * @return a sink which accepts elements, perform the operation upon
+     *         each element, and passes the results (if any) to the provided
+     *         {@code Sink}.
+     */
+    abstract Sink<E_IN> opWrapSink(int flags, Sink<E_OUT> sink);
+
+    /**
+     * Performs a parallel evaluation of the operation using the specified
+     * {@code PipelineHelper} which describes the upstream intermediate
+     * operations.  Only called on stateful operations.  If {@link
+     * #opIsStateful()} returns true then implementations must override the
+     * default implementation.
+     *
+     * @implSpec The default implementation always throw
+     * {@code UnsupportedOperationException}.
+     *
+     * @param helper the pipeline helper describing the pipeline stages
+     * @param spliterator the source {@code Spliterator}
+     * @param generator the array generator
+     * @return a {@code Node} describing the result of the evaluation
+     */
+    <P_IN> Node<E_OUT> opEvaluateParallel(PipelineHelper<E_OUT> helper,
+                                          Spliterator<P_IN> spliterator,
+                                          IntFunction<E_OUT[]> generator) {
+        throw new UnsupportedOperationException("Parallel evaluation is not supported");
+    }
+
+    /**
+     * Returns a {@code Spliterator} describing a parallel evaluation of the
+     * operation, using the specified {@code PipelineHelper} which describes the
+     * upstream intermediate operations.  Only called on stateful operations.
+     * It is not necessary (though acceptable) to do a full computation of the
+     * result here; it is preferable, if possible, to describe the result via a
+     * lazily evaluated spliterator.
+     *
+     * @implSpec The default implementation behaves as if:
+     * <pre>{@code
+     *     return evaluateParallel(helper, i -> (E_OUT[]) new
+     * Object[i]).spliterator();
+     * }</pre>
+     * and is suitable for implementations that cannot do better than a full
+     * synchronous evaluation.
+     *
+     * @param helper the pipeline helper
+     * @param spliterator the source {@code Spliterator}
+     * @return a {@code Spliterator} describing the result of the evaluation
+     */
+    <P_IN> Spliterator<E_OUT> opEvaluateParallelLazy(PipelineHelper<E_OUT> helper,
+                                                     Spliterator<P_IN> spliterator) {
+        return opEvaluateParallel(helper, spliterator, i -> (E_OUT[]) new Object[i]).spliterator();
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/AbstractSpinedBuffer.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,127 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+/**
+ * Base class for a data structure for gathering elements into a buffer and then
+ * iterating them. Maintains an array of increasingly sized arrays, so there is
+ * no copying cost associated with growing the data structure.
+ * @since 1.8
+ */
+abstract class AbstractSpinedBuffer {
+    /**
+     * Minimum power-of-two for the first chunk.
+     */
+    public static final int MIN_CHUNK_POWER = 4;
+
+    /**
+     * Minimum size for the first chunk.
+     */
+    public static final int MIN_CHUNK_SIZE = 1 << MIN_CHUNK_POWER;
+
+    /**
+     * Max power-of-two for chunks.
+     */
+    public static final int MAX_CHUNK_POWER = 30;
+
+    /**
+     * Minimum array size for array-of-chunks.
+     */
+    public static final int MIN_SPINE_SIZE = 8;
+
+
+    /**
+     * log2 of the size of the first chunk.
+     */
+    protected final int initialChunkPower;
+
+    /**
+     * Index of the *next* element to write; may point into, or just outside of,
+     * the current chunk.
+     */
+    protected int elementIndex;
+
+    /**
+     * Index of the *current* chunk in the spine array, if the spine array is
+     * non-null.
+     */
+    protected int spineIndex;
+
+    /**
+     * Count of elements in all prior chunks.
+     */
+    protected long[] priorElementCount;
+
+    /**
+     * Construct with an initial capacity of 16.
+     */
+    protected AbstractSpinedBuffer() {
+        this.initialChunkPower = MIN_CHUNK_POWER;
+    }
+
+    /**
+     * Construct with a specified initial capacity.
+     *
+     * @param initialCapacity The minimum expected number of elements
+     */
+    protected AbstractSpinedBuffer(int initialCapacity) {
+        if (initialCapacity < 0)
+            throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity);
+
+        this.initialChunkPower = Math.max(MIN_CHUNK_POWER,
+                                          Integer.SIZE - Integer.numberOfLeadingZeros(initialCapacity - 1));
+    }
+
+    /**
+     * Is the buffer currently empty?
+     */
+    public boolean isEmpty() {
+        return (spineIndex == 0) && (elementIndex == 0);
+    }
+
+    /**
+     * How many elements are currently in the buffer?
+     */
+    public long count() {
+        return (spineIndex == 0)
+               ? elementIndex
+               : priorElementCount[spineIndex] + elementIndex;
+    }
+
+    /**
+     * How big should the nth chunk be?
+     */
+    protected int chunkSize(int n) {
+        int power = (n == 0 || n == 1)
+                    ? initialChunkPower
+                    : Math.min(initialChunkPower + n - 1, AbstractSpinedBuffer.MAX_CHUNK_POWER);
+        return 1 << power;
+    }
+
+    /**
+     * Remove all data from the buffer
+     */
+    public abstract void clear();
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/DistinctOps.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,162 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.HashSet;
+import java.util.LinkedHashSet;
+import java.util.Objects;
+import java.util.Set;
+import java.util.Spliterator;
+import java.util.concurrent.ConcurrentHashMap;
+import java.util.concurrent.atomic.AtomicBoolean;
+import java.util.function.IntFunction;
+
+/**
+ * Factory methods for transforming streams into duplicate-free streams, using
+ * {@link Object#equals(Object)} to determine equality.
+ *
+ * @since 1.8
+ */
+final class DistinctOps {
+
+    private DistinctOps() { }
+
+    /**
+     * Appends a "distinct" operation to the provided stream, and returns the
+     * new stream.
+     *
+     * @param <T> the type of both input and output elements
+     * @param upstream a reference stream with element type T
+     * @return the new stream
+     */
+    static <T> ReferencePipeline<T, T> makeRef(AbstractPipeline<?, T, ?> upstream) {
+        return new ReferencePipeline.StatefulOp<T, T>(upstream, StreamShape.REFERENCE,
+                                                      StreamOpFlag.IS_DISTINCT | StreamOpFlag.NOT_SIZED) {
+            @Override
+            <P_IN> Node<T> opEvaluateParallel(PipelineHelper<T> helper,
+                                              Spliterator<P_IN> spliterator,
+                                              IntFunction<T[]> generator) {
+                if (StreamOpFlag.DISTINCT.isKnown(helper.getStreamAndOpFlags())) {
+                    // No-op
+                    return helper.evaluate(spliterator, false, generator);
+                }
+                else if (StreamOpFlag.ORDERED.isKnown(helper.getStreamAndOpFlags())) {
+                    // If the stream is SORTED then it should also be ORDERED so the following will also
+                    // preserve the sort order
+                    TerminalOp<T, LinkedHashSet<T>> reduceOp
+                            = ReduceOps.<T, LinkedHashSet<T>>makeRef(LinkedHashSet::new, LinkedHashSet::add,
+                                                                     LinkedHashSet::addAll);
+                    return Nodes.node(reduceOp.evaluateParallel(helper, spliterator));
+                }
+                else {
+                    // Holder of null state since ConcurrentHashMap does not support null values
+                    AtomicBoolean seenNull = new AtomicBoolean(false);
+                    ConcurrentHashMap<T, Boolean> map = new ConcurrentHashMap<>();
+                    TerminalOp<T, Void> forEachOp = ForEachOps.makeRef(t -> {
+                        if (t == null)
+                            seenNull.set(true);
+                        else
+                            map.putIfAbsent(t, Boolean.TRUE);
+                    }, false);
+                    forEachOp.evaluateParallel(helper, spliterator);
+
+                    // If null has been seen then copy the key set into a HashSet that supports null values
+                    // and add null
+                    Set<T> keys = map.keySet();
+                    if (seenNull.get()) {
+                        // TODO Implement a more efficient set-union view, rather than copying
+                        keys = new HashSet<>(keys);
+                        keys.add(null);
+                    }
+                    return Nodes.node(keys);
+                }
+            }
+
+            @Override
+            Sink<T> opWrapSink(int flags, Sink<T> sink) {
+                Objects.requireNonNull(sink);
+
+                if (StreamOpFlag.DISTINCT.isKnown(flags)) {
+                    return sink;
+                } else if (StreamOpFlag.SORTED.isKnown(flags)) {
+                    return new Sink.ChainedReference<T>(sink) {
+                        boolean seenNull;
+                        T lastSeen;
+
+                        @Override
+                        public void begin(long size) {
+                            seenNull = false;
+                            lastSeen = null;
+                            downstream.begin(-1);
+                        }
+
+                        @Override
+                        public void end() {
+                            seenNull = false;
+                            lastSeen = null;
+                            downstream.end();
+                        }
+
+                        @Override
+                        public void accept(T t) {
+                            if (t == null) {
+                                if (!seenNull) {
+                                    seenNull = true;
+                                    downstream.accept(lastSeen = null);
+                                }
+                            } else if (lastSeen == null || !t.equals(lastSeen)) {
+                                downstream.accept(lastSeen = t);
+                            }
+                        }
+                    };
+                } else {
+                    return new Sink.ChainedReference<T>(sink) {
+                        Set<T> seen;
+
+                        @Override
+                        public void begin(long size) {
+                            seen = new HashSet<>();
+                            downstream.begin(-1);
+                        }
+
+                        @Override
+                        public void end() {
+                            seen = null;
+                            downstream.end();
+                        }
+
+                        @Override
+                        public void accept(T t) {
+                            if (!seen.contains(t)) {
+                                seen.add(t);
+                                downstream.accept(t);
+                            }
+                        }
+                    };
+                }
+            }
+        };
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/DoublePipeline.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,596 @@
+/*
+ * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.DoubleSummaryStatistics;
+import java.util.Objects;
+import java.util.OptionalDouble;
+import java.util.PrimitiveIterator;
+import java.util.Spliterator;
+import java.util.Spliterators;
+import java.util.function.BiConsumer;
+import java.util.function.BinaryOperator;
+import java.util.function.DoubleBinaryOperator;
+import java.util.function.DoubleConsumer;
+import java.util.function.DoubleFunction;
+import java.util.function.DoublePredicate;
+import java.util.function.DoubleToIntFunction;
+import java.util.function.DoubleToLongFunction;
+import java.util.function.DoubleUnaryOperator;
+import java.util.function.IntFunction;
+import java.util.function.ObjDoubleConsumer;
+import java.util.function.Supplier;
+
+/**
+ * Abstract base class for an intermediate pipeline stage or pipeline source
+ * stage implementing whose elements are of type {@code double}.
+ *
+ * @param <E_IN> type of elements in the upstream source
+ *
+ * @since 1.8
+ */
+abstract class DoublePipeline<E_IN>
+        extends AbstractPipeline<E_IN, Double, DoubleStream>
+        implements DoubleStream {
+
+    /**
+     * Constructor for the head of a stream pipeline.
+     *
+     * @param source {@code Supplier<Spliterator>} describing the stream source
+     * @param sourceFlags the source flags for the stream source, described in
+     * {@link StreamOpFlag}
+     */
+    DoublePipeline(Supplier<? extends Spliterator<Double>> source,
+                   int sourceFlags, boolean parallel) {
+        super(source, sourceFlags, parallel);
+    }
+
+    /**
+     * Constructor for the head of a stream pipeline.
+     *
+     * @param source {@code Spliterator} describing the stream source
+     * @param sourceFlags the source flags for the stream source, described in
+     * {@link StreamOpFlag}
+     */
+    DoublePipeline(Spliterator<Double> source,
+                   int sourceFlags, boolean parallel) {
+        super(source, sourceFlags, parallel);
+    }
+
+    /**
+     * Constructor for appending an intermediate operation onto an existing
+     * pipeline.
+     *
+     * @param upstream the upstream element source.
+     * @param opFlags the operation flags
+     */
+    DoublePipeline(AbstractPipeline<?, E_IN, ?> upstream, int opFlags) {
+        super(upstream, opFlags);
+    }
+
+    /**
+     * Adapt a {@code Sink<Double> to a {@code DoubleConsumer}, ideally simply
+     * by casting.
+     */
+    private static DoubleConsumer adapt(Sink<Double> sink) {
+        if (sink instanceof DoubleConsumer) {
+            return (DoubleConsumer) sink;
+        } else {
+            if (Tripwire.ENABLED)
+                Tripwire.trip(AbstractPipeline.class,
+                              "using DoubleStream.adapt(Sink<Double> s)");
+            return sink::accept;
+        }
+    }
+
+    /**
+     * Adapt a {@code Spliterator<Double>} to a {@code Spliterator.OfDouble}.
+     *
+     * @implNote
+     * The implementation attempts to cast to a Spliterator.OfDouble, and throws
+     * an exception if this cast is not possible.
+     */
+    private static Spliterator.OfDouble adapt(Spliterator<Double> s) {
+        if (s instanceof Spliterator.OfDouble) {
+            return (Spliterator.OfDouble) s;
+        } else {
+            if (Tripwire.ENABLED)
+                Tripwire.trip(AbstractPipeline.class,
+                              "using DoubleStream.adapt(Spliterator<Double> s)");
+            throw new UnsupportedOperationException("DoubleStream.adapt(Spliterator<Double> s)");
+        }
+    }
+
+
+    // Shape-specific methods
+
+    @Override
+    final StreamShape getOutputShape() {
+        return StreamShape.DOUBLE_VALUE;
+    }
+
+    @Override
+    final <P_IN> Node<Double> evaluateToNode(PipelineHelper<Double> helper,
+                                             Spliterator<P_IN> spliterator,
+                                             boolean flattenTree,
+                                             IntFunction<Double[]> generator) {
+        return Nodes.collectDouble(helper, spliterator, flattenTree);
+    }
+
+    @Override
+    final <P_IN> Spliterator<Double> wrap(PipelineHelper<Double> ph,
+                                          Supplier<Spliterator<P_IN>> supplier,
+                                          boolean isParallel) {
+        return new StreamSpliterators.DoubleWrappingSpliterator<>(ph, supplier, isParallel);
+    }
+
+    @Override
+    final Spliterator.OfDouble lazySpliterator(Supplier<? extends Spliterator<Double>> supplier) {
+        return new StreamSpliterators.DelegatingSpliterator.OfDouble((Supplier<Spliterator.OfDouble>) supplier);
+    }
+
+    @Override
+    final void forEachWithCancel(Spliterator<Double> spliterator, Sink<Double> sink) {
+        Spliterator.OfDouble spl = adapt(spliterator);
+        DoubleConsumer adaptedSink = adapt(sink);
+        do { } while (!sink.cancellationRequested() && spl.tryAdvance(adaptedSink));
+    }
+
+    @Override
+    final  Node.Builder<Double> makeNodeBuilder(long exactSizeIfKnown, IntFunction<Double[]> generator) {
+        return Nodes.doubleBuilder(exactSizeIfKnown);
+    }
+
+
+    // DoubleStream
+
+    @Override
+    public final PrimitiveIterator.OfDouble iterator() {
+        return Spliterators.iteratorFromSpliterator(spliterator());
+    }
+
+    @Override
+    public final Spliterator.OfDouble spliterator() {
+        return adapt(super.spliterator());
+    }
+
+    // Stateless intermediate ops from DoubleStream
+
+    @Override
+    public final Stream<Double> boxed() {
+        return mapToObj(Double::valueOf);
+    }
+
+    @Override
+    public final DoubleStream map(DoubleUnaryOperator mapper) {
+        Objects.requireNonNull(mapper);
+        return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
+                                       StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedDouble(sink) {
+                    @Override
+                    public void accept(double t) {
+                        downstream.accept(mapper.applyAsDouble(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final <U> Stream<U> mapToObj(DoubleFunction<? extends U> mapper) {
+        Objects.requireNonNull(mapper);
+        return new ReferencePipeline.StatelessOp<Double, U>(this, StreamShape.DOUBLE_VALUE,
+                                                            StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<U> sink) {
+                return new Sink.ChainedDouble(sink) {
+                    @Override
+                    public void accept(double t) {
+                        downstream.accept(mapper.apply(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final IntStream mapToInt(DoubleToIntFunction mapper) {
+        Objects.requireNonNull(mapper);
+        return new IntPipeline.StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
+                                                   StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Integer> sink) {
+                return new Sink.ChainedDouble(sink) {
+                    @Override
+                    public void accept(double t) {
+                        downstream.accept(mapper.applyAsInt(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final LongStream mapToLong(DoubleToLongFunction mapper) {
+        Objects.requireNonNull(mapper);
+        return new LongPipeline.StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
+                                                    StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Long> sink) {
+                return new Sink.ChainedDouble(sink) {
+                    @Override
+                    public void accept(double t) {
+                        downstream.accept(mapper.applyAsLong(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final DoubleStream flatMap(DoubleFunction<? extends DoubleStream> mapper) {
+        return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
+                                        StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedDouble(sink) {
+                    public void accept(double t) {
+                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
+                        DoubleStream result = mapper.apply(t);
+                        if (result != null)
+                            result.sequential().forEach(i -> downstream.accept(i));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public DoubleStream unordered() {
+        if (!isOrdered())
+            return this;
+        return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE, StreamOpFlag.NOT_ORDERED) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
+                return sink;
+            }
+        };
+    }
+
+    @Override
+    public final DoubleStream filter(DoublePredicate predicate) {
+        Objects.requireNonNull(predicate);
+        return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
+                                       StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedDouble(sink) {
+                    @Override
+                    public void accept(double t) {
+                        if (predicate.test(t))
+                            downstream.accept(t);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final DoubleStream peek(DoubleConsumer consumer) {
+        Objects.requireNonNull(consumer);
+        return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
+                                       0) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedDouble(sink) {
+                    @Override
+                    public void accept(double t) {
+                        consumer.accept(t);
+                        downstream.accept(t);
+                    }
+                };
+            }
+        };
+    }
+
+    // Stateful intermediate ops from DoubleStream
+
+    @Override
+    public final DoubleStream limit(long maxSize) {
+        if (maxSize < 0)
+            throw new IllegalArgumentException(Long.toString(maxSize));
+        return SliceOps.makeDouble(this, (long) 0, maxSize);
+    }
+
+    @Override
+    public final DoubleStream substream(long startingOffset) {
+        if (startingOffset < 0)
+            throw new IllegalArgumentException(Long.toString(startingOffset));
+        if (startingOffset == 0)
+            return this;
+        else {
+            long limit = -1;
+            return SliceOps.makeDouble(this, startingOffset, limit);
+        }
+    }
+
+    @Override
+    public final DoubleStream substream(long startingOffset, long endingOffset) {
+        if (startingOffset < 0 || endingOffset < startingOffset)
+            throw new IllegalArgumentException(String.format("substream(%d, %d)", startingOffset, endingOffset));
+        return SliceOps.makeDouble(this, startingOffset, endingOffset - startingOffset);
+    }
+
+    @Override
+    public final DoubleStream sorted() {
+        return SortedOps.makeDouble(this);
+    }
+
+    @Override
+    public final DoubleStream distinct() {
+        // While functional and quick to implement, this approach is not very efficient.
+        // An efficient version requires a double-specific map/set implementation.
+        return boxed().distinct().mapToDouble(i -> (double) i);
+    }
+
+    // Terminal ops from DoubleStream
+
+    @Override
+    public void forEach(DoubleConsumer consumer) {
+        evaluate(ForEachOps.makeDouble(consumer, false));
+    }
+
+    @Override
+    public void forEachOrdered(DoubleConsumer consumer) {
+        evaluate(ForEachOps.makeDouble(consumer, true));
+    }
+
+    @Override
+    public final double sum() {
+        // TODO: better algorithm to compensate for errors
+        return reduce(0.0, Double::sum);
+    }
+
+    @Override
+    public final OptionalDouble min() {
+        return reduce(Math::min);
+    }
+
+    @Override
+    public final OptionalDouble max() {
+        return reduce(Math::max);
+    }
+
+    @Override
+    public final OptionalDouble average() {
+        double[] avg = collect(() -> new double[2],
+                               (ll, i) -> {
+                                   ll[0]++;
+                                   ll[1] += i;
+                               },
+                               (ll, rr) -> {
+                                   ll[0] += rr[0];
+                                   ll[1] += rr[1];
+                               });
+        return avg[0] > 0
+               ? OptionalDouble.of(avg[1] / avg[0])
+               : OptionalDouble.empty();
+    }
+
+    @Override
+    public final long count() {
+        return mapToObj(e -> null).mapToInt(e -> 1).sum();
+    }
+
+    @Override
+    public final DoubleSummaryStatistics summaryStatistics() {
+        return collect(DoubleSummaryStatistics::new, DoubleSummaryStatistics::accept,
+                       DoubleSummaryStatistics::combine);
+    }
+
+    @Override
+    public final double reduce(double identity, DoubleBinaryOperator op) {
+        return evaluate(ReduceOps.makeDouble(identity, op));
+    }
+
+    @Override
+    public final OptionalDouble reduce(DoubleBinaryOperator op) {
+        return evaluate(ReduceOps.makeDouble(op));
+    }
+
+    @Override
+    public final <R> R collect(Supplier<R> resultFactory,
+                               ObjDoubleConsumer<R> accumulator,
+                               BiConsumer<R, R> combiner) {
+        BinaryOperator<R> operator = (left, right) -> {
+            combiner.accept(left, right);
+            return left;
+        };
+        return evaluate(ReduceOps.makeDouble(resultFactory, accumulator, operator));
+    }
+
+    @Override
+    public final boolean anyMatch(DoublePredicate predicate) {
+        return evaluate(MatchOps.makeDouble(predicate, MatchOps.MatchKind.ANY));
+    }
+
+    @Override
+    public final boolean allMatch(DoublePredicate predicate) {
+        return evaluate(MatchOps.makeDouble(predicate, MatchOps.MatchKind.ALL));
+    }
+
+    @Override
+    public final boolean noneMatch(DoublePredicate predicate) {
+        return evaluate(MatchOps.makeDouble(predicate, MatchOps.MatchKind.NONE));
+    }
+
+    @Override
+    public final OptionalDouble findFirst() {
+        return evaluate(FindOps.makeDouble(true));
+    }
+
+    @Override
+    public final OptionalDouble findAny() {
+        return evaluate(FindOps.makeDouble(false));
+    }
+
+    @Override
+    public final double[] toArray() {
+        return Nodes.flattenDouble((Node.OfDouble) evaluateToArrayNode(Double[]::new))
+                        .asDoubleArray();
+    }
+
+    //
+
+    /**
+     * Source stage of a DoubleStream
+     *
+     * @param <E_IN> type of elements in the upstream source
+     */
+    static class Head<E_IN> extends DoublePipeline<E_IN> {
+        /**
+         * Constructor for the source stage of a DoubleStream.
+         *
+         * @param source {@code Supplier<Spliterator>} describing the stream
+         *               source
+         * @param sourceFlags the source flags for the stream source, described
+         *                    in {@link StreamOpFlag}
+         * @param parallel {@code true} if the pipeline is parallel
+         */
+        Head(Supplier<? extends Spliterator<Double>> source,
+             int sourceFlags, boolean parallel) {
+            super(source, sourceFlags, parallel);
+        }
+
+        /**
+         * Constructor for the source stage of a DoubleStream.
+         *
+         * @param source {@code Spliterator} describing the stream source
+         * @param sourceFlags the source flags for the stream source, described
+         *                    in {@link StreamOpFlag}
+         * @param parallel {@code true} if the pipeline is parallel
+         */
+        Head(Spliterator<Double> source,
+             int sourceFlags, boolean parallel) {
+            super(source, sourceFlags, parallel);
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            throw new UnsupportedOperationException();
+        }
+
+        @Override
+        final Sink<E_IN> opWrapSink(int flags, Sink<Double> sink) {
+            throw new UnsupportedOperationException();
+        }
+
+        // Optimized sequential terminal operations for the head of the pipeline
+
+        @Override
+        public void forEach(DoubleConsumer consumer) {
+            if (!isParallel()) {
+                adapt(sourceStageSpliterator()).forEachRemaining(consumer);
+            }
+            else {
+                super.forEach(consumer);
+            }
+        }
+
+        @Override
+        public void forEachOrdered(DoubleConsumer consumer) {
+            if (!isParallel()) {
+                adapt(sourceStageSpliterator()).forEachRemaining(consumer);
+            }
+            else {
+                super.forEachOrdered(consumer);
+            }
+        }
+
+    }
+
+    /**
+     * Base class for a stateless intermediate stage of a DoubleStream.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @since 1.8
+     */
+    abstract static class StatelessOp<E_IN> extends DoublePipeline<E_IN> {
+        /**
+         * Construct a new DoubleStream by appending a stateless intermediate
+         * operation to an existing stream.
+         *
+         * @param upstream the upstream pipeline stage
+         * @param inputShape the stream shape for the upstream pipeline stage
+         * @param opFlags operation flags for the new stage
+         */
+        StatelessOp(AbstractPipeline<?, E_IN, ?> upstream,
+                    StreamShape inputShape,
+                    int opFlags) {
+            super(upstream, opFlags);
+            assert upstream.getOutputShape() == inputShape;
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            return false;
+        }
+    }
+
+    /**
+     * Base class for a stateful intermediate stage of a DoubleStream.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @since 1.8
+     */
+    abstract static class StatefulOp<E_IN> extends DoublePipeline<E_IN> {
+        /**
+         * Construct a new DoubleStream by appending a stateful intermediate
+         * operation to an existing stream.
+         *
+         * @param upstream the upstream pipeline stage
+         * @param inputShape the stream shape for the upstream pipeline stage
+         * @param opFlags operation flags for the new stage
+         */
+        StatefulOp(AbstractPipeline<?, E_IN, ?> upstream,
+                   StreamShape inputShape,
+                   int opFlags) {
+            super(upstream, opFlags);
+            assert upstream.getOutputShape() == inputShape;
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            return true;
+        }
+
+        @Override
+        abstract <P_IN> Node<Double> opEvaluateParallel(PipelineHelper<Double> helper,
+                                                        Spliterator<P_IN> spliterator,
+                                                        IntFunction<Double[]> generator);
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/IntPipeline.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,631 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.IntSummaryStatistics;
+import java.util.Objects;
+import java.util.OptionalDouble;
+import java.util.OptionalInt;
+import java.util.PrimitiveIterator;
+import java.util.Spliterator;
+import java.util.Spliterators;
+import java.util.function.BiConsumer;
+import java.util.function.BinaryOperator;
+import java.util.function.IntBinaryOperator;
+import java.util.function.IntConsumer;
+import java.util.function.IntFunction;
+import java.util.function.IntPredicate;
+import java.util.function.IntToDoubleFunction;
+import java.util.function.IntToLongFunction;
+import java.util.function.IntUnaryOperator;
+import java.util.function.ObjIntConsumer;
+import java.util.function.Supplier;
+
+/**
+ * Abstract base class for an intermediate pipeline stage or pipeline source
+ * stage implementing whose elements are of type {@code int}.
+ *
+ * @param <E_IN> type of elements in the upstream source
+ * @since 1.8
+ */
+abstract class IntPipeline<E_IN>
+        extends AbstractPipeline<E_IN, Integer, IntStream>
+        implements IntStream {
+
+    /**
+     * Constructor for the head of a stream pipeline.
+     *
+     * @param source {@code Supplier<Spliterator>} describing the stream source
+     * @param sourceFlags The source flags for the stream source, described in
+     *        {@link StreamOpFlag}
+     * @param parallel {@code true} if the pipeline is parallel
+     */
+    IntPipeline(Supplier<? extends Spliterator<Integer>> source,
+                int sourceFlags, boolean parallel) {
+        super(source, sourceFlags, parallel);
+    }
+
+    /**
+     * Constructor for the head of a stream pipeline.
+     *
+     * @param source {@code Spliterator} describing the stream source
+     * @param sourceFlags The source flags for the stream source, described in
+     *        {@link StreamOpFlag}
+     * @param parallel {@code true} if the pipeline is parallel
+     */
+    IntPipeline(Spliterator<Integer> source,
+                int sourceFlags, boolean parallel) {
+        super(source, sourceFlags, parallel);
+    }
+
+    /**
+     * Constructor for appending an intermediate operation onto an existing
+     * pipeline.
+     *
+     * @param upstream the upstream element source
+     * @param opFlags the operation flags for the new operation
+     */
+    IntPipeline(AbstractPipeline<?, E_IN, ?> upstream, int opFlags) {
+        super(upstream, opFlags);
+    }
+
+    /**
+     * Adapt a {@code Sink<Integer> to an {@code IntConsumer}, ideally simply
+     * by casting.
+     */
+    private static IntConsumer adapt(Sink<Integer> sink) {
+        if (sink instanceof IntConsumer) {
+            return (IntConsumer) sink;
+        }
+        else {
+            if (Tripwire.ENABLED)
+                Tripwire.trip(AbstractPipeline.class,
+                              "using IntStream.adapt(Sink<Integer> s)");
+            return sink::accept;
+        }
+    }
+
+    /**
+     * Adapt a {@code Spliterator<Integer>} to a {@code Spliterator.OfInt}.
+     *
+     * @implNote
+     * The implementation attempts to cast to a Spliterator.OfInt, and throws an
+     * exception if this cast is not possible.
+     */
+    private static Spliterator.OfInt adapt(Spliterator<Integer> s) {
+        if (s instanceof Spliterator.OfInt) {
+            return (Spliterator.OfInt) s;
+        }
+        else {
+            if (Tripwire.ENABLED)
+                Tripwire.trip(AbstractPipeline.class,
+                              "using IntStream.adapt(Spliterator<Integer> s)");
+            throw new UnsupportedOperationException("IntStream.adapt(Spliterator<Integer> s)");
+        }
+    }
+
+
+    // Shape-specific methods
+
+    @Override
+    final StreamShape getOutputShape() {
+        return StreamShape.INT_VALUE;
+    }
+
+    @Override
+    final <P_IN> Node<Integer> evaluateToNode(PipelineHelper<Integer> helper,
+                                              Spliterator<P_IN> spliterator,
+                                              boolean flattenTree,
+                                              IntFunction<Integer[]> generator) {
+        return Nodes.collectInt(helper, spliterator, flattenTree);
+    }
+
+    @Override
+    final <P_IN> Spliterator<Integer> wrap(PipelineHelper<Integer> ph,
+                                           Supplier<Spliterator<P_IN>> supplier,
+                                           boolean isParallel) {
+        return new StreamSpliterators.IntWrappingSpliterator<>(ph, supplier, isParallel);
+    }
+
+    @Override
+    final Spliterator.OfInt lazySpliterator(Supplier<? extends Spliterator<Integer>> supplier) {
+        return new StreamSpliterators.DelegatingSpliterator.OfInt((Supplier<Spliterator.OfInt>) supplier);
+    }
+
+    @Override
+    final void forEachWithCancel(Spliterator<Integer> spliterator, Sink<Integer> sink) {
+        Spliterator.OfInt spl = adapt(spliterator);
+        IntConsumer adaptedSink = adapt(sink);
+        do { } while (!sink.cancellationRequested() && spl.tryAdvance(adaptedSink));
+    }
+
+    @Override
+    final Node.Builder<Integer> makeNodeBuilder(long exactSizeIfKnown,
+                                                IntFunction<Integer[]> generator) {
+        return Nodes.intBuilder(exactSizeIfKnown);
+    }
+
+
+    // IntStream
+
+    @Override
+    public final PrimitiveIterator.OfInt iterator() {
+        return Spliterators.iteratorFromSpliterator(spliterator());
+    }
+
+    @Override
+    public final Spliterator.OfInt spliterator() {
+        return adapt(super.spliterator());
+    }
+
+    // Stateless intermediate ops from IntStream
+
+    @Override
+    public final LongStream longs() {
+        return new LongPipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE,
+                                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Integer> opWrapSink(int flags, Sink<Long> sink) {
+                return new Sink.ChainedInt(sink) {
+                    @Override
+                    public void accept(int t) {
+                        downstream.accept((long) t);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final DoubleStream doubles() {
+        return new DoublePipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE,
+                                                       StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Integer> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedInt(sink) {
+                    @Override
+                    public void accept(int t) {
+                        downstream.accept((double) t);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final Stream<Integer> boxed() {
+        return mapToObj(Integer::valueOf);
+    }
+
+    @Override
+    public final IntStream map(IntUnaryOperator mapper) {
+        Objects.requireNonNull(mapper);
+        return new StatelessOp<Integer>(this, StreamShape.INT_VALUE,
+                                        StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
+                return new Sink.ChainedInt(sink) {
+                    @Override
+                    public void accept(int t) {
+                        downstream.accept(mapper.applyAsInt(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final <U> Stream<U> mapToObj(IntFunction<? extends U> mapper) {
+        Objects.requireNonNull(mapper);
+        return new ReferencePipeline.StatelessOp<Integer, U>(this, StreamShape.INT_VALUE,
+                                                             StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Integer> opWrapSink(int flags, Sink<U> sink) {
+                return new Sink.ChainedInt(sink) {
+                    @Override
+                    public void accept(int t) {
+                        downstream.accept(mapper.apply(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final LongStream mapToLong(IntToLongFunction mapper) {
+        Objects.requireNonNull(mapper);
+        return new LongPipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE,
+                                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Integer> opWrapSink(int flags, Sink<Long> sink) {
+                return new Sink.ChainedInt(sink) {
+                    @Override
+                    public void accept(int t) {
+                        downstream.accept(mapper.applyAsLong(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final DoubleStream mapToDouble(IntToDoubleFunction mapper) {
+        Objects.requireNonNull(mapper);
+        return new DoublePipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE,
+                                                       StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Integer> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedInt(sink) {
+                    @Override
+                    public void accept(int t) {
+                        downstream.accept(mapper.applyAsDouble(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final IntStream flatMap(IntFunction<? extends IntStream> mapper) {
+        return new StatelessOp<Integer>(this, StreamShape.INT_VALUE,
+                                        StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
+                return new Sink.ChainedInt(sink) {
+                    public void accept(int t) {
+                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
+                        IntStream result = mapper.apply(t);
+                        if (result != null)
+                            result.sequential().forEach(i -> downstream.accept(i));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public IntStream unordered() {
+        if (!isOrdered())
+            return this;
+        return new StatelessOp<Integer>(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_ORDERED) {
+            @Override
+            Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
+                return sink;
+            }
+        };
+    }
+
+    @Override
+    public final IntStream filter(IntPredicate predicate) {
+        Objects.requireNonNull(predicate);
+        return new StatelessOp<Integer>(this, StreamShape.INT_VALUE,
+                                        StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
+                return new Sink.ChainedInt(sink) {
+                    @Override
+                    public void accept(int t) {
+                        if (predicate.test(t))
+                            downstream.accept(t);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final IntStream peek(IntConsumer consumer) {
+        Objects.requireNonNull(consumer);
+        return new StatelessOp<Integer>(this, StreamShape.INT_VALUE,
+                                        0) {
+            @Override
+            Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
+                return new Sink.ChainedInt(sink) {
+                    @Override
+                    public void accept(int t) {
+                        consumer.accept(t);
+                        downstream.accept(t);
+                    }
+                };
+            }
+        };
+    }
+
+    // Stateful intermediate ops from IntStream
+
+    private IntStream slice(long skip, long limit) {
+        return SliceOps.makeInt(this, skip, limit);
+    }
+
+    @Override
+    public final IntStream limit(long maxSize) {
+        if (maxSize < 0)
+            throw new IllegalArgumentException(Long.toString(maxSize));
+        return slice(0, maxSize);
+    }
+
+    @Override
+    public final IntStream substream(long startingOffset) {
+        if (startingOffset < 0)
+            throw new IllegalArgumentException(Long.toString(startingOffset));
+        if (startingOffset == 0)
+            return this;
+        else
+            return slice(startingOffset, -1);
+    }
+
+    @Override
+    public final IntStream substream(long startingOffset, long endingOffset) {
+        if (startingOffset < 0 || endingOffset < startingOffset)
+            throw new IllegalArgumentException(String.format("substream(%d, %d)", startingOffset, endingOffset));
+        return slice(startingOffset, endingOffset - startingOffset);
+    }
+
+    @Override
+    public final IntStream sorted() {
+        return SortedOps.makeInt(this);
+    }
+
+    @Override
+    public final IntStream distinct() {
+        // While functional and quick to implement, this approach is not very efficient.
+        // An efficient version requires an int-specific map/set implementation.
+        return boxed().distinct().mapToInt(i -> i);
+    }
+
+    // Terminal ops from IntStream
+
+    @Override
+    public void forEach(IntConsumer action) {
+        evaluate(ForEachOps.makeInt(action, false));
+    }
+
+    @Override
+    public void forEachOrdered(IntConsumer action) {
+        evaluate(ForEachOps.makeInt(action, true));
+    }
+
+    @Override
+    public final int sum() {
+        return reduce(0, Integer::sum);
+    }
+
+    @Override
+    public final OptionalInt min() {
+        return reduce(Math::min);
+    }
+
+    @Override
+    public final OptionalInt max() {
+        return reduce(Math::max);
+    }
+
+    @Override
+    public final long count() {
+        return longs().map(e -> 1L).sum();
+    }
+
+    @Override
+    public final OptionalDouble average() {
+        long[] avg = collect(() -> new long[2],
+                             (ll, i) -> {
+                                 ll[0]++;
+                                 ll[1] += i;
+                             },
+                             (ll, rr) -> {
+                                 ll[0] += rr[0];
+                                 ll[1] += rr[1];
+                             });
+        return avg[0] > 0
+               ? OptionalDouble.of((double) avg[1] / avg[0])
+               : OptionalDouble.empty();
+    }
+
+    @Override
+    public final IntSummaryStatistics summaryStatistics() {
+        return collect(IntSummaryStatistics::new, IntSummaryStatistics::accept,
+                       IntSummaryStatistics::combine);
+    }
+
+    @Override
+    public final int reduce(int identity, IntBinaryOperator op) {
+        return evaluate(ReduceOps.makeInt(identity, op));
+    }
+
+    @Override
+    public final OptionalInt reduce(IntBinaryOperator op) {
+        return evaluate(ReduceOps.makeInt(op));
+    }
+
+    @Override
+    public final <R> R collect(Supplier<R> resultFactory,
+                               ObjIntConsumer<R> accumulator,
+                               BiConsumer<R, R> combiner) {
+        BinaryOperator<R> operator = (left, right) -> {
+            combiner.accept(left, right);
+            return left;
+        };
+        return evaluate(ReduceOps.makeInt(resultFactory, accumulator, operator));
+    }
+
+    @Override
+    public final boolean anyMatch(IntPredicate predicate) {
+        return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.ANY));
+    }
+
+    @Override
+    public final boolean allMatch(IntPredicate predicate) {
+        return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.ALL));
+    }
+
+    @Override
+    public final boolean noneMatch(IntPredicate predicate) {
+        return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.NONE));
+    }
+
+    @Override
+    public final OptionalInt findFirst() {
+        return evaluate(FindOps.makeInt(true));
+    }
+
+    @Override
+    public final OptionalInt findAny() {
+        return evaluate(FindOps.makeInt(false));
+    }
+
+    @Override
+    public final int[] toArray() {
+        return Nodes.flattenInt((Node.OfInt) evaluateToArrayNode(Integer[]::new))
+                        .asIntArray();
+    }
+
+    //
+
+    /**
+     * Source stage of an IntStream.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @since 1.8
+     */
+    static class Head<E_IN> extends IntPipeline<E_IN> {
+        /**
+         * Constructor for the source stage of an IntStream.
+         *
+         * @param source {@code Supplier<Spliterator>} describing the stream
+         *               source
+         * @param sourceFlags the source flags for the stream source, described
+         *                    in {@link StreamOpFlag}
+         * @param parallel {@code true} if the pipeline is parallel
+         */
+        Head(Supplier<? extends Spliterator<Integer>> source,
+             int sourceFlags, boolean parallel) {
+            super(source, sourceFlags, parallel);
+        }
+
+        /**
+         * Constructor for the source stage of an IntStream.
+         *
+         * @param source {@code Spliterator} describing the stream source
+         * @param sourceFlags the source flags for the stream source, described
+         *                    in {@link StreamOpFlag}
+         * @param parallel {@code true} if the pipeline is parallel
+         */
+        Head(Spliterator<Integer> source,
+             int sourceFlags, boolean parallel) {
+            super(source, sourceFlags, parallel);
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            throw new UnsupportedOperationException();
+        }
+
+        @Override
+        final Sink<E_IN> opWrapSink(int flags, Sink<Integer> sink) {
+            throw new UnsupportedOperationException();
+        }
+
+        // Optimized sequential terminal operations for the head of the pipeline
+
+        @Override
+        public void forEach(IntConsumer action) {
+            if (!isParallel()) {
+                adapt(sourceStageSpliterator()).forEachRemaining(action);
+            }
+            else {
+                super.forEach(action);
+            }
+        }
+
+        @Override
+        public void forEachOrdered(IntConsumer action) {
+            if (!isParallel()) {
+                adapt(sourceStageSpliterator()).forEachRemaining(action);
+            }
+            else {
+                super.forEachOrdered(action);
+            }
+        }
+    }
+
+    /**
+     * Base class for a stateless intermediate stage of an IntStream
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @since 1.8
+     */
+    abstract static class StatelessOp<E_IN> extends IntPipeline<E_IN> {
+        /**
+         * Construct a new IntStream by appending a stateless intermediate
+         * operation to an existing stream.
+         * @param upstream The upstream pipeline stage
+         * @param inputShape The stream shape for the upstream pipeline stage
+         * @param opFlags Operation flags for the new stage
+         */
+        StatelessOp(AbstractPipeline<?, E_IN, ?> upstream,
+                    StreamShape inputShape,
+                    int opFlags) {
+            super(upstream, opFlags);
+            assert upstream.getOutputShape() == inputShape;
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            return false;
+        }
+    }
+
+    /**
+     * Base class for a stateful intermediate stage of an IntStream.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @since 1.8
+     */
+    abstract static class StatefulOp<E_IN> extends IntPipeline<E_IN> {
+        /**
+         * Construct a new IntStream by appending a stateful intermediate
+         * operation to an existing stream.
+         * @param upstream The upstream pipeline stage
+         * @param inputShape The stream shape for the upstream pipeline stage
+         * @param opFlags Operation flags for the new stage
+         */
+        StatefulOp(AbstractPipeline<?, E_IN, ?> upstream,
+                   StreamShape inputShape,
+                   int opFlags) {
+            super(upstream, opFlags);
+            assert upstream.getOutputShape() == inputShape;
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            return true;
+        }
+
+        @Override
+        abstract <P_IN> Node<Integer> opEvaluateParallel(PipelineHelper<Integer> helper,
+                                                         Spliterator<P_IN> spliterator,
+                                                         IntFunction<Integer[]> generator);
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/LongPipeline.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,610 @@
+/*
+ * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.LongSummaryStatistics;
+import java.util.Objects;
+import java.util.OptionalDouble;
+import java.util.OptionalLong;
+import java.util.PrimitiveIterator;
+import java.util.Spliterator;
+import java.util.Spliterators;
+import java.util.function.BiConsumer;
+import java.util.function.BinaryOperator;
+import java.util.function.IntFunction;
+import java.util.function.LongBinaryOperator;
+import java.util.function.LongConsumer;
+import java.util.function.LongFunction;
+import java.util.function.LongPredicate;
+import java.util.function.LongToDoubleFunction;
+import java.util.function.LongToIntFunction;
+import java.util.function.LongUnaryOperator;
+import java.util.function.ObjLongConsumer;
+import java.util.function.Supplier;
+
+/**
+ * Abstract base class for an intermediate pipeline stage or pipeline source
+ * stage implementing whose elements are of type {@code long}.
+ *
+ * @param <E_IN> type of elements in the upstream source
+ * @since 1.8
+ */
+abstract class LongPipeline<E_IN>
+        extends AbstractPipeline<E_IN, Long, LongStream>
+        implements LongStream {
+
+    /**
+     * Constructor for the head of a stream pipeline.
+     *
+     * @param source {@code Supplier<Spliterator>} describing the stream source
+     * @param sourceFlags the source flags for the stream source, described in
+     *        {@link StreamOpFlag}
+     * @param parallel {@code true} if the pipeline is parallel
+     */
+    LongPipeline(Supplier<? extends Spliterator<Long>> source,
+                 int sourceFlags, boolean parallel) {
+        super(source, sourceFlags, parallel);
+    }
+
+    /**
+     * Constructor for the head of a stream pipeline.
+     *
+     * @param source {@code Spliterator} describing the stream source
+     * @param sourceFlags the source flags for the stream source, described in
+     *        {@link StreamOpFlag}
+     * @param parallel {@code true} if the pipeline is parallel
+     */
+    LongPipeline(Spliterator<Long> source,
+                 int sourceFlags, boolean parallel) {
+        super(source, sourceFlags, parallel);
+    }
+
+    /**
+     * Constructor for appending an intermediate operation onto an existing pipeline.
+     *
+     * @param upstream the upstream element source.
+     * @param opFlags the operation flags
+     */
+    LongPipeline(AbstractPipeline<?, E_IN, ?> upstream, int opFlags) {
+        super(upstream, opFlags);
+    }
+
+    /**
+     * Adapt a {@code Sink<Long> to an {@code LongConsumer}, ideally simply
+     * by casting.
+     */
+    private static LongConsumer adapt(Sink<Long> sink) {
+        if (sink instanceof LongConsumer) {
+            return (LongConsumer) sink;
+        } else {
+            if (Tripwire.ENABLED)
+                Tripwire.trip(AbstractPipeline.class,
+                              "using LongStream.adapt(Sink<Long> s)");
+            return sink::accept;
+        }
+    }
+
+    /**
+     * Adapt a {@code Spliterator<Long>} to a {@code Spliterator.OfLong}.
+     *
+     * @implNote
+     * The implementation attempts to cast to a Spliterator.OfLong, and throws
+     * an exception if this cast is not possible.
+     */
+    private static Spliterator.OfLong adapt(Spliterator<Long> s) {
+        if (s instanceof Spliterator.OfLong) {
+            return (Spliterator.OfLong) s;
+        } else {
+            if (Tripwire.ENABLED)
+                Tripwire.trip(AbstractPipeline.class,
+                              "using LongStream.adapt(Spliterator<Long> s)");
+            throw new UnsupportedOperationException("LongStream.adapt(Spliterator<Long> s)");
+        }
+    }
+
+
+    // Shape-specific methods
+
+    @Override
+    final StreamShape getOutputShape() {
+        return StreamShape.LONG_VALUE;
+    }
+
+    @Override
+    final <P_IN> Node<Long> evaluateToNode(PipelineHelper<Long> helper,
+                                           Spliterator<P_IN> spliterator,
+                                           boolean flattenTree,
+                                           IntFunction<Long[]> generator) {
+        return Nodes.collectLong(helper, spliterator, flattenTree);
+    }
+
+    @Override
+    final <P_IN> Spliterator<Long> wrap(PipelineHelper<Long> ph,
+                                        Supplier<Spliterator<P_IN>> supplier,
+                                        boolean isParallel) {
+        return new StreamSpliterators.LongWrappingSpliterator<>(ph, supplier, isParallel);
+    }
+
+    @Override
+    final Spliterator.OfLong lazySpliterator(Supplier<? extends Spliterator<Long>> supplier) {
+        return new StreamSpliterators.DelegatingSpliterator.OfLong((Supplier<Spliterator.OfLong>) supplier);
+    }
+
+    @Override
+    final void forEachWithCancel(Spliterator<Long> spliterator, Sink<Long> sink) {
+        Spliterator.OfLong spl = adapt(spliterator);
+        LongConsumer adaptedSink =  adapt(sink);
+        do { } while (!sink.cancellationRequested() && spl.tryAdvance(adaptedSink));
+    }
+
+    @Override
+    final Node.Builder<Long> makeNodeBuilder(long exactSizeIfKnown, IntFunction<Long[]> generator) {
+        return Nodes.longBuilder(exactSizeIfKnown);
+    }
+
+
+    // LongStream
+
+    @Override
+    public final PrimitiveIterator.OfLong iterator() {
+        return Spliterators.iteratorFromSpliterator(spliterator());
+    }
+
+    @Override
+    public final Spliterator.OfLong spliterator() {
+        return adapt(super.spliterator());
+    }
+
+    // Stateless intermediate ops from LongStream
+
+    @Override
+    public final DoubleStream doubles() {
+        return new DoublePipeline.StatelessOp<Long>(this, StreamShape.LONG_VALUE,
+                                                    StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Long> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedLong(sink) {
+                    @Override
+                    public void accept(long t) {
+                        downstream.accept((double) t);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final Stream<Long> boxed() {
+        return mapToObj(Long::valueOf);
+    }
+
+    @Override
+    public final LongStream map(LongUnaryOperator mapper) {
+        Objects.requireNonNull(mapper);
+        return new StatelessOp<Long>(this, StreamShape.LONG_VALUE,
+                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Long> opWrapSink(int flags, Sink<Long> sink) {
+                return new Sink.ChainedLong(sink) {
+                    @Override
+                    public void accept(long t) {
+                        downstream.accept(mapper.applyAsLong(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final <U> Stream<U> mapToObj(LongFunction<? extends U> mapper) {
+        Objects.requireNonNull(mapper);
+        return new ReferencePipeline.StatelessOp<Long, U>(this, StreamShape.LONG_VALUE,
+                                                          StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Long> opWrapSink(int flags, Sink<U> sink) {
+                return new Sink.ChainedLong(sink) {
+                    @Override
+                    public void accept(long t) {
+                        downstream.accept(mapper.apply(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final IntStream mapToInt(LongToIntFunction mapper) {
+        Objects.requireNonNull(mapper);
+        return new IntPipeline.StatelessOp<Long>(this, StreamShape.LONG_VALUE,
+                                                 StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Long> opWrapSink(int flags, Sink<Integer> sink) {
+                return new Sink.ChainedLong(sink) {
+                    @Override
+                    public void accept(long t) {
+                        downstream.accept(mapper.applyAsInt(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final DoubleStream mapToDouble(LongToDoubleFunction mapper) {
+        Objects.requireNonNull(mapper);
+        return new DoublePipeline.StatelessOp<Long>(this, StreamShape.LONG_VALUE,
+                                                    StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Long> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedLong(sink) {
+                    @Override
+                    public void accept(long t) {
+                        downstream.accept(mapper.applyAsDouble(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final LongStream flatMap(LongFunction<? extends LongStream> mapper) {
+        return new StatelessOp<Long>(this, StreamShape.LONG_VALUE,
+                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<Long> opWrapSink(int flags, Sink<Long> sink) {
+                return new Sink.ChainedLong(sink) {
+                    public void accept(long t) {
+                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
+                        LongStream result = mapper.apply(t);
+                        if (result != null)
+                            result.sequential().forEach(i -> downstream.accept(i));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public LongStream unordered() {
+        if (!isOrdered())
+            return this;
+        return new StatelessOp<Long>(this, StreamShape.LONG_VALUE, StreamOpFlag.NOT_ORDERED) {
+            @Override
+            Sink<Long> opWrapSink(int flags, Sink<Long> sink) {
+                return sink;
+            }
+        };
+    }
+
+    @Override
+    public final LongStream filter(LongPredicate predicate) {
+        Objects.requireNonNull(predicate);
+        return new StatelessOp<Long>(this, StreamShape.LONG_VALUE,
+                                     StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<Long> opWrapSink(int flags, Sink<Long> sink) {
+                return new Sink.ChainedLong(sink) {
+                    @Override
+                    public void accept(long t) {
+                        if (predicate.test(t))
+                            downstream.accept(t);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final LongStream peek(LongConsumer consumer) {
+        Objects.requireNonNull(consumer);
+        return new StatelessOp<Long>(this, StreamShape.LONG_VALUE,
+                                     0) {
+            @Override
+            Sink<Long> opWrapSink(int flags, Sink<Long> sink) {
+                return new Sink.ChainedLong(sink) {
+                    @Override
+                    public void accept(long t) {
+                        consumer.accept(t);
+                        downstream.accept(t);
+                    }
+                };
+            }
+        };
+    }
+
+    // Stateful intermediate ops from LongStream
+
+    private LongStream slice(long skip, long limit) {
+        return SliceOps.makeLong(this, skip, limit);
+    }
+
+    @Override
+    public final LongStream limit(long maxSize) {
+        if (maxSize < 0)
+            throw new IllegalArgumentException(Long.toString(maxSize));
+        return slice(0, maxSize);
+    }
+
+    @Override
+    public final LongStream substream(long startingOffset) {
+        if (startingOffset < 0)
+            throw new IllegalArgumentException(Long.toString(startingOffset));
+        if (startingOffset == 0)
+            return this;
+        else
+            return slice(startingOffset, -1);
+    }
+
+    @Override
+    public final LongStream substream(long startingOffset, long endingOffset) {
+        if (startingOffset < 0 || endingOffset < startingOffset)
+            throw new IllegalArgumentException(String.format("substream(%d, %d)", startingOffset, endingOffset));
+        return slice(startingOffset, endingOffset - startingOffset);
+    }
+
+    @Override
+    public final LongStream sorted() {
+        return SortedOps.makeLong(this);
+    }
+
+    @Override
+    public final LongStream distinct() {
+        // While functional and quick to implement, this approach is not very efficient.
+        // An efficient version requires a long-specific map/set implementation.
+        return boxed().distinct().mapToLong(i -> (long) i);
+    }
+
+    // Terminal ops from LongStream
+
+    @Override
+    public void forEach(LongConsumer action) {
+        evaluate(ForEachOps.makeLong(action, false));
+    }
+
+    @Override
+    public void forEachOrdered(LongConsumer action) {
+        evaluate(ForEachOps.makeLong(action, true));
+    }
+
+    @Override
+    public final long sum() {
+        // use better algorithm to compensate for intermediate overflow?
+        return reduce(0, Long::sum);
+    }
+
+    @Override
+    public final OptionalLong min() {
+        return reduce(Math::min);
+    }
+
+    @Override
+    public final OptionalLong max() {
+        return reduce(Math::max);
+    }
+
+    @Override
+    public final OptionalDouble average() {
+        long[] avg = collect(() -> new long[2],
+                             (ll, i) -> {
+                                 ll[0]++;
+                                 ll[1] += i;
+                             },
+                             (ll, rr) -> {
+                                 ll[0] += rr[0];
+                                 ll[1] += rr[1];
+                             });
+        return avg[0] > 0
+               ? OptionalDouble.of((double) avg[1] / avg[0])
+               : OptionalDouble.empty();
+    }
+
+    @Override
+    public final long count() {
+        return map(e -> 1L).sum();
+    }
+
+    @Override
+    public final LongSummaryStatistics summaryStatistics() {
+        return collect(LongSummaryStatistics::new, LongSummaryStatistics::accept,
+                       LongSummaryStatistics::combine);
+    }
+
+    @Override
+    public final long reduce(long identity, LongBinaryOperator op) {
+        return evaluate(ReduceOps.makeLong(identity, op));
+    }
+
+    @Override
+    public final OptionalLong reduce(LongBinaryOperator op) {
+        return evaluate(ReduceOps.makeLong(op));
+    }
+
+    @Override
+    public final <R> R collect(Supplier<R> resultFactory,
+                               ObjLongConsumer<R> accumulator,
+                               BiConsumer<R, R> combiner) {
+        BinaryOperator<R> operator = (left, right) -> {
+            combiner.accept(left, right);
+            return left;
+        };
+        return evaluate(ReduceOps.makeLong(resultFactory, accumulator, operator));
+    }
+
+    @Override
+    public final boolean anyMatch(LongPredicate predicate) {
+        return evaluate(MatchOps.makeLong(predicate, MatchOps.MatchKind.ANY));
+    }
+
+    @Override
+    public final boolean allMatch(LongPredicate predicate) {
+        return evaluate(MatchOps.makeLong(predicate, MatchOps.MatchKind.ALL));
+    }
+
+    @Override
+    public final boolean noneMatch(LongPredicate predicate) {
+        return evaluate(MatchOps.makeLong(predicate, MatchOps.MatchKind.NONE));
+    }
+
+    @Override
+    public final OptionalLong findFirst() {
+        return evaluate(FindOps.makeLong(true));
+    }
+
+    @Override
+    public final OptionalLong findAny() {
+        return evaluate(FindOps.makeLong(false));
+    }
+
+    @Override
+    public final long[] toArray() {
+        return Nodes.flattenLong((Node.OfLong) evaluateToArrayNode(Long[]::new)).asLongArray();
+    }
+
+
+    //
+
+    /**
+     * Source stage of a LongPipeline.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @since 1.8
+     */
+    static class Head<E_IN> extends LongPipeline<E_IN> {
+        /**
+         * Constructor for the source stage of a LongStream.
+         *
+         * @param source {@code Supplier<Spliterator>} describing the stream
+         *               source
+         * @param sourceFlags the source flags for the stream source, described
+         *                    in {@link StreamOpFlag}
+         * @param parallel {@code true} if the pipeline is parallel
+         */
+        Head(Supplier<? extends Spliterator<Long>> source,
+             int sourceFlags, boolean parallel) {
+            super(source, sourceFlags, parallel);
+        }
+
+        /**
+         * Constructor for the source stage of a LongStream.
+         *
+         * @param source {@code Spliterator} describing the stream source
+         * @param sourceFlags the source flags for the stream source, described
+         *                    in {@link StreamOpFlag}
+         * @param parallel {@code true} if the pipeline is parallel
+         */
+        Head(Spliterator<Long> source,
+             int sourceFlags, boolean parallel) {
+            super(source, sourceFlags, parallel);
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            throw new UnsupportedOperationException();
+        }
+
+        @Override
+        final Sink<E_IN> opWrapSink(int flags, Sink<Long> sink) {
+            throw new UnsupportedOperationException();
+        }
+
+        // Optimized sequential terminal operations for the head of the pipeline
+
+        @Override
+        public void forEach(LongConsumer action) {
+            if (!isParallel()) {
+                adapt(sourceStageSpliterator()).forEachRemaining(action);
+            } else {
+                super.forEach(action);
+            }
+        }
+
+        @Override
+        public void forEachOrdered(LongConsumer action) {
+            if (!isParallel()) {
+                adapt(sourceStageSpliterator()).forEachRemaining(action);
+            } else {
+                super.forEachOrdered(action);
+            }
+        }
+    }
+
+    /** Base class for a stateless intermediate stage of a LongStream.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @since 1.8
+     */
+    abstract static class StatelessOp<E_IN> extends LongPipeline<E_IN> {
+        /**
+         * Construct a new LongStream by appending a stateless intermediate
+         * operation to an existing stream.
+         * @param upstream The upstream pipeline stage
+         * @param inputShape The stream shape for the upstream pipeline stage
+         * @param opFlags Operation flags for the new stage
+         */
+        StatelessOp(AbstractPipeline<?, E_IN, ?> upstream,
+                    StreamShape inputShape,
+                    int opFlags) {
+            super(upstream, opFlags);
+            assert upstream.getOutputShape() == inputShape;
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            return false;
+        }
+    }
+
+    /**
+     * Base class for a stateful intermediate stage of a LongStream.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @since 1.8
+     */
+    abstract static class StatefulOp<E_IN> extends LongPipeline<E_IN> {
+        /**
+         * Construct a new LongStream by appending a stateful intermediate
+         * operation to an existing stream.
+         * @param upstream The upstream pipeline stage
+         * @param inputShape The stream shape for the upstream pipeline stage
+         * @param opFlags Operation flags for the new stage
+         */
+        StatefulOp(AbstractPipeline<?, E_IN, ?> upstream,
+                   StreamShape inputShape,
+                   int opFlags) {
+            super(upstream, opFlags);
+            assert upstream.getOutputShape() == inputShape;
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            return true;
+        }
+
+        @Override
+        abstract <P_IN> Node<Long> opEvaluateParallel(PipelineHelper<Long> helper,
+                                                      Spliterator<P_IN> spliterator,
+                                                      IntFunction<Long[]> generator);
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/Nodes.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,2467 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.ArrayDeque;
+import java.util.Arrays;
+import java.util.Collection;
+import java.util.Deque;
+import java.util.List;
+import java.util.Objects;
+import java.util.Spliterator;
+import java.util.Spliterators;
+import java.util.concurrent.CountedCompleter;
+import java.util.function.Consumer;
+import java.util.function.DoubleConsumer;
+import java.util.function.IntConsumer;
+import java.util.function.IntFunction;
+import java.util.function.LongConsumer;
+
+/**
+ * Factory methods for constructing implementations of {@link Node} and
+ * {@link Node.Builder} and their primitive specializations.  Fork/Join tasks
+ * for collecting output from a {@link PipelineHelper} to a {@link Node} and
+ * flattening {@link Node}s.
+ *
+ * @since 1.8
+ */
+final class Nodes {
+
+    private Nodes() {
+        throw new Error("no instances");
+    }
+
+    /**
+     * The maximum size of an array that can be allocated.
+     */
+    static final long MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
+
+    private static final Node EMPTY_NODE = new EmptyNode.OfRef();
+    private static final Node.OfInt EMPTY_INT_NODE = new EmptyNode.OfInt();
+    private static final Node.OfLong EMPTY_LONG_NODE = new EmptyNode.OfLong();
+    private static final Node.OfDouble EMPTY_DOUBLE_NODE = new EmptyNode.OfDouble();
+
+    // General shape-based node creation methods
+
+    /**
+     * Produces an empty node whose count is zero, has no children and no content.
+     *
+     * @param <T> the type of elements of the created node
+     * @param shape the shape of the node to be created
+     * @return an empty node.
+     */
+    @SuppressWarnings("unchecked")
+    static <T> Node<T> emptyNode(StreamShape shape) {
+        switch (shape) {
+            case REFERENCE:    return (Node<T>) EMPTY_NODE;
+            case INT_VALUE:    return (Node<T>) EMPTY_INT_NODE;
+            case LONG_VALUE:   return (Node<T>) EMPTY_LONG_NODE;
+            case DOUBLE_VALUE: return (Node<T>) EMPTY_DOUBLE_NODE;
+            default:
+                throw new IllegalStateException("Unknown shape " + shape);
+        }
+    }
+
+    /**
+     * Produces a concatenated {@link Node} that has two or more children.
+     * <p>The count of the concatenated node is equal to the sum of the count
+     * of each child. Traversal of the concatenated node traverses the content
+     * of each child in encounter order of the list of children. Splitting a
+     * spliterator obtained from the concatenated node preserves the encounter
+     * order of the list of children.
+     *
+     * <p>The result may be a concatenated node, the input sole node if the size
+     * of the list is 1, or an empty node.
+     *
+     * @param <T> the type of elements of the concatenated node
+     * @param shape the shape of the concatenated node to be created
+     * @param nodes the input nodes
+     * @return a {@code Node} covering the elements of the input nodes
+     * @throws IllegalStateException if all {@link Node} elements of the list
+     * are an not instance of type supported by this factory.
+     */
+    @SuppressWarnings("unchecked")
+    static <T> Node<T> conc(StreamShape shape, List<? extends Node<T>> nodes) {
+        int size = nodes.size();
+        if (size == 0)
+            return emptyNode(shape);
+        else if (size == 1)
+            return nodes.get(0);
+        else {
+            // Create a right-balanced tree when there are more that 2 nodes
+            switch (shape) {
+                case REFERENCE: {
+                    List<Node<T>> refNodes = (List<Node<T>>) nodes;
+                    ConcNode<T> c = new ConcNode<>(refNodes.get(size - 2), refNodes.get(size - 1));
+                    for (int i = size - 3; i >= 0; i--) {
+                        c = new ConcNode<>(refNodes.get(i), c);
+                    }
+                    return c;
+                }
+                case INT_VALUE: {
+                    List<? extends Node.OfInt> intNodes = (List<? extends Node.OfInt>) nodes;
+                    IntConcNode c = new IntConcNode(intNodes.get(size - 2), intNodes.get(size - 1));
+                    for (int i = size - 3; i >= 0; i--) {
+                        c = new IntConcNode(intNodes.get(i), c);
+                    }
+                    return (Node<T>) c;
+                }
+                case LONG_VALUE: {
+                    List<? extends Node.OfLong> longNodes = (List<? extends Node.OfLong>) nodes;
+                    LongConcNode c = new LongConcNode(longNodes.get(size - 2), longNodes.get(size - 1));
+                    for (int i = size - 3; i >= 0; i--) {
+                        c = new LongConcNode(longNodes.get(i), c);
+                    }
+                    return (Node<T>) c;
+                }
+                case DOUBLE_VALUE: {
+                    List<? extends Node.OfDouble> doubleNodes = (List<? extends Node.OfDouble>) nodes;
+                    DoubleConcNode c = new DoubleConcNode(doubleNodes.get(size - 2), doubleNodes.get(size - 1));
+                    for (int i = size - 3; i >= 0; i--) {
+                        c = new DoubleConcNode(doubleNodes.get(i), c);
+                    }
+                    return (Node<T>) c;
+                }
+                default:
+                    throw new IllegalStateException("Unknown shape " + shape);
+            }
+        }
+
+    }
+
+    /**
+     * Truncate a {@link Node}, returning a node describing a subsequence of
+     * the contents of the input node.
+     *
+     * @param <T> the type of elements of the input node and truncated node
+     * @param input the input node
+     * @param from the starting offset to include in the truncated node (inclusive)
+     * @param to the ending offset ot include in the truncated node (exclusive)
+     * @param generator the array factory (only used for reference nodes)
+     * @return the truncated node
+     */
+    @SuppressWarnings("unchecked")
+    static <T> Node<T> truncateNode(Node<T> input, long from, long to, IntFunction<T[]> generator) {
+        StreamShape shape = input.getShape();
+        long size = truncatedSize(input.count(), from, to);
+        if (size == 0)
+            return emptyNode(shape);
+        else if (from == 0 && to >= input.count())
+            return input;
+
+        switch (shape) {
+            case REFERENCE: {
+                Spliterator<T> spliterator = input.spliterator();
+                Node.Builder<T> nodeBuilder = Nodes.builder(size, generator);
+                nodeBuilder.begin(size);
+                for (int i = 0; i < from && spliterator.tryAdvance(e -> { }); i++) { }
+                for (int i = 0; (i < size) && spliterator.tryAdvance(nodeBuilder); i++) { }
+                nodeBuilder.end();
+                return nodeBuilder.build();
+            }
+            case INT_VALUE: {
+                Spliterator.OfInt spliterator = ((Node.OfInt) input).spliterator();
+                Node.Builder.OfInt nodeBuilder = Nodes.intBuilder(size);
+                nodeBuilder.begin(size);
+                for (int i = 0; i < from && spliterator.tryAdvance((IntConsumer) e -> { }); i++) { }
+                for (int i = 0; (i < size) && spliterator.tryAdvance((IntConsumer) nodeBuilder); i++) { }
+                nodeBuilder.end();
+                return (Node<T>) nodeBuilder.build();
+            }
+            case LONG_VALUE: {
+                Spliterator.OfLong spliterator = ((Node.OfLong) input).spliterator();
+                Node.Builder.OfLong nodeBuilder = Nodes.longBuilder(size);
+                nodeBuilder.begin(size);
+                for (int i = 0; i < from && spliterator.tryAdvance((LongConsumer) e -> { }); i++) { }
+                for (int i = 0; (i < size) && spliterator.tryAdvance((LongConsumer) nodeBuilder); i++) { }
+                nodeBuilder.end();
+                return (Node<T>) nodeBuilder.build();
+            }
+            case DOUBLE_VALUE: {
+                Spliterator.OfDouble spliterator = ((Node.OfDouble) input).spliterator();
+                Node.Builder.OfDouble nodeBuilder = Nodes.doubleBuilder(size);
+                nodeBuilder.begin(size);
+                for (int i = 0; i < from && spliterator.tryAdvance((DoubleConsumer) e -> { }); i++) { }
+                for (int i = 0; (i < size) && spliterator.tryAdvance((DoubleConsumer) nodeBuilder); i++) { }
+                nodeBuilder.end();
+                return (Node<T>) nodeBuilder.build();
+            }
+            default:
+                throw new IllegalStateException("Unknown shape " + shape);
+        }
+    }
+
+    private static long truncatedSize(long size, long from, long to) {
+        if (from >= 0)
+            size = Math.max(0, size - from);
+        long limit = to - from;
+        if (limit >= 0)
+            size = Math.min(size, limit);
+        return size;
+    }
+
+    // Reference-based node methods
+
+    /**
+     * Produces a {@link Node} describing an array.
+     *
+     * <p>The node will hold a reference to the array and will not make a copy.
+     *
+     * @param <T> the type of elements held by the node
+     * @param array the array
+     * @return a node holding an array
+     */
+    static <T> Node<T> node(T[] array) {
+        return new ArrayNode<>(array);
+    }
+
+    /**
+     * Produces a {@link Node} describing a {@link Collection}.
+     * <p>
+     * The node will hold a reference to the collection and will not make a copy.
+     *
+     * @param <T> the type of elements held by the node
+     * @param c the collection
+     * @return a node holding a collection
+     */
+    static <T> Node<T> node(Collection<T> c) {
+        return new CollectionNode<>(c);
+    }
+
+    /**
+     * Produces a {@link Node.Builder}.
+     *
+     * @param exactSizeIfKnown -1 if a variable size builder is requested,
+     * otherwise the exact capacity desired.  A fixed capacity builder will
+     * fail if the wrong number of elements are added to the builder.
+     * @param generator the array factory
+     * @param <T> the type of elements of the node builder
+     * @return a {@code Node.Builder}
+     */
+    static <T> Node.Builder<T> builder(long exactSizeIfKnown, IntFunction<T[]> generator) {
+        return (exactSizeIfKnown >= 0 && exactSizeIfKnown < MAX_ARRAY_SIZE)
+               ? new FixedNodeBuilder<>(exactSizeIfKnown, generator)
+               : builder();
+    }
+
+    /**
+     * Produces a variable size @{link Node.Builder}.
+     *
+     * @param <T> the type of elements of the node builder
+     * @return a {@code Node.Builder}
+     */
+    static <T> Node.Builder<T> builder() {
+        return new SpinedNodeBuilder<>();
+    }
+
+    // Int nodes
+
+    /**
+     * Produces a {@link Node.OfInt} describing an int[] array.
+     *
+     * <p>The node will hold a reference to the array and will not make a copy.
+     *
+     * @param array the array
+     * @return a node holding an array
+     */
+    static Node.OfInt node(int[] array) {
+        return new IntArrayNode(array);
+    }
+
+    /**
+     * Produces a {@link Node.Builder.OfInt}.
+     *
+     * @param exactSizeIfKnown -1 if a variable size builder is requested,
+     * otherwise the exact capacity desired.  A fixed capacity builder will
+     * fail if the wrong number of elements are added to the builder.
+     * @return a {@code Node.Builder.OfInt}
+     */
+    static Node.Builder.OfInt intBuilder(long exactSizeIfKnown) {
+        return (exactSizeIfKnown >= 0 && exactSizeIfKnown < MAX_ARRAY_SIZE)
+               ? new IntFixedNodeBuilder(exactSizeIfKnown)
+               : intBuilder();
+    }
+
+    /**
+     * Produces a variable size @{link Node.Builder.OfInt}.
+     *
+     * @return a {@code Node.Builder.OfInt}
+     */
+    static Node.Builder.OfInt intBuilder() {
+        return new IntSpinedNodeBuilder();
+    }
+
+    // Long nodes
+
+    /**
+     * Produces a {@link Node.OfLong} describing a long[] array.
+     * <p>
+     * The node will hold a reference to the array and will not make a copy.
+     *
+     * @param array the array
+     * @return a node holding an array
+     */
+    static Node.OfLong node(final long[] array) {
+        return new LongArrayNode(array);
+    }
+
+    /**
+     * Produces a {@link Node.Builder.OfLong}.
+     *
+     * @param exactSizeIfKnown -1 if a variable size builder is requested,
+     * otherwise the exact capacity desired.  A fixed capacity builder will
+     * fail if the wrong number of elements are added to the builder.
+     * @return a {@code Node.Builder.OfLong}
+     */
+    static Node.Builder.OfLong longBuilder(long exactSizeIfKnown) {
+        return (exactSizeIfKnown >= 0 && exactSizeIfKnown < MAX_ARRAY_SIZE)
+               ? new LongFixedNodeBuilder(exactSizeIfKnown)
+               : longBuilder();
+    }
+
+    /**
+     * Produces a variable size @{link Node.Builder.OfLong}.
+     *
+     * @return a {@code Node.Builder.OfLong}
+     */
+    static Node.Builder.OfLong longBuilder() {
+        return new LongSpinedNodeBuilder();
+    }
+
+    // Double nodes
+
+    /**
+     * Produces a {@link Node.OfDouble} describing a double[] array.
+     *
+     * <p>The node will hold a reference to the array and will not make a copy.
+     *
+     * @param array the array
+     * @return a node holding an array
+     */
+    static Node.OfDouble node(final double[] array) {
+        return new DoubleArrayNode(array);
+    }
+
+    /**
+     * Produces a {@link Node.Builder.OfDouble}.
+     *
+     * @param exactSizeIfKnown -1 if a variable size builder is requested,
+     * otherwise the exact capacity desired.  A fixed capacity builder will
+     * fail if the wrong number of elements are added to the builder.
+     * @return a {@code Node.Builder.OfDouble}
+     */
+    static Node.Builder.OfDouble doubleBuilder(long exactSizeIfKnown) {
+        return (exactSizeIfKnown >= 0 && exactSizeIfKnown < MAX_ARRAY_SIZE)
+               ? new DoubleFixedNodeBuilder(exactSizeIfKnown)
+               : doubleBuilder();
+    }
+
+    /**
+     * Produces a variable size @{link Node.Builder.OfDouble}.
+     *
+     * @return a {@code Node.Builder.OfDouble}
+     */
+    static Node.Builder.OfDouble doubleBuilder() {
+        return new DoubleSpinedNodeBuilder();
+    }
+
+    // Parallel evaluation of pipelines to nodes
+
+    /**
+     * Collect, in parallel, elements output from a pipeline and describe those
+     * elements with a {@link Node}.
+     *
+     * @implSpec
+     * If the exact size of the output from the pipeline is known and the source
+     * {@link Spliterator} has the {@link Spliterator#SUBSIZED} characteristic,
+     * then a flat {@link Node} will be returned whose content is an array,
+     * since the size is known the array can be constructed in advance and
+     * output elements can be placed into the array concurrently by leaf
+     * tasks at the correct offsets.  If the exact size is not known, output
+     * elements are collected into a conc-node whose shape mirrors that
+     * of the computation. This conc-node can then be flattened in
+     * parallel to produce a flat {@code Node} if desired.
+     *
+     * @param helper the pipeline helper describing the pipeline
+     * @param flattenTree whether a conc node should be flattened into a node
+     *                    describing an array before returning
+     * @param generator the array generator
+     * @return a {@link Node} describing the output elements
+     */
+    public static <P_IN, P_OUT> Node<P_OUT> collect(PipelineHelper<P_OUT> helper,
+                                                    Spliterator<P_IN> spliterator,
+                                                    boolean flattenTree,
+                                                    IntFunction<P_OUT[]> generator) {
+        long size = helper.exactOutputSizeIfKnown(spliterator);
+        if (size >= 0 && spliterator.hasCharacteristics(Spliterator.SUBSIZED)) {
+            if (size >= MAX_ARRAY_SIZE)
+                throw new IllegalArgumentException("Stream size exceeds max array size");
+            P_OUT[] array = generator.apply((int) size);
+            new SizedCollectorTask.OfRef<>(spliterator, helper, array).invoke();
+            return node(array);
+        } else {
+            Node<P_OUT> node = new CollectorTask<>(helper, generator, spliterator).invoke();
+            return flattenTree ? flatten(node, generator) : node;
+        }
+    }
+
+    /**
+     * Collect, in parallel, elements output from an int-valued pipeline and
+     * describe those elements with a {@link Node.OfInt}.
+     *
+     * @implSpec
+     * If the exact size of the output from the pipeline is known and the source
+     * {@link Spliterator} has the {@link Spliterator#SUBSIZED} characteristic,
+     * then a flat {@link Node} will be returned whose content is an array,
+     * since the size is known the array can be constructed in advance and
+     * output elements can be placed into the array concurrently by leaf
+     * tasks at the correct offsets.  If the exact size is not known, output
+     * elements are collected into a conc-node whose shape mirrors that
+     * of the computation. This conc-node can then be flattened in
+     * parallel to produce a flat {@code Node.OfInt} if desired.
+     *
+     * @param <P_IN> the type of elements from the source Spliterator
+     * @param helper the pipeline helper describing the pipeline
+     * @param flattenTree whether a conc node should be flattened into a node
+     *                    describing an array before returning
+     * @return a {@link Node.OfInt} describing the output elements
+     */
+    public static <P_IN> Node.OfInt collectInt(PipelineHelper<Integer> helper,
+                                               Spliterator<P_IN> spliterator,
+                                               boolean flattenTree) {
+        long size = helper.exactOutputSizeIfKnown(spliterator);
+        if (size >= 0 && spliterator.hasCharacteristics(Spliterator.SUBSIZED)) {
+            if (size >= MAX_ARRAY_SIZE)
+                throw new IllegalArgumentException("Stream size exceeds max array size");
+            int[] array = new int[(int) size];
+            new SizedCollectorTask.OfInt<>(spliterator, helper, array).invoke();
+            return node(array);
+        }
+        else {
+            Node.OfInt node = new IntCollectorTask<>(helper, spliterator).invoke();
+            return flattenTree ? flattenInt(node) : node;
+        }
+    }
+
+    /**
+     * Collect, in parallel, elements output from a long-valued pipeline and
+     * describe those elements with a {@link Node.OfLong}.
+     *
+     * @implSpec
+     * If the exact size of the output from the pipeline is known and the source
+     * {@link Spliterator} has the {@link Spliterator#SUBSIZED} characteristic,
+     * then a flat {@link Node} will be returned whose content is an array,
+     * since the size is known the array can be constructed in advance and
+     * output elements can be placed into the array concurrently by leaf
+     * tasks at the correct offsets.  If the exact size is not known, output
+     * elements are collected into a conc-node whose shape mirrors that
+     * of the computation. This conc-node can then be flattened in
+     * parallel to produce a flat {@code Node.OfLong} if desired.
+     *
+     * @param <P_IN> the type of elements from the source Spliterator
+     * @param helper the pipeline helper describing the pipeline
+     * @param flattenTree whether a conc node should be flattened into a node
+     *                    describing an array before returning
+     * @return a {@link Node.OfLong} describing the output elements
+     */
+    public static <P_IN> Node.OfLong collectLong(PipelineHelper<Long> helper,
+                                                 Spliterator<P_IN> spliterator,
+                                                 boolean flattenTree) {
+        long size = helper.exactOutputSizeIfKnown(spliterator);
+        if (size >= 0 && spliterator.hasCharacteristics(Spliterator.SUBSIZED)) {
+            if (size >= MAX_ARRAY_SIZE)
+                throw new IllegalArgumentException("Stream size exceeds max array size");
+            long[] array = new long[(int) size];
+            new SizedCollectorTask.OfLong<>(spliterator, helper, array).invoke();
+            return node(array);
+        }
+        else {
+            Node.OfLong node = new LongCollectorTask<>(helper, spliterator).invoke();
+            return flattenTree ? flattenLong(node) : node;
+        }
+    }
+
+    /**
+     * Collect, in parallel, elements output from n double-valued pipeline and
+     * describe those elements with a {@link Node.OfDouble}.
+     *
+     * @implSpec
+     * If the exact size of the output from the pipeline is known and the source
+     * {@link Spliterator} has the {@link Spliterator#SUBSIZED} characteristic,
+     * then a flat {@link Node} will be returned whose content is an array,
+     * since the size is known the array can be constructed in advance and
+     * output elements can be placed into the array concurrently by leaf
+     * tasks at the correct offsets.  If the exact size is not known, output
+     * elements are collected into a conc-node whose shape mirrors that
+     * of the computation. This conc-node can then be flattened in
+     * parallel to produce a flat {@code Node.OfDouble} if desired.
+     *
+     * @param <P_IN> the type of elements from the source Spliterator
+     * @param helper the pipeline helper describing the pipeline
+     * @param flattenTree whether a conc node should be flattened into a node
+     *                    describing an array before returning
+     * @return a {@link Node.OfDouble} describing the output elements
+     */
+    public static <P_IN> Node.OfDouble collectDouble(PipelineHelper<Double> helper,
+                                                     Spliterator<P_IN> spliterator,
+                                                     boolean flattenTree) {
+        long size = helper.exactOutputSizeIfKnown(spliterator);
+        if (size >= 0 && spliterator.hasCharacteristics(Spliterator.SUBSIZED)) {
+            if (size >= MAX_ARRAY_SIZE)
+                throw new IllegalArgumentException("Stream size exceeds max array size");
+            double[] array = new double[(int) size];
+            new SizedCollectorTask.OfDouble<>(spliterator, helper, array).invoke();
+            return node(array);
+        }
+        else {
+            Node.OfDouble node = new DoubleCollectorTask<>(helper, spliterator).invoke();
+            return flattenTree ? flattenDouble(node) : node;
+        }
+    }
+
+    // Parallel flattening of nodes
+
+    /**
+     * Flatten, in parallel, a {@link Node}.  A flattened node is one that has
+     * no children.  If the node is already flat, it is simply returned.
+     *
+     * @implSpec
+     * If a new node is to be created, the generator is used to create an array
+     * whose length is {@link Node#count()}.  Then the node tree is traversed
+     * and leaf node elements are placed in the array concurrently by leaf tasks
+     * at the correct offsets.
+     *
+     * @param <T> type of elements contained by the node
+     * @param node the node to flatten
+     * @param generator the array factory used to create array instances
+     * @return a flat {@code Node}
+     */
+    public static <T> Node<T> flatten(Node<T> node, IntFunction<T[]> generator) {
+        if (node.getChildCount() > 0) {
+            T[] array = generator.apply((int) node.count());
+            new ToArrayTask.OfRef<>(node, array, 0).invoke();
+            return node(array);
+        } else {
+            return node;
+        }
+    }
+
+    /**
+     * Flatten, in parallel, a {@link Node.OfInt}.  A flattened node is one that
+     * has no children.  If the node is already flat, it is simply returned.
+     *
+     * @implSpec
+     * If a new node is to be created, a new int[] array is created whose length
+     * is {@link Node#count()}.  Then the node tree is traversed and leaf node
+     * elements are placed in the array concurrently by leaf tasks at the
+     * correct offsets.
+     *
+     * @param node the node to flatten
+     * @return a flat {@code Node.OfInt}
+     */
+    public static Node.OfInt flattenInt(Node.OfInt node) {
+        if (node.getChildCount() > 0) {
+            int[] array = new int[(int) node.count()];
+            new ToArrayTask.OfInt(node, array, 0).invoke();
+            return node(array);
+        } else {
+            return node;
+        }
+    }
+
+    /**
+     * Flatten, in parallel, a {@link Node.OfLong}.  A flattened node is one that
+     * has no children.  If the node is already flat, it is simply returned.
+     *
+     * @implSpec
+     * If a new node is to be created, a new long[] array is created whose length
+     * is {@link Node#count()}.  Then the node tree is traversed and leaf node
+     * elements are placed in the array concurrently by leaf tasks at the
+     * correct offsets.
+     *
+     * @param node the node to flatten
+     * @return a flat {@code Node.OfLong}
+     */
+    public static Node.OfLong flattenLong(Node.OfLong node) {
+        if (node.getChildCount() > 0) {
+            long[] array = new long[(int) node.count()];
+            new ToArrayTask.OfLong(node, array, 0).invoke();
+            return node(array);
+        } else {
+            return node;
+        }
+    }
+
+    /**
+     * Flatten, in parallel, a {@link Node.OfDouble}.  A flattened node is one that
+     * has no children.  If the node is already flat, it is simply returned.
+     *
+     * @implSpec
+     * If a new node is to be created, a new double[] array is created whose length
+     * is {@link Node#count()}.  Then the node tree is traversed and leaf node
+     * elements are placed in the array concurrently by leaf tasks at the
+     * correct offsets.
+     *
+     * @param node the node to flatten
+     * @return a flat {@code Node.OfDouble}
+     */
+    public static Node.OfDouble flattenDouble(Node.OfDouble node) {
+        if (node.getChildCount() > 0) {
+            double[] array = new double[(int) node.count()];
+            new ToArrayTask.OfDouble(node, array, 0).invoke();
+            return node(array);
+        } else {
+            return node;
+        }
+    }
+
+    // Implementations
+
+    private static abstract class EmptyNode<T, T_ARR, T_CONS> implements Node<T> {
+        EmptyNode() { }
+
+        @Override
+        public T[] asArray(IntFunction<T[]> generator) {
+            return generator.apply(0);
+        }
+
+        public void copyInto(T_ARR array, int offset) { }
+
+        @Override
+        public long count() {
+            return 0;
+        }
+
+        public void forEach(T_CONS consumer) { }
+
+        private static class OfRef<T> extends EmptyNode<T, T[], Consumer<? super T>> {
+            private OfRef() {
+                super();
+            }
+
+            @Override
+            public Spliterator<T> spliterator() {
+                return Spliterators.emptySpliterator();
+            }
+        }
+
+        private static final class OfInt
+                extends EmptyNode<Integer, int[], IntConsumer>
+                implements Node.OfInt {
+
+            OfInt() { } // Avoid creation of special accessor
+
+            @Override
+            public Spliterator.OfInt spliterator() {
+                return Spliterators.emptyIntSpliterator();
+            }
+
+            @Override
+            public int[] asIntArray() {
+                return EMPTY_INT_ARRAY;
+            }
+        }
+
+        private static final class OfLong
+                extends EmptyNode<Long, long[], LongConsumer>
+                implements Node.OfLong {
+
+            OfLong() { } // Avoid creation of special accessor
+
+            @Override
+            public Spliterator.OfLong spliterator() {
+                return Spliterators.emptyLongSpliterator();
+            }
+
+            @Override
+            public long[] asLongArray() {
+                return EMPTY_LONG_ARRAY;
+            }
+        }
+
+        private static final class OfDouble
+                extends EmptyNode<Double, double[], DoubleConsumer>
+                implements Node.OfDouble {
+
+            OfDouble() { } // Avoid creation of special accessor
+
+            @Override
+            public Spliterator.OfDouble spliterator() {
+                return Spliterators.emptyDoubleSpliterator();
+            }
+
+            @Override
+            public double[] asDoubleArray() {
+                return EMPTY_DOUBLE_ARRAY;
+            }
+        }
+    }
+
+    /** Node class for a reference array */
+    private static class ArrayNode<T> implements Node<T> {
+        final T[] array;
+        int curSize;
+
+        @SuppressWarnings("unchecked")
+        ArrayNode(long size, IntFunction<T[]> generator) {
+            if (size >= MAX_ARRAY_SIZE)
+                throw new IllegalArgumentException("Stream size exceeds max array size");
+            this.array = generator.apply((int) size);
+            this.curSize = 0;
+        }
+
+        ArrayNode(T[] array) {
+            this.array = array;
+            this.curSize = array.length;
+        }
+
+        // Node
+
+        @Override
+        public Spliterator<T> spliterator() {
+            return Arrays.spliterator(array, 0, curSize);
+        }
+
+        @Override
+        public void copyInto(T[] dest, int destOffset) {
+            System.arraycopy(array, 0, dest, destOffset, curSize);
+        }
+
+        @Override
+        public T[] asArray(IntFunction<T[]> generator) {
+            if (array.length == curSize) {
+                return array;
+            } else {
+                throw new IllegalStateException();
+            }
+        }
+
+        @Override
+        public long count() {
+            return curSize;
+        }
+
+        // Traversable
+
+        @Override
+        public void forEach(Consumer<? super T> consumer) {
+            for (int i = 0; i < curSize; i++) {
+                consumer.accept(array[i]);
+            }
+        }
+
+        //
+
+        @Override
+        public String toString() {
+            return String.format("ArrayNode[%d][%s]",
+                                 array.length - curSize, Arrays.toString(array));
+        }
+    }
+
+    /** Node class for a Collection */
+    private static final class CollectionNode<T> implements Node<T> {
+        private final Collection<T> c;
+
+        CollectionNode(Collection<T> c) {
+            this.c = c;
+        }
+
+        // Node
+
+        @Override
+        public Spliterator<T> spliterator() {
+            return c.stream().spliterator();
+        }
+
+        @Override
+        public void copyInto(T[] array, int offset) {
+            for (T t : c)
+                array[offset++] = t;
+        }
+
+        @Override
+        @SuppressWarnings("unchecked")
+        public T[] asArray(IntFunction<T[]> generator) {
+            return c.toArray(generator.apply(c.size()));
+        }
+
+        @Override
+        public long count() {
+            return c.size();
+        }
+
+        @Override
+        public void forEach(Consumer<? super T> consumer) {
+            c.forEach(consumer);
+        }
+
+        //
+
+        @Override
+        public String toString() {
+            return String.format("CollectionNode[%d][%s]", c.size(), c);
+        }
+    }
+
+    /**
+     * Node class for an internal node with two or more children
+     */
+    static final class ConcNode<T> implements Node<T> {
+        private final Node<T> left;
+        private final Node<T> right;
+
+        private final long size;
+
+        ConcNode(Node<T> left, Node<T> right) {
+            this.left = left;
+            this.right = right;
+            // The Node count will be required when the Node spliterator is
+            // obtained and it is cheaper to aggressively calculate bottom up
+            // as the tree is built rather than later on from the top down
+            // traversing the tree
+            this.size = left.count() + right.count();
+        }
+
+        // Node
+
+        @Override
+        public Spliterator<T> spliterator() {
+            return new Nodes.InternalNodeSpliterator.OfRef<>(this);
+        }
+
+        @Override
+        public int getChildCount() {
+            return 2;
+        }
+
+        @Override
+        public Node<T> getChild(int i) {
+            if (i == 0) return left;
+            if (i == 1) return right;
+            throw new IndexOutOfBoundsException();
+        }
+
+        @Override
+        public void copyInto(T[] array, int offset) {
+            Objects.requireNonNull(array);
+            left.copyInto(array, offset);
+            right.copyInto(array, offset + (int) left.count());
+        }
+
+        @Override
+        public T[] asArray(IntFunction<T[]> generator) {
+            T[] array = generator.apply((int) count());
+            copyInto(array, 0);
+            return array;
+        }
+
+        @Override
+        public long count() {
+            return size;
+        }
+
+        @Override
+        public void forEach(Consumer<? super T> consumer) {
+            left.forEach(consumer);
+            right.forEach(consumer);
+        }
+
+        @Override
+        public String toString() {
+            if (count() < 32) {
+                return String.format("ConcNode[%s.%s]", left, right);
+            } else {
+                return String.format("ConcNode[size=%d]", count());
+            }
+        }
+    }
+
+    /** Abstract class for spliterator for all internal node classes */
+    private static abstract class InternalNodeSpliterator<T,
+                                                          S extends Spliterator<T>,
+                                                          N extends Node<T>, C>
+            implements Spliterator<T> {
+        // Node we are pointing to
+        // null if full traversal has occurred
+        N curNode;
+
+        // next child of curNode to consume
+        int curChildIndex;
+
+        // The spliterator of the curNode if that node is last and has no children.
+        // This spliterator will be delegated to for splitting and traversing.
+        // null if curNode has children
+        S lastNodeSpliterator;
+
+        // spliterator used while traversing with tryAdvance
+        // null if no partial traversal has occurred
+        S tryAdvanceSpliterator;
+
+        // node stack used when traversing to search and find leaf nodes
+        // null if no partial traversal has occurred
+        Deque<N> tryAdvanceStack;
+
+        InternalNodeSpliterator(N curNode) {
+            this.curNode = curNode;
+        }
+
+        /**
+         * Initiate a stack containing, in left-to-right order, the child nodes
+         * covered by this spliterator
+         */
+        protected final Deque<N> initStack() {
+            // Bias size to the case where leaf nodes are close to this node
+            // 8 is the minimum initial capacity for the ArrayDeque implementation
+            Deque<N> stack = new ArrayDeque<>(8);
+            for (int i = curNode.getChildCount() - 1; i >= curChildIndex; i--)
+                stack.addFirst((N) curNode.getChild(i));
+            return stack;
+        }
+
+        /**
+         * Depth first search, in left-to-right order, of the node tree, using
+         * an explicit stack, to find the next non-empty leaf node.
+         */
+        protected final N findNextLeafNode(Deque<N> stack) {
+            N n = null;
+            while ((n = stack.pollFirst()) != null) {
+                if (n.getChildCount() == 0) {
+                    if (n.count() > 0)
+                        return n;
+                } else {
+                    for (int i = n.getChildCount() - 1; i >= 0; i--)
+                        stack.addFirst((N) n.getChild(i));
+                }
+            }
+
+            return null;
+        }
+
+        protected final boolean internalTryAdvance(C consumer) {
+            if (curNode == null)
+                return false;
+
+            if (tryAdvanceSpliterator == null) {
+                if (lastNodeSpliterator == null) {
+                    // Initiate the node stack
+                    tryAdvanceStack = initStack();
+                    N leaf = findNextLeafNode(tryAdvanceStack);
+                    if (leaf != null)
+                        tryAdvanceSpliterator = (S) leaf.spliterator();
+                    else {
+                        // A non-empty leaf node was not found
+                        // No elements to traverse
+                        curNode = null;
+                        return false;
+                    }
+                }
+                else
+                    tryAdvanceSpliterator = lastNodeSpliterator;
+            }
+
+            boolean hasNext = tryAdvance(tryAdvanceSpliterator, consumer);
+            if (!hasNext) {
+                if (lastNodeSpliterator == null) {
+                    // Advance to the spliterator of the next non-empty leaf node
+                    Node<T> leaf = findNextLeafNode(tryAdvanceStack);
+                    if (leaf != null) {
+                        tryAdvanceSpliterator = (S) leaf.spliterator();
+                        // Since the node is not-empty the spliterator can be advanced
+                        return tryAdvance(tryAdvanceSpliterator, consumer);
+                    }
+                }
+                // No more elements to traverse
+                curNode = null;
+            }
+            return hasNext;
+        }
+
+        protected abstract boolean tryAdvance(S spliterator, C consumer);
+
+        @Override
+        @SuppressWarnings("unchecked")
+        public S trySplit() {
+            if (curNode == null || tryAdvanceSpliterator != null)
+                return null; // Cannot split if fully or partially traversed
+            else if (lastNodeSpliterator != null)
+                return (S) lastNodeSpliterator.trySplit();
+            else if (curChildIndex < curNode.getChildCount() - 1)
+                return (S) curNode.getChild(curChildIndex++).spliterator();
+            else {
+                curNode = (N) curNode.getChild(curChildIndex);
+                if (curNode.getChildCount() == 0) {
+                    lastNodeSpliterator = (S) curNode.spliterator();
+                    return (S) lastNodeSpliterator.trySplit();
+                }
+                else {
+                    curChildIndex = 0;
+                    return (S) curNode.getChild(curChildIndex++).spliterator();
+                }
+            }
+        }
+
+        @Override
+        public long estimateSize() {
+            if (curNode == null)
+                return 0;
+
+            // Will not reflect the effects of partial traversal.
+            // This is compliant with the specification
+            if (lastNodeSpliterator != null)
+                return lastNodeSpliterator.estimateSize();
+            else {
+                long size = 0;
+                for (int i = curChildIndex; i < curNode.getChildCount(); i++)
+                    size += curNode.getChild(i).count();
+                return size;
+            }
+        }
+
+        @Override
+        public int characteristics() {
+            return Spliterator.SIZED;
+        }
+
+        private static final class OfRef<T>
+                extends InternalNodeSpliterator<T, Spliterator<T>, Node<T>, Consumer<? super T>> {
+
+            OfRef(Node<T> curNode) {
+                super(curNode);
+            }
+
+            @Override
+            public boolean tryAdvance(Consumer<? super T> consumer) {
+                return internalTryAdvance(consumer);
+            }
+
+            @Override
+            protected boolean tryAdvance(Spliterator<T> spliterator,
+                                         Consumer<? super T> consumer) {
+                return spliterator.tryAdvance(consumer);
+            }
+
+            @Override
+            public void forEachRemaining(Consumer<? super T> consumer) {
+                if (curNode == null)
+                    return;
+
+                if (tryAdvanceSpliterator == null) {
+                    if (lastNodeSpliterator == null) {
+                        Deque<Node<T>> stack = initStack();
+                        Node<T> leaf;
+                        while ((leaf = findNextLeafNode(stack)) != null) {
+                            leaf.forEach(consumer);
+                        }
+                        curNode = null;
+                    }
+                    else
+                        lastNodeSpliterator.forEachRemaining(consumer);
+                }
+                else
+                    while(tryAdvance(consumer)) { }
+            }
+        }
+
+        private static final class OfInt
+                extends InternalNodeSpliterator<Integer, Spliterator.OfInt, Node.OfInt, IntConsumer>
+                implements Spliterator.OfInt {
+
+            OfInt(Node.OfInt cur) {
+                super(cur);
+            }
+
+            @Override
+            public boolean tryAdvance(IntConsumer consumer) {
+                return internalTryAdvance(consumer);
+            }
+
+            @Override
+            protected boolean tryAdvance(Spliterator.OfInt spliterator,
+                                         IntConsumer consumer) {
+                return spliterator.tryAdvance(consumer);
+            }
+
+            @Override
+            public void forEachRemaining(IntConsumer consumer) {
+                if (curNode == null)
+                    return;
+
+                if (tryAdvanceSpliterator == null) {
+                    if (lastNodeSpliterator == null) {
+                        Deque<Node.OfInt> stack = initStack();
+                        Node.OfInt leaf;
+                        while ((leaf = findNextLeafNode(stack)) != null) {
+                            leaf.forEach(consumer);
+                        }
+                        curNode = null;
+                    }
+                    else
+                        lastNodeSpliterator.forEachRemaining(consumer);
+                }
+                else
+                    while(tryAdvance(consumer)) { }
+            }
+        }
+
+        private static final class OfLong
+                extends InternalNodeSpliterator<Long, Spliterator.OfLong, Node.OfLong, LongConsumer>
+                implements Spliterator.OfLong {
+
+            OfLong(Node.OfLong cur) {
+                super(cur);
+            }
+
+            @Override
+            public boolean tryAdvance(LongConsumer consumer) {
+                return internalTryAdvance(consumer);
+            }
+
+            @Override
+            protected boolean tryAdvance(Spliterator.OfLong spliterator,
+                                         LongConsumer consumer) {
+                return spliterator.tryAdvance(consumer);
+            }
+
+            @Override
+            public void forEachRemaining(LongConsumer consumer) {
+                if (curNode == null)
+                    return;
+
+                if (tryAdvanceSpliterator == null) {
+                    if (lastNodeSpliterator == null) {
+                        Deque<Node.OfLong> stack = initStack();
+                        Node.OfLong leaf;
+                        while ((leaf = findNextLeafNode(stack)) != null) {
+                            leaf.forEach(consumer);
+                        }
+                        curNode = null;
+                    }
+                    else
+                        lastNodeSpliterator.forEachRemaining(consumer);
+                }
+                else
+                    while(tryAdvance(consumer)) { }
+            }
+        }
+
+        private static final class OfDouble
+                extends InternalNodeSpliterator<Double, Spliterator.OfDouble, Node.OfDouble, DoubleConsumer>
+                implements Spliterator.OfDouble {
+
+            OfDouble(Node.OfDouble cur) {
+                super(cur);
+            }
+
+            @Override
+            public boolean tryAdvance(DoubleConsumer consumer) {
+                return internalTryAdvance(consumer);
+            }
+
+            @Override
+            protected boolean tryAdvance(Spliterator.OfDouble spliterator,
+                                         DoubleConsumer consumer) {
+                return spliterator.tryAdvance(consumer);
+            }
+
+            @Override
+            public void forEachRemaining(DoubleConsumer consumer) {
+                if (curNode == null)
+                    return;
+
+                if (tryAdvanceSpliterator == null) {
+                    if (lastNodeSpliterator == null) {
+                        Deque<Node.OfDouble> stack = initStack();
+                        Node.OfDouble leaf;
+                        while ((leaf = findNextLeafNode(stack)) != null) {
+                            leaf.forEach(consumer);
+                        }
+                        curNode = null;
+                    }
+                    else
+                        lastNodeSpliterator.forEachRemaining(consumer);
+                }
+                else
+                    while(tryAdvance(consumer)) { }
+            }
+        }
+    }
+
+    /**
+     * Fixed-sized builder class for reference nodes
+     */
+    private static final class FixedNodeBuilder<T>
+            extends ArrayNode<T>
+            implements Node.Builder<T> {
+
+        FixedNodeBuilder(long size, IntFunction<T[]> generator) {
+            super(size, generator);
+            assert size < MAX_ARRAY_SIZE;
+        }
+
+        @Override
+        public Node<T> build() {
+            if (curSize < array.length)
+                throw new IllegalStateException(String.format("Current size %d is less than fixed size %d",
+                                                              curSize, array.length));
+            return this;
+        }
+
+        @Override
+        public void begin(long size) {
+            if (size != array.length)
+                throw new IllegalStateException(String.format("Begin size %d is not equal to fixed size %d",
+                                                              size, array.length));
+            curSize = 0;
+        }
+
+        @Override
+        public void accept(T t) {
+            if (curSize < array.length) {
+                array[curSize++] = t;
+            } else {
+                throw new IllegalStateException(String.format("Accept exceeded fixed size of %d",
+                                                              array.length));
+            }
+        }
+
+        @Override
+        public void end() {
+            if (curSize < array.length)
+                throw new IllegalStateException(String.format("End size %d is less than fixed size %d",
+                                                              curSize, array.length));
+        }
+
+        @Override
+        public String toString() {
+            return String.format("FixedNodeBuilder[%d][%s]",
+                                 array.length - curSize, Arrays.toString(array));
+        }
+    }
+
+    /**
+     * Variable-sized builder class for reference nodes
+     */
+    private static final class SpinedNodeBuilder<T>
+            extends SpinedBuffer<T>
+            implements Node<T>, Node.Builder<T> {
+        private boolean building = false;
+
+        SpinedNodeBuilder() {} // Avoid creation of special accessor
+
+        @Override
+        public Spliterator<T> spliterator() {
+            assert !building : "during building";
+            return super.spliterator();
+        }
+
+        @Override
+        public void forEach(Consumer<? super T> consumer) {
+            assert !building : "during building";
+            super.forEach(consumer);
+        }
+
+        //
+        @Override
+        public void begin(long size) {
+            assert !building : "was already building";
+            building = true;
+            clear();
+            ensureCapacity(size);
+        }
+
+        @Override
+        public void accept(T t) {
+            assert building : "not building";
+            super.accept(t);
+        }
+
+        @Override
+        public void end() {
+            assert building : "was not building";
+            building = false;
+            // @@@ check begin(size) and size
+        }
+
+        @Override
+        public void copyInto(T[] array, int offset) {
+            assert !building : "during building";
+            super.copyInto(array, offset);
+        }
+
+        @Override
+        public T[] asArray(IntFunction<T[]> arrayFactory) {
+            assert !building : "during building";
+            return super.asArray(arrayFactory);
+        }
+
+        @Override
+        public Node<T> build() {
+            assert !building : "during building";
+            return this;
+        }
+    }
+
+    //
+
+    private static final int[] EMPTY_INT_ARRAY = new int[0];
+    private static final long[] EMPTY_LONG_ARRAY = new long[0];
+    private static final double[] EMPTY_DOUBLE_ARRAY = new double[0];
+
+    private abstract static class AbstractPrimitiveConcNode<E, N extends Node<E>>
+            implements Node<E> {
+        final N left;
+        final N right;
+        final long size;
+
+        AbstractPrimitiveConcNode(N left, N right) {
+            this.left = left;
+            this.right = right;
+            // The Node count will be required when the Node spliterator is
+            // obtained and it is cheaper to aggressively calculate bottom up as
+            // the tree is built rather than later on by traversing the tree
+            this.size = left.count() + right.count();
+        }
+
+        @Override
+        public int getChildCount() {
+            return 2;
+        }
+
+        @Override
+        public N getChild(int i) {
+            if (i == 0) return left;
+            if (i == 1) return right;
+            throw new IndexOutOfBoundsException();
+        }
+
+        @Override
+        public long count() {
+            return size;
+        }
+
+        @Override
+        public String toString() {
+            if (count() < 32)
+                return String.format("%s[%s.%s]", this.getClass().getName(), left, right);
+            else
+                return String.format("%s[size=%d]", this.getClass().getName(), count());
+        }
+    }
+
+    private static class IntArrayNode implements Node.OfInt {
+        final int[] array;
+        int curSize;
+
+        IntArrayNode(long size) {
+            if (size >= MAX_ARRAY_SIZE)
+                throw new IllegalArgumentException("Stream size exceeds max array size");
+            this.array = new int[(int) size];
+            this.curSize = 0;
+        }
+
+        IntArrayNode(int[] array) {
+            this.array = array;
+            this.curSize = array.length;
+        }
+
+        // Node
+
+        @Override
+        public Spliterator.OfInt spliterator() {
+            return Arrays.spliterator(array, 0, curSize);
+        }
+
+        @Override
+        public int[] asIntArray() {
+            if (array.length == curSize) {
+                return array;
+            } else {
+                return Arrays.copyOf(array, curSize);
+            }
+        }
+
+        @Override
+        public void copyInto(int[] dest, int destOffset) {
+            System.arraycopy(array, 0, dest, destOffset, curSize);
+        }
+
+        @Override
+        public long count() {
+            return curSize;
+        }
+
+        @Override
+        public void forEach(IntConsumer consumer) {
+            for (int i = 0; i < curSize; i++) {
+                consumer.accept(array[i]);
+            }
+        }
+
+        @Override
+        public String toString() {
+            return String.format("IntArrayNode[%d][%s]",
+                                 array.length - curSize, Arrays.toString(array));
+        }
+    }
+
+    private static class LongArrayNode implements Node.OfLong {
+        final long[] array;
+        int curSize;
+
+        LongArrayNode(long size) {
+            if (size >= MAX_ARRAY_SIZE)
+                throw new IllegalArgumentException("Stream size exceeds max array size");
+            this.array = new long[(int) size];
+            this.curSize = 0;
+        }
+
+        LongArrayNode(long[] array) {
+            this.array = array;
+            this.curSize = array.length;
+        }
+
+        @Override
+        public Spliterator.OfLong spliterator() {
+            return Arrays.spliterator(array, 0, curSize);
+        }
+
+        @Override
+        public long[] asLongArray() {
+            if (array.length == curSize) {
+                return array;
+            } else {
+                return Arrays.copyOf(array, curSize);
+            }
+        }
+
+        @Override
+        public void copyInto(long[] dest, int destOffset) {
+            System.arraycopy(array, 0, dest, destOffset, curSize);
+        }
+
+        @Override
+        public long count() {
+            return curSize;
+        }
+
+        @Override
+        public void forEach(LongConsumer consumer) {
+            for (int i = 0; i < curSize; i++) {
+                consumer.accept(array[i]);
+            }
+        }
+
+        @Override
+        public String toString() {
+            return String.format("LongArrayNode[%d][%s]",
+                                 array.length - curSize, Arrays.toString(array));
+        }
+    }
+
+    private static class DoubleArrayNode implements Node.OfDouble {
+        final double[] array;
+        int curSize;
+
+        DoubleArrayNode(long size) {
+            if (size >= MAX_ARRAY_SIZE)
+                throw new IllegalArgumentException("Stream size exceeds max array size");
+            this.array = new double[(int) size];
+            this.curSize = 0;
+        }
+
+        DoubleArrayNode(double[] array) {
+            this.array = array;
+            this.curSize = array.length;
+        }
+
+        @Override
+        public Spliterator.OfDouble spliterator() {
+            return Arrays.spliterator(array, 0, curSize);
+        }
+
+        @Override
+        public double[] asDoubleArray() {
+            if (array.length == curSize) {
+                return array;
+            } else {
+                return Arrays.copyOf(array, curSize);
+            }
+        }
+
+        @Override
+        public void copyInto(double[] dest, int destOffset) {
+            System.arraycopy(array, 0, dest, destOffset, curSize);
+        }
+
+        @Override
+        public long count() {
+            return curSize;
+        }
+
+        @Override
+        public void forEach(DoubleConsumer consumer) {
+            for (int i = 0; i < curSize; i++) {
+                consumer.accept(array[i]);
+            }
+        }
+
+        @Override
+        public String toString() {
+            return String.format("DoubleArrayNode[%d][%s]",
+                                 array.length - curSize, Arrays.toString(array));
+        }
+    }
+
+    static final class IntConcNode
+            extends AbstractPrimitiveConcNode<Integer, Node.OfInt>
+            implements Node.OfInt {
+
+        IntConcNode(Node.OfInt left, Node.OfInt right) {
+            super(left, right);
+        }
+
+        @Override
+        public void forEach(IntConsumer consumer) {
+            left.forEach(consumer);
+            right.forEach(consumer);
+        }
+
+        @Override
+        public Spliterator.OfInt spliterator() {
+            return new InternalNodeSpliterator.OfInt(this);
+        }
+
+        @Override
+        public void copyInto(int[] array, int offset) {
+            left.copyInto(array, offset);
+            right.copyInto(array, offset + (int) left.count());
+        }
+
+        @Override
+        public int[] asIntArray() {
+            int[] array = new int[(int) count()];
+            copyInto(array, 0);
+            return array;
+        }
+    }
+
+    static final class LongConcNode
+            extends AbstractPrimitiveConcNode<Long, Node.OfLong>
+            implements Node.OfLong {
+
+        LongConcNode(Node.OfLong left, Node.OfLong right) {
+            super(left, right);
+        }
+
+        @Override
+        public void forEach(LongConsumer consumer) {
+            left.forEach(consumer);
+            right.forEach(consumer);
+        }
+
+        @Override
+        public Spliterator.OfLong spliterator() {
+            return new InternalNodeSpliterator.OfLong(this);
+        }
+
+        @Override
+        public void copyInto(long[] array, int offset) {
+            left.copyInto(array, offset);
+            right.copyInto(array, offset + (int) left.count());
+        }
+
+        @Override
+        public long[] asLongArray() {
+            long[] array = new long[(int) count()];
+            copyInto(array, 0);
+            return array;
+        }
+    }
+
+    static final class DoubleConcNode
+            extends AbstractPrimitiveConcNode<Double, Node.OfDouble>
+            implements Node.OfDouble {
+
+        DoubleConcNode(Node.OfDouble left, Node.OfDouble right) {
+            super(left, right);
+        }
+
+        @Override
+        public void forEach(DoubleConsumer consumer) {
+            left.forEach(consumer);
+            right.forEach(consumer);
+        }
+
+        @Override
+        public Spliterator.OfDouble spliterator() {
+            return new InternalNodeSpliterator.OfDouble(this);
+        }
+
+        @Override
+        public void copyInto(double[] array, int offset) {
+            left.copyInto(array, offset);
+            right.copyInto(array, offset + (int) left.count());
+        }
+
+        @Override
+        public double[] asDoubleArray() {
+            double[] array = new double[(int) count()];
+            copyInto(array, 0);
+            return array;
+        }
+    }
+
+    private static final class IntFixedNodeBuilder
+            extends IntArrayNode
+            implements Node.Builder.OfInt {
+
+        IntFixedNodeBuilder(long size) {
+            super(size);
+            assert size < MAX_ARRAY_SIZE;
+        }
+
+        @Override
+        public Node.OfInt build() {
+            if (curSize < array.length) {
+                throw new IllegalStateException(String.format("Current size %d is less than fixed size %d",
+                                                              curSize, array.length));
+            }
+
+            return this;
+        }
+
+        @Override
+        public void begin(long size) {
+            if (size != array.length) {
+                throw new IllegalStateException(String.format("Begin size %d is not equal to fixed size %d",
+                                                              size, array.length));
+            }
+
+            curSize = 0;
+        }
+
+        @Override
+        public void accept(int i) {
+            if (curSize < array.length) {
+                array[curSize++] = i;
+            } else {
+                throw new IllegalStateException(String.format("Accept exceeded fixed size of %d",
+                                                              array.length));
+            }
+        }
+
+        @Override
+        public void end() {
+            if (curSize < array.length) {
+                throw new IllegalStateException(String.format("End size %d is less than fixed size %d",
+                                                              curSize, array.length));
+            }
+        }
+
+        @Override
+        public String toString() {
+            return String.format("IntFixedNodeBuilder[%d][%s]",
+                                 array.length - curSize, Arrays.toString(array));
+        }
+    }
+
+    private static final class LongFixedNodeBuilder
+            extends LongArrayNode
+            implements Node.Builder.OfLong {
+
+        LongFixedNodeBuilder(long size) {
+            super(size);
+            assert size < MAX_ARRAY_SIZE;
+        }
+
+        @Override
+        public Node.OfLong build() {
+            if (curSize < array.length) {
+                throw new IllegalStateException(String.format("Current size %d is less than fixed size %d",
+                                                              curSize, array.length));
+            }
+
+            return this;
+        }
+
+        @Override
+        public void begin(long size) {
+            if (size != array.length) {
+                throw new IllegalStateException(String.format("Begin size %d is not equal to fixed size %d",
+                                                              size, array.length));
+            }
+
+            curSize = 0;
+        }
+
+        @Override
+        public void accept(long i) {
+            if (curSize < array.length) {
+                array[curSize++] = i;
+            } else {
+                throw new IllegalStateException(String.format("Accept exceeded fixed size of %d",
+                                                              array.length));
+            }
+        }
+
+        @Override
+        public void end() {
+            if (curSize < array.length) {
+                throw new IllegalStateException(String.format("End size %d is less than fixed size %d",
+                                                              curSize, array.length));
+            }
+        }
+
+        @Override
+        public String toString() {
+            return String.format("LongFixedNodeBuilder[%d][%s]",
+                                 array.length - curSize, Arrays.toString(array));
+        }
+    }
+
+    private static final class DoubleFixedNodeBuilder
+            extends DoubleArrayNode
+            implements Node.Builder.OfDouble {
+
+        DoubleFixedNodeBuilder(long size) {
+            super(size);
+            assert size < MAX_ARRAY_SIZE;
+        }
+
+        @Override
+        public Node.OfDouble build() {
+            if (curSize < array.length) {
+                throw new IllegalStateException(String.format("Current size %d is less than fixed size %d",
+                                                              curSize, array.length));
+            }
+
+            return this;
+        }
+
+        @Override
+        public void begin(long size) {
+            if (size != array.length) {
+                throw new IllegalStateException(String.format("Begin size %d is not equal to fixed size %d",
+                                                              size, array.length));
+            }
+
+            curSize = 0;
+        }
+
+        @Override
+        public void accept(double i) {
+            if (curSize < array.length) {
+                array[curSize++] = i;
+            } else {
+                throw new IllegalStateException(String.format("Accept exceeded fixed size of %d",
+                                                              array.length));
+            }
+        }
+
+        @Override
+        public void end() {
+            if (curSize < array.length) {
+                throw new IllegalStateException(String.format("End size %d is less than fixed size %d",
+                                                              curSize, array.length));
+            }
+        }
+
+        @Override
+        public String toString() {
+            return String.format("DoubleFixedNodeBuilder[%d][%s]",
+                                 array.length - curSize, Arrays.toString(array));
+        }
+    }
+
+    private static final class IntSpinedNodeBuilder
+            extends SpinedBuffer.OfInt
+            implements Node.OfInt, Node.Builder.OfInt {
+        private boolean building = false;
+
+        IntSpinedNodeBuilder() {} // Avoid creation of special accessor
+
+        @Override
+        public Spliterator.OfInt spliterator() {
+            assert !building : "during building";
+            return super.spliterator();
+        }
+
+        @Override
+        public void forEach(IntConsumer consumer) {
+            assert !building : "during building";
+            super.forEach(consumer);
+        }
+
+        //
+        @Override
+        public void begin(long size) {
+            assert !building : "was already building";
+            building = true;
+            clear();
+            ensureCapacity(size);
+        }
+
+        @Override
+        public void accept(int i) {
+            assert building : "not building";
+            super.accept(i);
+        }
+
+        @Override
+        public void end() {
+            assert building : "was not building";
+            building = false;
+            // @@@ check begin(size) and size
+        }
+
+        @Override
+        public void copyInto(int[] array, int offset) throws IndexOutOfBoundsException {
+            assert !building : "during building";
+            super.copyInto(array, offset);
+        }
+
+        @Override
+        public int[] asIntArray() {
+            assert !building : "during building";
+            return super.asIntArray();
+        }
+
+        @Override
+        public Node.OfInt build() {
+            assert !building : "during building";
+            return this;
+        }
+    }
+
+    private static final class LongSpinedNodeBuilder
+            extends SpinedBuffer.OfLong
+            implements Node.OfLong, Node.Builder.OfLong {
+        private boolean building = false;
+
+        LongSpinedNodeBuilder() {} // Avoid creation of special accessor
+
+        @Override
+        public Spliterator.OfLong spliterator() {
+            assert !building : "during building";
+            return super.spliterator();
+        }
+
+        @Override
+        public void forEach(LongConsumer consumer) {
+            assert !building : "during building";
+            super.forEach(consumer);
+        }
+
+        //
+        @Override
+        public void begin(long size) {
+            assert !building : "was already building";
+            building = true;
+            clear();
+            ensureCapacity(size);
+        }
+
+        @Override
+        public void accept(long i) {
+            assert building : "not building";
+            super.accept(i);
+        }
+
+        @Override
+        public void end() {
+            assert building : "was not building";
+            building = false;
+            // @@@ check begin(size) and size
+        }
+
+        @Override
+        public void copyInto(long[] array, int offset) {
+            assert !building : "during building";
+            super.copyInto(array, offset);
+        }
+
+        @Override
+        public long[] asLongArray() {
+            assert !building : "during building";
+            return super.asLongArray();
+        }
+
+        @Override
+        public Node.OfLong build() {
+            assert !building : "during building";
+            return this;
+        }
+    }
+
+    private static final class DoubleSpinedNodeBuilder
+            extends SpinedBuffer.OfDouble
+            implements Node.OfDouble, Node.Builder.OfDouble {
+        private boolean building = false;
+
+        DoubleSpinedNodeBuilder() {} // Avoid creation of special accessor
+
+        @Override
+        public Spliterator.OfDouble spliterator() {
+            assert !building : "during building";
+            return super.spliterator();
+        }
+
+        @Override
+        public void forEach(DoubleConsumer consumer) {
+            assert !building : "during building";
+            super.forEach(consumer);
+        }
+
+        //
+        @Override
+        public void begin(long size) {
+            assert !building : "was already building";
+            building = true;
+            clear();
+            ensureCapacity(size);
+        }
+
+        @Override
+        public void accept(double i) {
+            assert building : "not building";
+            super.accept(i);
+        }
+
+        @Override
+        public void end() {
+            assert building : "was not building";
+            building = false;
+            // @@@ check begin(size) and size
+        }
+
+        @Override
+        public void copyInto(double[] array, int offset) {
+            assert !building : "during building";
+            super.copyInto(array, offset);
+        }
+
+        @Override
+        public double[] asDoubleArray() {
+            assert !building : "during building";
+            return super.asDoubleArray();
+        }
+
+        @Override
+        public Node.OfDouble build() {
+            assert !building : "during building";
+            return this;
+        }
+    }
+
+    private static abstract class SizedCollectorTask<P_IN, P_OUT, T_SINK extends Sink<P_OUT>,
+                                                     K extends SizedCollectorTask<P_IN, P_OUT, T_SINK, K>>
+            extends CountedCompleter<Void>
+            implements Sink<P_OUT> {
+        protected final Spliterator<P_IN> spliterator;
+        protected final PipelineHelper<P_OUT> helper;
+        protected final long targetSize;
+        protected long offset;
+        protected long length;
+        // For Sink implementation
+        protected int index, fence;
+
+        SizedCollectorTask(Spliterator<P_IN> spliterator,
+                           PipelineHelper<P_OUT> helper,
+                           int arrayLength) {
+            assert spliterator.hasCharacteristics(Spliterator.SUBSIZED);
+            this.spliterator = spliterator;
+            this.helper = helper;
+            this.targetSize = AbstractTask.suggestTargetSize(spliterator.estimateSize());
+            this.offset = 0;
+            this.length = arrayLength;
+        }
+
+        SizedCollectorTask(K parent, Spliterator<P_IN> spliterator,
+                           long offset, long length, int arrayLength) {
+            super(parent);
+            assert spliterator.hasCharacteristics(Spliterator.SUBSIZED);
+            this.spliterator = spliterator;
+            this.helper = parent.helper;
+            this.targetSize = parent.targetSize;
+            this.offset = offset;
+            this.length = length;
+
+            if (offset < 0 || length < 0 || (offset + length - 1 >= arrayLength)) {
+                throw new IllegalArgumentException(
+                        String.format("offset and length interval [%d, %d + %d) is not within array size interval [0, %d)",
+                                      offset, offset, length, arrayLength));
+            }
+        }
+
+        @Override
+        public void compute() {
+            SizedCollectorTask<P_IN, P_OUT, T_SINK, K> task = this;
+            while (true) {
+                Spliterator<P_IN> leftSplit;
+                if (!AbstractTask.suggestSplit(task.spliterator, task.targetSize)
+                    || ((leftSplit = task.spliterator.trySplit()) == null)) {
+                    if (task.offset + task.length >= MAX_ARRAY_SIZE)
+                        throw new IllegalArgumentException("Stream size exceeds max array size");
+                    T_SINK sink = (T_SINK) task;
+                    task.helper.wrapAndCopyInto(sink, task.spliterator);
+                    task.propagateCompletion();
+                    return;
+                }
+                else {
+                    task.setPendingCount(1);
+                    long leftSplitSize = leftSplit.estimateSize();
+                    task.makeChild(leftSplit, task.offset, leftSplitSize).fork();
+                    task = task.makeChild(task.spliterator, task.offset + leftSplitSize,
+                                          task.length - leftSplitSize);
+                }
+            }
+        }
+
+        abstract K makeChild(Spliterator<P_IN> spliterator, long offset, long size);
+
+        @Override
+        public void begin(long size) {
+            if(size > length)
+                throw new IllegalStateException("size passed to Sink.begin exceeds array length");
+            index = (int) offset;
+            fence = (int) offset + (int) length;
+        }
+
+        static final class OfRef<P_IN, P_OUT>
+                extends SizedCollectorTask<P_IN, P_OUT, Sink<P_OUT>, OfRef<P_IN, P_OUT>>
+                implements Sink<P_OUT> {
+            private final P_OUT[] array;
+
+            OfRef(Spliterator<P_IN> spliterator, PipelineHelper<P_OUT> helper, P_OUT[] array) {
+                super(spliterator, helper, array.length);
+                this.array = array;
+            }
+
+            OfRef(OfRef<P_IN, P_OUT> parent, Spliterator<P_IN> spliterator,
+                  long offset, long length) {
+                super(parent, spliterator, offset, length, parent.array.length);
+                this.array = parent.array;
+            }
+
+            @Override
+            OfRef<P_IN, P_OUT> makeChild(Spliterator<P_IN> spliterator,
+                                         long offset, long size) {
+                return new OfRef<>(this, spliterator, offset, size);
+            }
+
+            @Override
+            public void accept(P_OUT value) {
+                if (index >= fence) {
+                    throw new IndexOutOfBoundsException(Integer.toString(index));
+                }
+                array[index++] = value;
+            }
+        }
+
+        static final class OfInt<P_IN>
+                extends SizedCollectorTask<P_IN, Integer, Sink.OfInt, OfInt<P_IN>>
+                implements Sink.OfInt {
+            private final int[] array;
+
+            OfInt(Spliterator<P_IN> spliterator, PipelineHelper<Integer> helper, int[] array) {
+                super(spliterator, helper, array.length);
+                this.array = array;
+            }
+
+            OfInt(SizedCollectorTask.OfInt<P_IN> parent, Spliterator<P_IN> spliterator,
+                  long offset, long length) {
+                super(parent, spliterator, offset, length, parent.array.length);
+                this.array = parent.array;
+            }
+
+            @Override
+            SizedCollectorTask.OfInt<P_IN> makeChild(Spliterator<P_IN> spliterator,
+                                                     long offset, long size) {
+                return new SizedCollectorTask.OfInt<>(this, spliterator, offset, size);
+            }
+
+            @Override
+            public void accept(int value) {
+                if (index >= fence) {
+                    throw new IndexOutOfBoundsException(Integer.toString(index));
+                }
+                array[index++] = value;
+            }
+        }
+
+        static final class OfLong<P_IN>
+                extends SizedCollectorTask<P_IN, Long, Sink.OfLong, OfLong<P_IN>>
+                implements Sink.OfLong {
+            private final long[] array;
+
+            OfLong(Spliterator<P_IN> spliterator, PipelineHelper<Long> helper, long[] array) {
+                super(spliterator, helper, array.length);
+                this.array = array;
+            }
+
+            OfLong(SizedCollectorTask.OfLong<P_IN> parent, Spliterator<P_IN> spliterator,
+                   long offset, long length) {
+                super(parent, spliterator, offset, length, parent.array.length);
+                this.array = parent.array;
+            }
+
+            @Override
+            SizedCollectorTask.OfLong<P_IN> makeChild(Spliterator<P_IN> spliterator,
+                                                      long offset, long size) {
+                return new SizedCollectorTask.OfLong<>(this, spliterator, offset, size);
+            }
+
+            @Override
+            public void accept(long value) {
+                if (index >= fence) {
+                    throw new IndexOutOfBoundsException(Integer.toString(index));
+                }
+                array[index++] = value;
+            }
+        }
+
+        static final class OfDouble<P_IN>
+                extends SizedCollectorTask<P_IN, Double, Sink.OfDouble, OfDouble<P_IN>>
+                implements Sink.OfDouble {
+            private final double[] array;
+
+            OfDouble(Spliterator<P_IN> spliterator, PipelineHelper<Double> helper, double[] array) {
+                super(spliterator, helper, array.length);
+                this.array = array;
+            }
+
+            OfDouble(SizedCollectorTask.OfDouble<P_IN> parent, Spliterator<P_IN> spliterator,
+                     long offset, long length) {
+                super(parent, spliterator, offset, length, parent.array.length);
+                this.array = parent.array;
+            }
+
+            @Override
+            SizedCollectorTask.OfDouble<P_IN> makeChild(Spliterator<P_IN> spliterator,
+                                                        long offset, long size) {
+                return new SizedCollectorTask.OfDouble<>(this, spliterator, offset, size);
+            }
+
+            @Override
+            public void accept(double value) {
+                if (index >= fence) {
+                    throw new IndexOutOfBoundsException(Integer.toString(index));
+                }
+                array[index++] = value;
+            }
+        }
+    }
+
+    private static abstract class ToArrayTask<T, T_NODE extends Node<T>,
+                                              K extends ToArrayTask<T, T_NODE, K>>
+            extends CountedCompleter<Void> {
+        protected final T_NODE node;
+        protected final int offset;
+
+        ToArrayTask(T_NODE node, int offset) {
+            this.node = node;
+            this.offset = offset;
+        }
+
+        ToArrayTask(K parent, T_NODE node, int offset) {
+            super(parent);
+            this.node = node;
+            this.offset = offset;
+        }
+
+        abstract void copyNodeToArray();
+
+        abstract K makeChild(int childIndex, int offset);
+
+        @Override
+        public void compute() {
+            ToArrayTask<T, T_NODE, K> task = this;
+            while (true) {
+                if (task.node.getChildCount() == 0) {
+                    task.copyNodeToArray();
+                    task.propagateCompletion();
+                    return;
+                }
+                else {
+                    task.setPendingCount(task.node.getChildCount() - 1);
+
+                    int size = 0;
+                    int i = 0;
+                    for (;i < task.node.getChildCount() - 1; i++) {
+                        K leftTask = task.makeChild(i, task.offset + size);
+                        size += leftTask.node.count();
+                        leftTask.fork();
+                    }
+                    task = task.makeChild(i, task.offset + size);
+                }
+            }
+        }
+
+        private static final class OfRef<T>
+                extends ToArrayTask<T, Node<T>, OfRef<T>> {
+            private final T[] array;
+
+            private OfRef(Node<T> node, T[] array, int offset) {
+                super(node, offset);
+                this.array = array;
+            }
+
+            private OfRef(OfRef<T> parent, Node<T> node, int offset) {
+                super(parent, node, offset);
+                this.array = parent.array;
+            }
+
+            @Override
+            OfRef<T> makeChild(int childIndex, int offset) {
+                return new OfRef<>(this, node.getChild(childIndex), offset);
+            }
+
+            @Override
+            void copyNodeToArray() {
+                node.copyInto(array, offset);
+            }
+        }
+
+        private static final class OfInt
+                extends ToArrayTask<Integer, Node.OfInt, OfInt> {
+            private final int[] array;
+
+            private OfInt(Node.OfInt node, int[] array, int offset) {
+                super(node, offset);
+                this.array = array;
+            }
+
+            private OfInt(OfInt parent, Node.OfInt node, int offset) {
+                super(parent, node, offset);
+                this.array = parent.array;
+            }
+
+            @Override
+            OfInt makeChild(int childIndex, int offset) {
+                return new OfInt(this, node.getChild(childIndex), offset);
+            }
+
+            @Override
+            void copyNodeToArray() {
+                node.copyInto(array, offset);
+            }
+        }
+
+        private static final class OfLong
+                extends ToArrayTask<Long, Node.OfLong, OfLong> {
+            private final long[] array;
+
+            private OfLong(Node.OfLong node, long[] array, int offset) {
+                super(node, offset);
+                this.array = array;
+            }
+
+            private OfLong(OfLong parent, Node.OfLong node, int offset) {
+                super(parent, node, offset);
+                this.array = parent.array;
+            }
+
+            @Override
+            OfLong makeChild(int childIndex, int offset) {
+                return new OfLong(this, node.getChild(childIndex), offset);
+            }
+
+            @Override
+            void copyNodeToArray() {
+                node.copyInto(array, offset);
+            }
+        }
+
+        private static final class OfDouble
+                extends ToArrayTask<Double, Node.OfDouble, OfDouble> {
+            private final double[] array;
+
+            private OfDouble(Node.OfDouble node, double[] array, int offset) {
+                super(node, offset);
+                this.array = array;
+            }
+
+            private OfDouble(OfDouble parent, Node.OfDouble node, int offset) {
+                super(parent, node, offset);
+                this.array = parent.array;
+            }
+
+            @Override
+            OfDouble makeChild(int childIndex, int offset) {
+                return new OfDouble(this, node.getChild(childIndex), offset);
+            }
+
+            @Override
+            void copyNodeToArray() {
+                node.copyInto(array, offset);
+            }
+        }
+    }
+
+    private static final class CollectorTask<P_IN, P_OUT>
+            extends AbstractTask<P_IN, P_OUT, Node<P_OUT>, CollectorTask<P_IN, P_OUT>> {
+        private final PipelineHelper<P_OUT> helper;
+        private final IntFunction<P_OUT[]> generator;
+
+        CollectorTask(PipelineHelper<P_OUT> helper,
+                      IntFunction<P_OUT[]> generator,
+                      Spliterator<P_IN> spliterator) {
+            super(helper, spliterator);
+            this.helper = helper;
+            this.generator = generator;
+        }
+
+        CollectorTask(CollectorTask<P_IN, P_OUT> parent, Spliterator<P_IN> spliterator) {
+            super(parent, spliterator);
+            helper = parent.helper;
+            generator = parent.generator;
+        }
+
+        @Override
+        protected CollectorTask<P_IN, P_OUT> makeChild(Spliterator<P_IN> spliterator) {
+            return new CollectorTask<>(this, spliterator);
+        }
+
+        @Override
+        protected Node<P_OUT> doLeaf() {
+            Node.Builder<P_OUT> builder
+                    = builder(helper.exactOutputSizeIfKnown(spliterator),
+                                    generator);
+            return helper.wrapAndCopyInto(builder, spliterator).build();
+        }
+
+        @Override
+        public void onCompletion(CountedCompleter caller) {
+            if (!isLeaf()) {
+                setLocalResult(new ConcNode<>(leftChild.getLocalResult(), rightChild.getLocalResult()));
+            }
+            super.onCompletion(caller);
+        }
+    }
+
+    private static final class IntCollectorTask<P_IN>
+            extends AbstractTask<P_IN, Integer, Node.OfInt, IntCollectorTask<P_IN>> {
+        private final PipelineHelper<Integer> helper;
+
+        IntCollectorTask(PipelineHelper<Integer> helper, Spliterator<P_IN> spliterator) {
+            super(helper, spliterator);
+            this.helper = helper;
+        }
+
+        IntCollectorTask(IntCollectorTask<P_IN> parent, Spliterator<P_IN> spliterator) {
+            super(parent, spliterator);
+            helper = parent.helper;
+        }
+
+        @Override
+        protected IntCollectorTask<P_IN> makeChild(Spliterator<P_IN> spliterator) {
+            return new IntCollectorTask<>(this, spliterator);
+        }
+
+        @Override
+        protected Node.OfInt doLeaf() {
+            Node.Builder.OfInt builder = intBuilder(helper.exactOutputSizeIfKnown(spliterator));
+            return helper.wrapAndCopyInto(builder, spliterator).build();
+        }
+
+        @Override
+        public void onCompletion(CountedCompleter caller) {
+            if (!isLeaf()) {
+                setLocalResult(new IntConcNode(leftChild.getLocalResult(), rightChild.getLocalResult()));
+            }
+            super.onCompletion(caller);
+        }
+    }
+
+    private static final class LongCollectorTask<P_IN>
+            extends AbstractTask<P_IN, Long, Node.OfLong, LongCollectorTask<P_IN>> {
+        private final PipelineHelper<Long> helper;
+
+        LongCollectorTask(PipelineHelper<Long> helper, Spliterator<P_IN> spliterator) {
+            super(helper, spliterator);
+            this.helper = helper;
+        }
+
+        LongCollectorTask(LongCollectorTask<P_IN> parent, Spliterator<P_IN> spliterator) {
+            super(parent, spliterator);
+            helper = parent.helper;
+        }
+
+        @Override
+        protected LongCollectorTask<P_IN> makeChild(Spliterator<P_IN> spliterator) {
+            return new LongCollectorTask<>(this, spliterator);
+        }
+
+        @Override
+        protected Node.OfLong doLeaf() {
+            Node.Builder.OfLong builder = longBuilder(helper.exactOutputSizeIfKnown(spliterator));
+            return helper.wrapAndCopyInto(builder, spliterator).build();
+        }
+
+        @Override
+        public void onCompletion(CountedCompleter caller) {
+            if (!isLeaf()) {
+                setLocalResult(new LongConcNode(leftChild.getLocalResult(), rightChild.getLocalResult()));
+            }
+            super.onCompletion(caller);
+        }
+    }
+
+    private static final class DoubleCollectorTask<P_IN>
+            extends AbstractTask<P_IN, Double, Node.OfDouble, DoubleCollectorTask<P_IN>> {
+        private final PipelineHelper<Double> helper;
+
+        DoubleCollectorTask(PipelineHelper<Double> helper, Spliterator<P_IN> spliterator) {
+            super(helper, spliterator);
+            this.helper = helper;
+        }
+
+        DoubleCollectorTask(DoubleCollectorTask<P_IN> parent, Spliterator<P_IN> spliterator) {
+            super(parent, spliterator);
+            helper = parent.helper;
+        }
+
+        @Override
+        protected DoubleCollectorTask<P_IN> makeChild(Spliterator<P_IN> spliterator) {
+            return new DoubleCollectorTask<>(this, spliterator);
+        }
+
+        @Override
+        protected Node.OfDouble doLeaf() {
+            Node.Builder.OfDouble builder
+                    = doubleBuilder(helper.exactOutputSizeIfKnown(spliterator));
+            return helper.wrapAndCopyInto(builder, spliterator).build();
+        }
+
+        @Override
+        public void onCompletion(CountedCompleter caller) {
+            if (!isLeaf()) {
+                setLocalResult(new DoubleConcNode(leftChild.getLocalResult(), rightChild.getLocalResult()));
+            }
+            super.onCompletion(caller);
+        }
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/ReduceOps.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,762 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.Objects;
+import java.util.Optional;
+import java.util.OptionalDouble;
+import java.util.OptionalInt;
+import java.util.OptionalLong;
+import java.util.Spliterator;
+import java.util.concurrent.CountedCompleter;
+import java.util.function.BiConsumer;
+import java.util.function.BiFunction;
+import java.util.function.BinaryOperator;
+import java.util.function.DoubleBinaryOperator;
+import java.util.function.IntBinaryOperator;
+import java.util.function.LongBinaryOperator;
+import java.util.function.ObjDoubleConsumer;
+import java.util.function.ObjIntConsumer;
+import java.util.function.ObjLongConsumer;
+import java.util.function.Supplier;
+
+/**
+ * Factory for the creating instances of {@code TerminalOp) that implement
+ * reductions.
+ *
+ * @since 1.8
+ */
+final class ReduceOps {
+
+    private ReduceOps() { }
+
+    /**
+     * Constructs a {@code TerminalOp} that implements a functional reduce on
+     * reference values.
+     *
+     * @param <T> the type of the input elements
+     * @param <U> the type of the result
+     * @param seed the identity element for the reduction
+     * @param reducer the accumulating function that incorporates an additional
+     *        input element into the result
+     * @param combiner the combining function that combines two intermediate
+     *        results
+     * @return a {@code TerminalOp} implementing the reduction
+     */
+    public static <T, U> TerminalOp<T, U>
+    makeRef(U seed, BiFunction<U, ? super T, U> reducer, BinaryOperator<U> combiner) {
+        Objects.requireNonNull(reducer);
+        Objects.requireNonNull(combiner);
+        class ReducingSink extends Box<U> implements AccumulatingSink<T, U, ReducingSink> {
+            @Override
+            public void begin(long size) {
+                state = seed;
+            }
+
+            @Override
+            public void accept(T t) {
+                state = reducer.apply(state, t);
+            }
+
+            @Override
+            public void combine(ReducingSink other) {
+                state = combiner.apply(state, other.state);
+            }
+        }
+        return new ReduceOp<T, U, ReducingSink>(StreamShape.REFERENCE) {
+            @Override
+            public ReducingSink makeSink() {
+                return new ReducingSink();
+            }
+        };
+    }
+
+    /**
+     * Constructs a {@code TerminalOp} that implements a functional reduce on
+     * reference values producing an optional reference result.
+     *
+     * @param <T> The type of the input elements, and the type of the result
+     * @param operator The reducing function
+     * @return A {@code TerminalOp} implementing the reduction
+     */
+    public static <T> TerminalOp<T, Optional<T>>
+    makeRef(BinaryOperator<T> operator) {
+        Objects.requireNonNull(operator);
+        class ReducingSink
+                implements AccumulatingSink<T, Optional<T>, ReducingSink> {
+            private boolean empty;
+            private T state;
+
+            public void begin(long size) {
+                empty = true;
+                state = null;
+            }
+
+            @Override
+            public void accept(T t) {
+                if (empty) {
+                    empty = false;
+                    state = t;
+                } else {
+                    state = operator.apply(state, t);
+                }
+            }
+
+            @Override
+            public Optional<T> get() {
+                return empty ? Optional.empty() : Optional.of(state);
+            }
+
+            @Override
+            public void combine(ReducingSink other) {
+                if (!other.empty)
+                    accept(other.state);
+            }
+        }
+        return new ReduceOp<T, Optional<T>, ReducingSink>(StreamShape.REFERENCE) {
+            @Override
+            public ReducingSink makeSink() {
+                return new ReducingSink();
+            }
+        };
+    }
+
+    /**
+     * Constructs a {@code TerminalOp} that implements a mutable reduce on
+     * reference values.
+     *
+     * @param <T> the type of the input elements
+     * @param <R> the type of the result
+     * @param collector a {@code Collector} defining the reduction
+     * @return a {@code ReduceOp} implementing the reduction
+     */
+    public static <T,R> TerminalOp<T, R>
+    makeRef(Collector<? super T,R> collector) {
+        Supplier<R> supplier = Objects.requireNonNull(collector).resultSupplier();
+        BiFunction<R, ? super T, R> accumulator = collector.accumulator();
+        BinaryOperator<R> combiner = collector.combiner();
+        class ReducingSink extends Box<R>
+                implements AccumulatingSink<T, R, ReducingSink> {
+            @Override
+            public void begin(long size) {
+                state = supplier.get();
+            }
+
+            @Override
+            public void accept(T t) {
+                R newResult = accumulator.apply(state, t);
+                if (state != newResult)
+                    state = newResult;
+            }
+
+            @Override
+            public void combine(ReducingSink other) {
+                state = combiner.apply(state, other.state);
+            }
+        }
+        return new ReduceOp<T, R, ReducingSink>(StreamShape.REFERENCE) {
+            @Override
+            public ReducingSink makeSink() {
+                return new ReducingSink();
+            }
+
+            @Override
+            public int getOpFlags() {
+                return collector.characteristics().contains(Collector.Characteristics.UNORDERED)
+                       ? StreamOpFlag.NOT_ORDERED
+                       : 0;
+            }
+        };
+    }
+
+    /**
+     * Constructs a {@code TerminalOp} that implements a mutable reduce on
+     * reference values.
+     *
+     * @param <T> the type of the input elements
+     * @param <R> the type of the result
+     * @param seedFactory a factory to produce a new base accumulator
+     * @param accumulator a function to incorporate an element into an
+     *        accumulator
+     * @param reducer a function to combine an accumulator into another
+     * @return a {@code TerminalOp} implementing the reduction
+     */
+    public static <T, R> TerminalOp<T, R>
+    makeRef(Supplier<R> seedFactory,
+            BiConsumer<R, ? super T> accumulator,
+            BiConsumer<R,R> reducer) {
+        Objects.requireNonNull(seedFactory);
+        Objects.requireNonNull(accumulator);
+        Objects.requireNonNull(reducer);
+        class ReducingSink extends Box<R>
+                implements AccumulatingSink<T, R, ReducingSink> {
+            @Override
+            public void begin(long size) {
+                state = seedFactory.get();
+            }
+
+            @Override
+            public void accept(T t) {
+                accumulator.accept(state, t);
+            }
+
+            @Override
+            public void combine(ReducingSink other) {
+                reducer.accept(state, other.state);
+            }
+        }
+        return new ReduceOp<T, R, ReducingSink>(StreamShape.REFERENCE) {
+            @Override
+            public ReducingSink makeSink() {
+                return new ReducingSink();
+            }
+        };
+    }
+
+    /**
+     * Constructs a {@code TerminalOp} that implements a functional reduce on
+     * {@code int} values.
+     *
+     * @param identity the identity for the combining function
+     * @param operator the combining function
+     * @return a {@code TerminalOp} implementing the reduction
+     */
+    public static TerminalOp<Integer, Integer>
+    makeInt(int identity, IntBinaryOperator operator) {
+        Objects.requireNonNull(operator);
+        class ReducingSink
+                implements AccumulatingSink<Integer, Integer, ReducingSink>, Sink.OfInt {
+            private int state;
+
+            @Override
+            public void begin(long size) {
+                state = identity;
+            }
+
+            @Override
+            public void accept(int t) {
+                state = operator.applyAsInt(state, t);
+            }
+
+            @Override
+            public Integer get() {
+                return state;
+            }
+
+            @Override
+            public void combine(ReducingSink other) {
+                accept(other.state);
+            }
+        }
+        return new ReduceOp<Integer, Integer, ReducingSink>(StreamShape.INT_VALUE) {
+            @Override
+            public ReducingSink makeSink() {
+                return new ReducingSink();
+            }
+        };
+    }
+
+    /**
+     * Constructs a {@code TerminalOp} that implements a functional reduce on
+     * {@code int} values, producing an optional integer result.
+     *
+     * @param operator the combining function
+     * @return a {@code TerminalOp} implementing the reduction
+     */
+    public static TerminalOp<Integer, OptionalInt>
+    makeInt(IntBinaryOperator operator) {
+        Objects.requireNonNull(operator);
+        class ReducingSink
+                implements AccumulatingSink<Integer, OptionalInt, ReducingSink>, Sink.OfInt {
+            private boolean empty;
+            private int state;
+
+            public void begin(long size) {
+                empty = true;
+                state = 0;
+            }
+
+            @Override
+            public void accept(int t) {
+                if (empty) {
+                    empty = false;
+                    state = t;
+                }
+                else {
+                    state = operator.applyAsInt(state, t);
+                }
+            }
+
+            @Override
+            public OptionalInt get() {
+                return empty ? OptionalInt.empty() : OptionalInt.of(state);
+            }
+
+            @Override
+            public void combine(ReducingSink other) {
+                if (!other.empty)
+                    accept(other.state);
+            }
+        }
+        return new ReduceOp<Integer, OptionalInt, ReducingSink>(StreamShape.INT_VALUE) {
+            @Override
+            public ReducingSink makeSink() {
+                return new ReducingSink();
+            }
+        };
+    }
+
+    /**
+     * Constructs a {@code TerminalOp} that implements a mutable reduce on
+     * {@code int} values.
+     *
+     * @param <R> The type of the result
+     * @param supplier a factory to produce a new accumulator of the result type
+     * @param accumulator a function to incorporate an int into an
+     *        accumulator
+     * @param combiner a function to combine an accumulator into another
+     * @return A {@code ReduceOp} implementing the reduction
+     */
+    public static <R> TerminalOp<Integer, R>
+    makeInt(Supplier<R> supplier,
+            ObjIntConsumer<R> accumulator,
+            BinaryOperator<R> combiner) {
+        Objects.requireNonNull(supplier);
+        Objects.requireNonNull(accumulator);
+        Objects.requireNonNull(combiner);
+        class ReducingSink extends Box<R>
+                implements AccumulatingSink<Integer, R, ReducingSink>, Sink.OfInt {
+            @Override
+            public void begin(long size) {
+                state = supplier.get();
+            }
+
+            @Override
+            public void accept(int t) {
+                accumulator.accept(state, t);
+            }
+
+            @Override
+            public void combine(ReducingSink other) {
+                state = combiner.apply(state, other.state);
+            }
+        }
+        return new ReduceOp<Integer, R, ReducingSink>(StreamShape.INT_VALUE) {
+            @Override
+            public ReducingSink makeSink() {
+                return new ReducingSink();
+            }
+        };
+    }
+
+    /**
+     * Constructs a {@code TerminalOp} that implements a functional reduce on
+     * {@code long} values.
+     *
+     * @param identity the identity for the combining function
+     * @param operator the combining function
+     * @return a {@code TerminalOp} implementing the reduction
+     */
+    public static TerminalOp<Long, Long>
+    makeLong(long identity, LongBinaryOperator operator) {
+        Objects.requireNonNull(operator);
+        class ReducingSink
+                implements AccumulatingSink<Long, Long, ReducingSink>, Sink.OfLong {
+            private long state;
+
+            @Override
+            public void begin(long size) {
+                state = identity;
+            }
+
+            @Override
+            public void accept(long t) {
+                state = operator.applyAsLong(state, t);
+            }
+
+            @Override
+            public Long get() {
+                return state;
+            }
+
+            @Override
+            public void combine(ReducingSink other) {
+                accept(other.state);
+            }
+        }
+        return new ReduceOp<Long, Long, ReducingSink>(StreamShape.LONG_VALUE) {
+            @Override
+            public ReducingSink makeSink() {
+                return new ReducingSink();
+            }
+        };
+    }
+
+    /**
+     * Constructs a {@code TerminalOp} that implements a functional reduce on
+     * {@code long} values, producing an optional long result.
+     *
+     * @param operator the combining function
+     * @return a {@code TerminalOp} implementing the reduction
+     */
+    public static TerminalOp<Long, OptionalLong>
+    makeLong(LongBinaryOperator operator) {
+        Objects.requireNonNull(operator);
+        class ReducingSink
+                implements AccumulatingSink<Long, OptionalLong, ReducingSink>, Sink.OfLong {
+            private boolean empty;
+            private long state;
+
+            public void begin(long size) {
+                empty = true;
+                state = 0;
+            }
+
+            @Override
+            public void accept(long t) {
+                if (empty) {
+                    empty = false;
+                    state = t;
+                }
+                else {
+                    state = operator.applyAsLong(state, t);
+                }
+            }
+
+            @Override
+            public OptionalLong get() {
+                return empty ? OptionalLong.empty() : OptionalLong.of(state);
+            }
+
+            @Override
+            public void combine(ReducingSink other) {
+                if (!other.empty)
+                    accept(other.state);
+            }
+        }
+        return new ReduceOp<Long, OptionalLong, ReducingSink>(StreamShape.LONG_VALUE) {
+            @Override
+            public ReducingSink makeSink() {
+                return new ReducingSink();
+            }
+        };
+    }
+
+    /**
+     * Constructs a {@code TerminalOp} that implements a mutable reduce on
+     * {@code long} values.
+     *
+     * @param <R> the type of the result
+     * @param supplier a factory to produce a new accumulator of the result type
+     * @param accumulator a function to incorporate an int into an
+     *        accumulator
+     * @param combiner a function to combine an accumulator into another
+     * @return a {@code TerminalOp} implementing the reduction
+     */
+    public static <R> TerminalOp<Long, R>
+    makeLong(Supplier<R> supplier,
+             ObjLongConsumer<R> accumulator,
+             BinaryOperator<R> combiner) {
+        Objects.requireNonNull(supplier);
+        Objects.requireNonNull(accumulator);
+        Objects.requireNonNull(combiner);
+        class ReducingSink extends Box<R>
+                implements AccumulatingSink<Long, R, ReducingSink>, Sink.OfLong {
+            @Override
+            public void begin(long size) {
+                state = supplier.get();
+            }
+
+            @Override
+            public void accept(long t) {
+                accumulator.accept(state, t);
+            }
+
+            @Override
+            public void combine(ReducingSink other) {
+                state = combiner.apply(state, other.state);
+            }
+        }
+        return new ReduceOp<Long, R, ReducingSink>(StreamShape.LONG_VALUE) {
+            @Override
+            public ReducingSink makeSink() {
+                return new ReducingSink();
+            }
+        };
+    }
+
+    /**
+     * Constructs a {@code TerminalOp} that implements a functional reduce on
+     * {@code double} values.
+     *
+     * @param identity the identity for the combining function
+     * @param operator the combining function
+     * @return a {@code TerminalOp} implementing the reduction
+     */
+    public static TerminalOp<Double, Double>
+    makeDouble(double identity, DoubleBinaryOperator operator) {
+        Objects.requireNonNull(operator);
+        class ReducingSink
+                implements AccumulatingSink<Double, Double, ReducingSink>, Sink.OfDouble {
+            private double state;
+
+            @Override
+            public void begin(long size) {
+                state = identity;
+            }
+
+            @Override
+            public void accept(double t) {
+                state = operator.applyAsDouble(state, t);
+            }
+
+            @Override
+            public Double get() {
+                return state;
+            }
+
+            @Override
+            public void combine(ReducingSink other) {
+                accept(other.state);
+            }
+        }
+        return new ReduceOp<Double, Double, ReducingSink>(StreamShape.DOUBLE_VALUE) {
+            @Override
+            public ReducingSink makeSink() {
+                return new ReducingSink();
+            }
+        };
+    }
+
+    /**
+     * Constructs a {@code TerminalOp} that implements a functional reduce on
+     * {@code double} values, producing an optional double result.
+     *
+     * @param operator the combining function
+     * @return a {@code TerminalOp} implementing the reduction
+     */
+    public static TerminalOp<Double, OptionalDouble>
+    makeDouble(DoubleBinaryOperator operator) {
+        Objects.requireNonNull(operator);
+        class ReducingSink
+                implements AccumulatingSink<Double, OptionalDouble, ReducingSink>, Sink.OfDouble {
+            private boolean empty;
+            private double state;
+
+            public void begin(long size) {
+                empty = true;
+                state = 0;
+            }
+
+            @Override
+            public void accept(double t) {
+                if (empty) {
+                    empty = false;
+                    state = t;
+                }
+                else {
+                    state = operator.applyAsDouble(state, t);
+                }
+            }
+
+            @Override
+            public OptionalDouble get() {
+                return empty ? OptionalDouble.empty() : OptionalDouble.of(state);
+            }
+
+            @Override
+            public void combine(ReducingSink other) {
+                if (!other.empty)
+                    accept(other.state);
+            }
+        }
+        return new ReduceOp<Double, OptionalDouble, ReducingSink>(StreamShape.DOUBLE_VALUE) {
+            @Override
+            public ReducingSink makeSink() {
+                return new ReducingSink();
+            }
+        };
+    }
+
+    /**
+     * Constructs a {@code TerminalOp} that implements a mutable reduce on
+     * {@code double} values.
+     *
+     * @param <R> the type of the result
+     * @param supplier a factory to produce a new accumulator of the result type
+     * @param accumulator a function to incorporate an int into an
+     *        accumulator
+     * @param combiner a function to combine an accumulator into another
+     * @return a {@code TerminalOp} implementing the reduction
+     */
+    public static <R> TerminalOp<Double, R>
+    makeDouble(Supplier<R> supplier,
+               ObjDoubleConsumer<R> accumulator,
+               BinaryOperator<R> combiner) {
+        Objects.requireNonNull(supplier);
+        Objects.requireNonNull(accumulator);
+        Objects.requireNonNull(combiner);
+        class ReducingSink extends Box<R>
+                implements AccumulatingSink<Double, R, ReducingSink>, Sink.OfDouble {
+            @Override
+            public void begin(long size) {
+                state = supplier.get();
+            }
+
+            @Override
+            public void accept(double t) {
+                accumulator.accept(state, t);
+            }
+
+            @Override
+            public void combine(ReducingSink other) {
+                state = combiner.apply(state, other.state);
+            }
+        }
+        return new ReduceOp<Double, R, ReducingSink>(StreamShape.DOUBLE_VALUE) {
+            @Override
+            public ReducingSink makeSink() {
+                return new ReducingSink();
+            }
+        };
+    }
+
+    /**
+     * A type of {@code TerminalSink} that implements an associative reducing
+     * operation on elements of type {@code T} and producing a result of type
+     * {@code R}.
+     *
+     * @param <T> the type of input element to the combining operation
+     * @param <R> the result type
+     * @param <K> the type of the {@code AccumulatingSink}.
+     */
+    private interface AccumulatingSink<T, R, K extends AccumulatingSink<T, R, K>>
+            extends TerminalSink<T, R> {
+        public void combine(K other);
+    }
+
+    /**
+     * State box for a single state element, used as a base class for
+     * {@code AccumulatingSink} instances
+     *
+     * @param <U> The type of the state element
+     */
+    private static abstract class Box<U> {
+        U state;
+
+        Box() {} // Avoid creation of special accessor
+
+        public U get() {
+            return state;
+        }
+    }
+
+    /**
+     * A {@code TerminalOp} that evaluates a stream pipeline and sends the
+     * output into an {@code AccumulatingSink}, which performs a reduce
+     * operation. The {@code AccumulatingSink} must represent an associative
+     * reducing operation.
+     *
+     * @param <T> the output type of the stream pipeline
+     * @param <R> the result type of the reducing operation
+     * @param <S> the type of the {@code AccumulatingSink}
+     */
+    private static abstract class ReduceOp<T, R, S extends AccumulatingSink<T, R, S>>
+            implements TerminalOp<T, R> {
+        private final StreamShape inputShape;
+
+        /**
+         * Create a {@code ReduceOp} of the specified stream shape which uses
+         * the specified {@code Supplier} to create accumulating sinks.
+         *
+         * @param shape The shape of the stream pipeline
+         */
+        ReduceOp(StreamShape shape) {
+            inputShape = shape;
+        }
+
+        public abstract S makeSink();
+
+        @Override
+        public StreamShape inputShape() {
+            return inputShape;
+        }
+
+        @Override
+        public <P_IN> R evaluateSequential(PipelineHelper<T> helper,
+                                           Spliterator<P_IN> spliterator) {
+            return helper.wrapAndCopyInto(makeSink(), spliterator).get();
+        }
+
+        @Override
+        public <P_IN> R evaluateParallel(PipelineHelper<T> helper,
+                                         Spliterator<P_IN> spliterator) {
+            return new ReduceTask<>(this, helper, spliterator).invoke().get();
+        }
+    }
+
+    /**
+     * A {@code ForkJoinTask} for performing a parallel reduce operation.
+     */
+    private static final class ReduceTask<P_IN, P_OUT, R,
+                                          S extends AccumulatingSink<P_OUT, R, S>>
+            extends AbstractTask<P_IN, P_OUT, S, ReduceTask<P_IN, P_OUT, R, S>> {
+        private final ReduceOp<P_OUT, R, S> op;
+
+        ReduceTask(ReduceOp<P_OUT, R, S> op,
+                   PipelineHelper<P_OUT> helper,
+                   Spliterator<P_IN> spliterator) {
+            super(helper, spliterator);
+            this.op = op;
+        }
+
+        ReduceTask(ReduceTask<P_IN, P_OUT, R, S> parent,
+                   Spliterator<P_IN> spliterator) {
+            super(parent, spliterator);
+            this.op = parent.op;
+        }
+
+        @Override
+        protected ReduceTask<P_IN, P_OUT, R, S> makeChild(Spliterator<P_IN> spliterator) {
+            return new ReduceTask<>(this, spliterator);
+        }
+
+        @Override
+        protected S doLeaf() {
+            return helper.wrapAndCopyInto(op.makeSink(), spliterator);
+        }
+
+        @Override
+        public void onCompletion(CountedCompleter caller) {
+            if (!isLeaf()) {
+                S leftResult = leftChild.getLocalResult();
+                leftResult.combine(rightChild.getLocalResult());
+                setLocalResult(leftResult);
+            }
+            // GC spliterator, left and right child
+            super.onCompletion(caller);
+        }
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/ReferencePipeline.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,632 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.Comparator;
+import java.util.Comparators;
+import java.util.Iterator;
+import java.util.Objects;
+import java.util.Optional;
+import java.util.Spliterator;
+import java.util.Spliterators;
+import java.util.function.BiConsumer;
+import java.util.function.BiFunction;
+import java.util.function.BinaryOperator;
+import java.util.function.Consumer;
+import java.util.function.DoubleConsumer;
+import java.util.function.Function;
+import java.util.function.IntConsumer;
+import java.util.function.IntFunction;
+import java.util.function.LongConsumer;
+import java.util.function.Predicate;
+import java.util.function.Supplier;
+import java.util.function.ToDoubleFunction;
+import java.util.function.ToIntFunction;
+import java.util.function.ToLongFunction;
+
+/**
+ * Abstract base class for an intermediate pipeline stage or pipeline source
+ * stage implementing whose elements are of type {@code U}.
+ *
+ * @param <P_IN> type of elements in the upstream source
+ * @param <P_OUT> type of elements in produced by this stage
+ *
+ * @since 1.8
+ */
+abstract class ReferencePipeline<P_IN, P_OUT>
+        extends AbstractPipeline<P_IN, P_OUT, Stream<P_OUT>>
+        implements Stream<P_OUT>  {
+
+    /**
+     * Constructor for the head of a stream pipeline.
+     *
+     * @param source {@code Supplier<Spliterator>} describing the stream source
+     * @param sourceFlags the source flags for the stream source, described in
+     *        {@link StreamOpFlag}
+     * @param parallel {@code true} if the pipeline is parallel
+     */
+    ReferencePipeline(Supplier<? extends Spliterator<?>> source,
+                      int sourceFlags, boolean parallel) {
+        super(source, sourceFlags, parallel);
+    }
+
+    /**
+     * Constructor for the head of a stream pipeline.
+     *
+     * @param source {@code Spliterator} describing the stream source
+     * @param sourceFlags The source flags for the stream source, described in
+     *        {@link StreamOpFlag}
+     * @param parallel {@code true} if the pipeline is parallel
+     */
+    ReferencePipeline(Spliterator<?> source,
+                      int sourceFlags, boolean parallel) {
+        super(source, sourceFlags, parallel);
+    }
+
+    /**
+     * Constructor for appending an intermediate operation onto an existing
+     * pipeline.
+     *
+     * @param upstream the upstream element source.
+     */
+    ReferencePipeline(AbstractPipeline<?, P_IN, ?> upstream, int opFlags) {
+        super(upstream, opFlags);
+    }
+
+    // Shape-specific methods
+
+    @Override
+    final StreamShape getOutputShape() {
+        return StreamShape.REFERENCE;
+    }
+
+    @Override
+    final <P_IN> Node<P_OUT> evaluateToNode(PipelineHelper<P_OUT> helper,
+                                        Spliterator<P_IN> spliterator,
+                                        boolean flattenTree,
+                                        IntFunction<P_OUT[]> generator) {
+        return Nodes.collect(helper, spliterator, flattenTree, generator);
+    }
+
+    @Override
+    final <P_IN> Spliterator<P_OUT> wrap(PipelineHelper<P_OUT> ph,
+                                     Supplier<Spliterator<P_IN>> supplier,
+                                     boolean isParallel) {
+        return new StreamSpliterators.WrappingSpliterator<>(ph, supplier, isParallel);
+    }
+
+    @Override
+    final Spliterator<P_OUT> lazySpliterator(Supplier<? extends Spliterator<P_OUT>> supplier) {
+        return new StreamSpliterators.DelegatingSpliterator<>(supplier);
+    }
+
+    @Override
+    final void forEachWithCancel(Spliterator<P_OUT> spliterator, Sink<P_OUT> sink) {
+        do { } while (!sink.cancellationRequested() && spliterator.tryAdvance(sink));
+    }
+
+    @Override
+    final Node.Builder<P_OUT> makeNodeBuilder(long exactSizeIfKnown, IntFunction<P_OUT[]> generator) {
+        return Nodes.builder(exactSizeIfKnown, generator);
+    }
+
+
+    // BaseStream
+
+    @Override
+    public final Iterator<P_OUT> iterator() {
+        return Spliterators.iteratorFromSpliterator(spliterator());
+    }
+
+
+    // Stream
+
+    // Stateless intermediate operations from Stream
+
+    @Override
+    public Stream<P_OUT> unordered() {
+        if (!isOrdered())
+            return this;
+        return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE, StreamOpFlag.NOT_ORDERED) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
+                return sink;
+            }
+        };
+    }
+
+    @Override
+    public final Stream<P_OUT> filter(Predicate<? super P_OUT> predicate) {
+        Objects.requireNonNull(predicate);
+        return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,
+                                     StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    @Override
+                    public void accept(P_OUT u) {
+                        if (predicate.test(u))
+                            downstream.accept(u);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) {
+        Objects.requireNonNull(mapper);
+        return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
+                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    @Override
+                    public void accept(P_OUT u) {
+                        downstream.accept(mapper.apply(u));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final IntStream mapToInt(ToIntFunction<? super P_OUT> mapper) {
+        Objects.requireNonNull(mapper);
+        return new IntPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
+                                              StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<Integer> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    @Override
+                    public void accept(P_OUT u) {
+                        downstream.accept(mapper.applyAsInt(u));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final LongStream mapToLong(ToLongFunction<? super P_OUT> mapper) {
+        Objects.requireNonNull(mapper);
+        return new LongPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
+                                      StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<Long> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    @Override
+                    public void accept(P_OUT u) {
+                        downstream.accept(mapper.applyAsLong(u));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final DoubleStream mapToDouble(ToDoubleFunction<? super P_OUT> mapper) {
+        Objects.requireNonNull(mapper);
+        return new DoublePipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
+                                        StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    @Override
+                    public void accept(P_OUT u) {
+                        downstream.accept(mapper.applyAsDouble(u));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final <R> Stream<R> flatMap(Function<? super P_OUT, ? extends Stream<? extends R>> mapper) {
+        Objects.requireNonNull(mapper);
+        // We can do better than this, by polling cancellationRequested when stream is infinite
+        return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
+                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    public void accept(P_OUT u) {
+                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
+                        Stream<? extends R> result = mapper.apply(u);
+                        if (result != null)
+                            result.sequential().forEach(downstream);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final IntStream flatMapToInt(Function<? super P_OUT, ? extends IntStream> mapper) {
+        Objects.requireNonNull(mapper);
+        // We can do better than this, by polling cancellationRequested when stream is infinite
+        return new IntPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
+                                              StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<Integer> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    IntConsumer downstreamAsInt = downstream::accept;
+                    public void accept(P_OUT u) {
+                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
+                        IntStream result = mapper.apply(u);
+                        if (result != null)
+                            result.sequential().forEach(downstreamAsInt);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final DoubleStream flatMapToDouble(Function<? super P_OUT, ? extends DoubleStream> mapper) {
+        Objects.requireNonNull(mapper);
+        // We can do better than this, by polling cancellationRequested when stream is infinite
+        return new DoublePipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
+                                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    DoubleConsumer downstreamAsDouble = downstream::accept;
+                    public void accept(P_OUT u) {
+                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
+                        DoubleStream result = mapper.apply(u);
+                        if (result != null)
+                            result.sequential().forEach(downstreamAsDouble);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final LongStream flatMapToLong(Function<? super P_OUT, ? extends LongStream> mapper) {
+        Objects.requireNonNull(mapper);
+        // We can do better than this, by polling cancellationRequested when stream is infinite
+        return new LongPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
+                                                   StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<Long> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    LongConsumer downstreamAsLong = downstream::accept;
+                    public void accept(P_OUT u) {
+                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
+                        LongStream result = mapper.apply(u);
+                        if (result != null)
+                            result.sequential().forEach(downstreamAsLong);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final Stream<P_OUT> peek(Consumer<? super P_OUT> tee) {
+        Objects.requireNonNull(tee);
+        return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,
+                                     0) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    @Override
+                    public void accept(P_OUT u) {
+                        tee.accept(u);
+                        downstream.accept(u);
+                    }
+                };
+            }
+        };
+    }
+
+    // Stateful intermediate operations from Stream
+
+    @Override
+    public final Stream<P_OUT> distinct() {
+        return DistinctOps.makeRef(this);
+    }
+
+    @Override
+    public final Stream<P_OUT> sorted() {
+        return SortedOps.makeRef(this);
+    }
+
+    @Override
+    public final Stream<P_OUT> sorted(Comparator<? super P_OUT> comparator) {
+        return SortedOps.makeRef(this, comparator);
+    }
+
+    private Stream<P_OUT> slice(long skip, long limit) {
+        return SliceOps.makeRef(this, skip, limit);
+    }
+
+    @Override
+    public final Stream<P_OUT> limit(long maxSize) {
+        if (maxSize < 0)
+            throw new IllegalArgumentException(Long.toString(maxSize));
+        return slice(0, maxSize);
+    }
+
+    @Override
+    public final Stream<P_OUT> substream(long startingOffset) {
+        if (startingOffset < 0)
+            throw new IllegalArgumentException(Long.toString(startingOffset));
+        if (startingOffset == 0)
+            return this;
+        else
+            return slice(startingOffset, -1);
+    }
+
+    @Override
+    public final Stream<P_OUT> substream(long startingOffset, long endingOffset) {
+        if (startingOffset < 0 || endingOffset < startingOffset)
+            throw new IllegalArgumentException(String.format("substream(%d, %d)", startingOffset, endingOffset));
+        return slice(startingOffset, endingOffset - startingOffset);
+    }
+
+    // Terminal operations from Stream
+
+    @Override
+    public void forEach(Consumer<? super P_OUT> action) {
+        evaluate(ForEachOps.makeRef(action, false));
+    }
+
+    @Override
+    public void forEachOrdered(Consumer<? super P_OUT> action) {
+        evaluate(ForEachOps.makeRef(action, true));
+    }
+
+    @Override
+    @SuppressWarnings("unchecked")
+    public final <A> A[] toArray(IntFunction<A[]> generator) {
+        // Since A has no relation to U (not possible to declare that A is an upper bound of U)
+        // there will be no static type checking.
+        // Therefore use a raw type and assume A == U rather than propagating the separation of A and U
+        // throughout the code-base.
+        // The runtime type of U is never checked for equality with the component type of the runtime type of A[].
+        // Runtime checking will be performed when an element is stored in A[], thus if A is not a
+        // super type of U an ArrayStoreException will be thrown.
+        IntFunction rawGenerator = (IntFunction) generator;
+        return (A[]) Nodes.flatten(evaluateToArrayNode(rawGenerator), rawGenerator)
+                              .asArray(rawGenerator);
+    }
+
+    @Override
+    public final Object[] toArray() {
+        return toArray(Object[]::new);
+    }
+
+    @Override
+    public final boolean anyMatch(Predicate<? super P_OUT> predicate) {
+        return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.ANY));
+    }
+
+    @Override
+    public final boolean allMatch(Predicate<? super P_OUT> predicate) {
+        return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.ALL));
+    }
+
+    @Override
+    public final boolean noneMatch(Predicate<? super P_OUT> predicate) {
+        return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.NONE));
+    }
+
+    @Override
+    public final Optional<P_OUT> findFirst() {
+        return evaluate(FindOps.makeRef(true));
+    }
+
+    @Override
+    public final Optional<P_OUT> findAny() {
+        return evaluate(FindOps.makeRef(false));
+    }
+
+    @Override
+    public final P_OUT reduce(final P_OUT identity, final BinaryOperator<P_OUT> accumulator) {
+        return evaluate(ReduceOps.makeRef(identity, accumulator, accumulator));
+    }
+
+    @Override
+    public final Optional<P_OUT> reduce(BinaryOperator<P_OUT> accumulator) {
+        return evaluate(ReduceOps.makeRef(accumulator));
+    }
+
+    @Override
+    public final <R> R reduce(R identity, BiFunction<R, ? super P_OUT, R> accumulator, BinaryOperator<R> combiner) {
+        return evaluate(ReduceOps.makeRef(identity, accumulator, combiner));
+    }
+
+    @Override
+    public final <R> R collect(Collector<? super P_OUT, R> collector) {
+        if (isParallel()
+                && (collector.characteristics().contains(Collector.Characteristics.CONCURRENT))
+                && (!isOrdered() || collector.characteristics().contains(Collector.Characteristics.UNORDERED))) {
+            R container = collector.resultSupplier().get();
+            BiFunction<R, ? super P_OUT, R> accumulator = collector.accumulator();
+            forEach(u -> accumulator.apply(container, u));
+            return container;
+        }
+        return evaluate(ReduceOps.makeRef(collector));
+    }
+
+    @Override
+    public final <R> R collect(Supplier<R> resultFactory,
+                               BiConsumer<R, ? super P_OUT> accumulator,
+                               BiConsumer<R, R> combiner) {
+        return evaluate(ReduceOps.makeRef(resultFactory, accumulator, combiner));
+    }
+
+    @Override
+    public final Optional<P_OUT> max(Comparator<? super P_OUT> comparator) {
+        return reduce(Comparators.greaterOf(comparator));
+    }
+
+    @Override
+    public final Optional<P_OUT> min(Comparator<? super P_OUT> comparator) {
+        return reduce(Comparators.lesserOf(comparator));
+
+    }
+
+    @Override
+    public final long count() {
+        return mapToLong(e -> 1L).sum();
+    }
+
+
+    //
+
+    /**
+     * Source stage of a ReferencePipeline.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @param <E_OUT> type of elements in produced by this stage
+     * @since 1.8
+     */
+    static class Head<E_IN, E_OUT> extends ReferencePipeline<E_IN, E_OUT> {
+        /**
+         * Constructor for the source stage of a Stream.
+         *
+         * @param source {@code Supplier<Spliterator>} describing the stream
+         *               source
+         * @param sourceFlags the source flags for the stream source, described
+         *                    in {@link StreamOpFlag}
+         */
+        Head(Supplier<? extends Spliterator<?>> source,
+             int sourceFlags, boolean parallel) {
+            super(source, sourceFlags, parallel);
+        }
+
+        /**
+         * Constructor for the source stage of a Stream.
+         *
+         * @param source {@code Spliterator} describing the stream source
+         * @param sourceFlags the source flags for the stream source, described
+         *                    in {@link StreamOpFlag}
+         */
+        Head(Spliterator<?> source,
+             int sourceFlags, boolean parallel) {
+            super(source, sourceFlags, parallel);
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            throw new UnsupportedOperationException();
+        }
+
+        @Override
+        final Sink<E_IN> opWrapSink(int flags, Sink<E_OUT> sink) {
+            throw new UnsupportedOperationException();
+        }
+
+        // Optimized sequential terminal operations for the head of the pipeline
+
+        @Override
+        public void forEach(Consumer<? super E_OUT> action) {
+            if (!isParallel()) {
+                sourceStageSpliterator().forEachRemaining(action);
+            }
+            else {
+                super.forEach(action);
+            }
+        }
+
+        @Override
+        public void forEachOrdered(Consumer<? super E_OUT> action) {
+            if (!isParallel()) {
+                sourceStageSpliterator().forEachRemaining(action);
+            }
+            else {
+                super.forEachOrdered(action);
+            }
+        }
+    }
+
+    /**
+     * Base class for a stateless intermediate stage of a Stream.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @param <E_OUT> type of elements in produced by this stage
+     * @since 1.8
+     */
+    abstract static class StatelessOp<E_IN, E_OUT>
+            extends ReferencePipeline<E_IN, E_OUT> {
+        /**
+         * Construct a new Stream by appending a stateless intermediate
+         * operation to an existing stream.
+         *
+         * @param upstream The upstream pipeline stage
+         * @param inputShape The stream shape for the upstream pipeline stage
+         * @param opFlags Operation flags for the new stage
+         */
+        StatelessOp(AbstractPipeline<?, E_IN, ?> upstream,
+                    StreamShape inputShape,
+                    int opFlags) {
+            super(upstream, opFlags);
+            assert upstream.getOutputShape() == inputShape;
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            return false;
+        }
+    }
+
+    /**
+     * Base class for a stateful intermediate stage of a Stream.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @param <E_OUT> type of elements in produced by this stage
+     * @since 1.8
+     */
+    abstract static class StatefulOp<E_IN, E_OUT>
+            extends ReferencePipeline<E_IN, E_OUT> {
+        /**
+         * Construct a new Stream by appending a stateful intermediate operation
+         * to an existing stream.
+         * @param upstream The upstream pipeline stage
+         * @param inputShape The stream shape for the upstream pipeline stage
+         * @param opFlags Operation flags for the new stage
+         */
+        StatefulOp(AbstractPipeline<?, E_IN, ?> upstream,
+                   StreamShape inputShape,
+                   int opFlags) {
+            super(upstream, opFlags);
+            assert upstream.getOutputShape() == inputShape;
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            return true;
+        }
+
+        @Override
+        abstract <P_IN> Node<E_OUT> opEvaluateParallel(PipelineHelper<E_OUT> helper,
+                                                       Spliterator<P_IN> spliterator,
+                                                       IntFunction<E_OUT[]> generator);
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/SliceOps.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,511 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.ArrayList;
+import java.util.List;
+import java.util.Spliterator;
+import java.util.concurrent.CountedCompleter;
+import java.util.function.IntFunction;
+
+/**
+ * Factory for instances of a short-circuiting stateful intermediate operations
+ * that produce subsequences of their input stream.
+ *
+ * @since 1.8
+ */
+final class SliceOps {
+
+    // No instances
+    private SliceOps() { }
+
+    /**
+     * Appends a "slice" operation to the provided stream.  The slice operation
+     * may be may be skip-only, limit-only, or skip-and-limit.
+     *
+     * @param <T> the type of both input and output elements
+     * @param upstream a reference stream with element type T
+     * @param skip the number of elements to skip.  Must be >= 0.
+     * @param limit the maximum size of the resulting stream, or -1 if no limit
+     *        is to be imposed
+     */
+    public static <T> Stream<T> makeRef(AbstractPipeline<?, T, ?> upstream,
+                                       long skip, long limit) {
+        if (skip < 0)
+            throw new IllegalArgumentException("Skip must be non-negative: " + skip);
+
+        return new ReferencePipeline.StatefulOp<T,T>(upstream, StreamShape.REFERENCE,
+                                                     flags(limit)) {
+            @Override
+            <P_IN> Node<T> opEvaluateParallel(PipelineHelper<T> helper,
+                                              Spliterator<P_IN> spliterator,
+                                              IntFunction<T[]> generator) {
+                return new SliceTask<>(this, helper, spliterator, generator, skip, limit).invoke();
+            }
+
+            @Override
+            Sink<T> opWrapSink(int flags, Sink<T> sink) {
+                return new Sink.ChainedReference<T>(sink) {
+                    long n = skip;
+                    long m = limit >= 0 ? limit : Long.MAX_VALUE;
+
+                    @Override
+                    public void accept(T t) {
+                        if (n == 0) {
+                            if (m > 0) {
+                                m--;
+                                downstream.accept(t);
+                            }
+                        }
+                        else {
+                            n--;
+                        }
+                    }
+
+                    @Override
+                    public boolean cancellationRequested() {
+                        return m == 0 || downstream.cancellationRequested();
+                    }
+                };
+            }
+        };
+    }
+
+    /**
+     * Appends a "slice" operation to the provided IntStream.  The slice
+     * operation may be may be skip-only, limit-only, or skip-and-limit.
+     *
+     * @param upstream An IntStream
+     * @param skip The number of elements to skip.  Must be >= 0.
+     * @param limit The maximum size of the resulting stream, or -1 if no limit
+     *        is to be imposed
+     */
+    public static IntStream makeInt(AbstractPipeline<?, Integer, ?> upstream,
+                                    long skip, long limit) {
+        if (skip < 0)
+            throw new IllegalArgumentException("Skip must be non-negative: " + skip);
+
+        return new IntPipeline.StatefulOp<Integer>(upstream, StreamShape.INT_VALUE,
+                                                   flags(limit)) {
+            @Override
+            <P_IN> Node<Integer> opEvaluateParallel(PipelineHelper<Integer> helper,
+                                                    Spliterator<P_IN> spliterator,
+                                                    IntFunction<Integer[]> generator) {
+                return new SliceTask<>(this, helper, spliterator, generator, skip, limit).invoke();
+            }
+
+            @Override
+            Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
+                return new Sink.ChainedInt(sink) {
+                    long n = skip;
+                    long m = limit >= 0 ? limit : Long.MAX_VALUE;
+
+                    @Override
+                    public void accept(int t) {
+                        if (n == 0) {
+                            if (m > 0) {
+                                m--;
+                                downstream.accept(t);
+                            }
+                        }
+                        else {
+                            n--;
+                        }
+                    }
+
+                    @Override
+                    public boolean cancellationRequested() {
+                        return m == 0 || downstream.cancellationRequested();
+                    }
+                };
+            }
+        };
+    }
+
+    /**
+     * Appends a "slice" operation to the provided LongStream.  The slice
+     * operation may be may be skip-only, limit-only, or skip-and-limit.
+     *
+     * @param upstream A LongStream
+     * @param skip The number of elements to skip.  Must be >= 0.
+     * @param limit The maximum size of the resulting stream, or -1 if no limit
+     *        is to be imposed
+     */
+    public static LongStream makeLong(AbstractPipeline<?, Long, ?> upstream,
+                                      long skip, long limit) {
+        if (skip < 0)
+            throw new IllegalArgumentException("Skip must be non-negative: " + skip);
+
+        return new LongPipeline.StatefulOp<Long>(upstream, StreamShape.LONG_VALUE,
+                                                 flags(limit)) {
+            @Override
+            <P_IN> Node<Long> opEvaluateParallel(PipelineHelper<Long> helper,
+                                                 Spliterator<P_IN> spliterator,
+                                                 IntFunction<Long[]> generator) {
+                return new SliceTask<>(this, helper, spliterator, generator, skip, limit).invoke();
+            }
+
+            @Override
+            Sink<Long> opWrapSink(int flags, Sink<Long> sink) {
+                return new Sink.ChainedLong(sink) {
+                    long n = skip;
+                    long m = limit >= 0 ? limit : Long.MAX_VALUE;
+
+                    @Override
+                    public void accept(long t) {
+                        if (n == 0) {
+                            if (m > 0) {
+                                m--;
+                                downstream.accept(t);
+                            }
+                        }
+                        else {
+                            n--;
+                        }
+                    }
+
+                    @Override
+                    public boolean cancellationRequested() {
+                        return m == 0 || downstream.cancellationRequested();
+                    }
+                };
+            }
+        };
+    }
+
+    /**
+     * Appends a "slice" operation to the provided DoubleStream.  The slice
+     * operation may be may be skip-only, limit-only, or skip-and-limit.
+     *
+     * @param upstream A DoubleStream
+     * @param skip The number of elements to skip.  Must be >= 0.
+     * @param limit The maximum size of the resulting stream, or -1 if no limit
+     *        is to be imposed
+     */
+    public static DoubleStream makeDouble(AbstractPipeline<?, Double, ?> upstream,
+                                          long skip, long limit) {
+        if (skip < 0)
+            throw new IllegalArgumentException("Skip must be non-negative: " + skip);
+
+        return new DoublePipeline.StatefulOp<Double>(upstream, StreamShape.DOUBLE_VALUE,
+                                                     flags(limit)) {
+            @Override
+            <P_IN> Node<Double> opEvaluateParallel(PipelineHelper<Double> helper,
+                                                   Spliterator<P_IN> spliterator,
+                                                   IntFunction<Double[]> generator) {
+                return new SliceTask<>(this, helper, spliterator, generator, skip, limit).invoke();
+            }
+
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedDouble(sink) {
+                    long n = skip;
+                    long m = limit >= 0 ? limit : Long.MAX_VALUE;
+
+                    @Override
+                    public void accept(double t) {
+                        if (n == 0) {
+                            if (m > 0) {
+                                m--;
+                                downstream.accept(t);
+                            }
+                        }
+                        else {
+                            n--;
+                        }
+                    }
+
+                    @Override
+                    public boolean cancellationRequested() {
+                        return m == 0 || downstream.cancellationRequested();
+                    }
+                };
+            }
+        };
+    }
+
+    private static int flags(long limit) {
+        return StreamOpFlag.NOT_SIZED | ((limit != -1) ? StreamOpFlag.IS_SHORT_CIRCUIT : 0);
+    }
+
+    // Parallel strategy -- two cases
+    // IF we have full size information
+    // - decompose, keeping track of each leaf's (offset, size)
+    // - calculate leaf only if intersection between (offset, size) and desired slice
+    // - Construct a Node containing the appropriate sections of the appropriate leaves
+    // IF we don't
+    // - decompose, and calculate size of each leaf
+    // - on complete of any node, compute completed initial size from the root, and if big enough, cancel later nodes
+    // - @@@ this can be significantly improved
+
+    // @@@ Currently we don't do the sized version at all
+
+    // @@@ Should take into account ORDERED flag; if not ORDERED, we can limit in temporal order instead
+
+    /**
+     * {@code ForkJoinTask} implementing slice computation.
+     *
+     * @param <P_IN> Input element type to the stream pipeline
+     * @param <P_OUT> Output element type from the stream pipeline
+     */
+    private static final class SliceTask<P_IN, P_OUT>
+            extends AbstractShortCircuitTask<P_IN, P_OUT, Node<P_OUT>, SliceTask<P_IN, P_OUT>> {
+        private final AbstractPipeline<P_OUT, P_OUT, ?> op;
+        private final IntFunction<P_OUT[]> generator;
+        private final long targetOffset, targetSize;
+        private long thisNodeSize;
+
+        private volatile boolean completed;
+
+        SliceTask(AbstractPipeline<?, P_OUT, ?> op,
+                  PipelineHelper<P_OUT> helper,
+                  Spliterator<P_IN> spliterator,
+                  IntFunction<P_OUT[]> generator,
+                  long offset, long size) {
+            super(helper, spliterator);
+            this.op = (AbstractPipeline<P_OUT, P_OUT, ?>) op;
+            this.generator = generator;
+            this.targetOffset = offset;
+            this.targetSize = size;
+        }
+
+        SliceTask(SliceTask<P_IN, P_OUT> parent, Spliterator<P_IN> spliterator) {
+            super(parent, spliterator);
+            this.op = parent.op;
+            this.generator = parent.generator;
+            this.targetOffset = parent.targetOffset;
+            this.targetSize = parent.targetSize;
+        }
+
+        @Override
+        protected SliceTask<P_IN, P_OUT> makeChild(Spliterator<P_IN> spliterator) {
+            return new SliceTask<>(this, spliterator);
+        }
+
+        @Override
+        protected final Node<P_OUT> getEmptyResult() {
+            return Nodes.emptyNode(op.getOutputShape());
+        }
+
+        @Override
+        protected final Node<P_OUT> doLeaf() {
+            if (isRoot()) {
+                long sizeIfKnown = StreamOpFlag.SIZED.isPreserved(op.sourceOrOpFlags)
+                                   ? op.exactOutputSizeIfKnown(spliterator)
+                                   : -1;
+                final Node.Builder<P_OUT> nb = op.makeNodeBuilder(sizeIfKnown, generator);
+                Sink<P_OUT> opSink = op.opWrapSink(op.sourceOrOpFlags, nb);
+
+                if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(op.sourceOrOpFlags))
+                    helper.wrapAndCopyInto(opSink, spliterator);
+                else
+                    helper.copyIntoWithCancel(helper.wrapSink(opSink), spliterator);
+                return nb.build();
+            }
+            else {
+                Node<P_OUT> node = helper.wrapAndCopyInto(helper.makeNodeBuilder(-1, generator),
+                                                      spliterator).build();
+                thisNodeSize = node.count();
+                completed = true;
+                return node;
+            }
+        }
+
+        @Override
+        public final void onCompletion(CountedCompleter<?> caller) {
+            if (!isLeaf()) {
+                thisNodeSize = leftChild.thisNodeSize + rightChild.thisNodeSize;
+                completed = true;
+
+                if (isRoot()) {
+                    // Only collect nodes once absolute size information is known
+
+                    ArrayList<Node<P_OUT>> nodes = new ArrayList<>();
+                    visit(nodes, 0);
+                    Node<P_OUT> result;
+                    if (nodes.size() == 0)
+                        result = Nodes.emptyNode(op.getOutputShape());
+                    else if (nodes.size() == 1)
+                        result = nodes.get(0);
+                    else
+                        // This will create a tree of depth 1 and will not be a sub-tree
+                        // for leaf nodes within the require range
+                        result = Nodes.conc(op.getOutputShape(), nodes);
+                    setLocalResult(result);
+                }
+            }
+            if (targetSize >= 0) {
+                if (((SliceTask<P_IN, P_OUT>) getRoot()).leftSize() >= targetOffset + targetSize)
+                    cancelLaterNodes();
+            }
+            // Don't call super.onCompletion(), we don't look at the child nodes until farther up the tree
+        }
+
+        /** Compute the cumulative size of the longest leading prefix of completed children */
+        private long leftSize() {
+            if (completed)
+                return thisNodeSize;
+            else if (isLeaf())
+                return 0;
+            else {
+                long leftSize = 0;
+                for (SliceTask<P_IN, P_OUT> child = leftChild, p = null; child != p;
+                     p = child, child = rightChild) {
+                    if (child.completed)
+                        leftSize += child.thisNodeSize;
+                    else {
+                        leftSize += child.leftSize();
+                        break;
+                    }
+                }
+                return leftSize;
+            }
+        }
+
+        private void visit(List<Node<P_OUT>> results, int offset) {
+            if (!isLeaf()) {
+                for (SliceTask<P_IN, P_OUT> child = leftChild, p = null; child != p;
+                     p = child, child = rightChild) {
+                    child.visit(results, offset);
+                    offset += child.thisNodeSize;
+                }
+            }
+            else {
+                if (results.size() == 0) {
+                    if (offset + thisNodeSize >= targetOffset)
+                        results.add(truncateNode(getLocalResult(),
+                                                 Math.max(0, targetOffset - offset),
+                                                 targetSize >= 0 ? Math.max(0, offset + thisNodeSize - (targetOffset + targetSize)) : 0));
+                }
+                else {
+                    if (targetSize == -1 || offset < targetOffset + targetSize) {
+                        results.add(truncateNode(getLocalResult(),
+                                                 0,
+                                                 targetSize >= 0 ? Math.max(0, offset + thisNodeSize - (targetOffset + targetSize)) : 0));
+                    }
+                }
+            }
+        }
+
+        /**
+         * Return a new node describing the result of truncating an existing Node
+         * at the left and/or right.
+         */
+        private Node<P_OUT> truncateNode(Node<P_OUT> input,
+                                         long skipLeft, long skipRight) {
+            if (skipLeft == 0 && skipRight == 0)
+                return input;
+            else {
+                return Nodes.truncateNode(input, skipLeft, thisNodeSize - skipRight, generator);
+            }
+        }
+    }
+
+    // @@@ Currently unused -- optimization for when all sizes are known
+//    private static class SizedSliceTask<S, T> extends AbstractShortCircuitTask<S, T, Node<T>, SizedSliceTask<S, T>> {
+//        private final int targetOffset, targetSize;
+//        private final int offset, size;
+//
+//        private SizedSliceTask(ParallelPipelineHelper<S, T> helper, int offset, int size) {
+//            super(helper);
+//            targetOffset = offset;
+//            targetSize = size;
+//            this.offset = 0;
+//            this.size = spliterator.getSizeIfKnown();
+//        }
+//
+//        private SizedSliceTask(SizedSliceTask<S, T> parent, Spliterator<S> spliterator) {
+//            // Makes assumptions about order in which siblings are created and linked into parent!
+//            super(parent, spliterator);
+//            targetOffset = parent.targetOffset;
+//            targetSize = parent.targetSize;
+//            int siblingSizes = 0;
+//            for (SizedSliceTask<S, T> sibling = parent.children; sibling != null; sibling = sibling.nextSibling)
+//                siblingSizes += sibling.size;
+//            size = spliterator.getSizeIfKnown();
+//            offset = parent.offset + siblingSizes;
+//        }
+//
+//        @Override
+//        protected SizedSliceTask<S, T> makeChild(Spliterator<S> spliterator) {
+//            return new SizedSliceTask<>(this, spliterator);
+//        }
+//
+//        @Override
+//        protected Node<T> getEmptyResult() {
+//            return Nodes.emptyNode();
+//        }
+//
+//        @Override
+//        public boolean taskCanceled() {
+//            if (offset > targetOffset+targetSize || offset+size < targetOffset)
+//                return true;
+//            else
+//                return super.taskCanceled();
+//        }
+//
+//        @Override
+//        protected Node<T> doLeaf() {
+//            int skipLeft = Math.max(0, targetOffset - offset);
+//            int skipRight = Math.max(0, offset + size - (targetOffset + targetSize));
+//            if (skipLeft == 0 && skipRight == 0)
+//                return helper.into(Nodes.<T>makeBuilder(spliterator.getSizeIfKnown())).build();
+//            else {
+//                // If we're the first or last node that intersects the target range, peel off irrelevant elements
+//                int truncatedSize = size - skipLeft - skipRight;
+//                NodeBuilder<T> builder = Nodes.<T>makeBuilder(truncatedSize);
+//                Sink<S> wrappedSink = helper.wrapSink(builder);
+//                wrappedSink.begin(truncatedSize);
+//                Iterator<S> iterator = spliterator.iterator();
+//                for (int i=0; i<skipLeft; i++)
+//                    iterator.next();
+//                for (int i=0; i<truncatedSize; i++)
+//                    wrappedSink.apply(iterator.next());
+//                wrappedSink.end();
+//                return builder.build();
+//            }
+//        }
+//
+//        @Override
+//        public void onCompletion(CountedCompleter<?> caller) {
+//            if (!isLeaf()) {
+//                Node<T> result = null;
+//                for (SizedSliceTask<S, T> child = children.nextSibling; child != null; child = child.nextSibling) {
+//                    Node<T> childResult = child.getRawResult();
+//                    if (childResult == null)
+//                        continue;
+//                    else if (result == null)
+//                        result = childResult;
+//                    else
+//                        result = Nodes.node(result, childResult);
+//                }
+//                setRawResult(result);
+//                if (offset <= targetOffset && offset+size >= targetOffset+targetSize)
+//                    shortCircuit(result);
+//            }
+//        }
+//    }
+
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/SortedOps.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,547 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.Comparator;
+import java.util.Comparators;
+import java.util.Objects;
+import java.util.Spliterator;
+import java.util.concurrent.ForkJoinTask;
+import java.util.function.IntFunction;
+
+
+/**
+ * Factory methods for transforming streams into sorted streams.
+ *
+ * @since 1.8
+ */
+final class SortedOps {
+
+    private SortedOps() { }
+
+    /**
+     * Appends a "sorted" operation to the provided stream.
+     *
+     * @param <T> the type of both input and output elements
+     * @param upstream a reference stream with element type T
+     */
+    static <T> Stream<T> makeRef(AbstractPipeline<?, T, ?> upstream) {
+        return new OfRef<>(upstream);
+    }
+
+    /**
+     * Appends a "sorted" operation to the provided stream.
+     *
+     * @param <T> the type of both input and output elements
+     * @param upstream a reference stream with element type T
+     * @param comparator the comparator to order elements by
+     */
+    static <T> Stream<T> makeRef(AbstractPipeline<?, T, ?> upstream,
+                                Comparator<? super T> comparator) {
+        return new OfRef<>(upstream, comparator);
+    }
+
+    /**
+     * Appends a "sorted" operation to the provided stream.
+     *
+     * @param <T> the type of both input and output elements
+     * @param upstream a reference stream with element type T
+     */
+    static <T> IntStream makeInt(AbstractPipeline<?, Integer, ?> upstream) {
+        return new OfInt(upstream);
+    }
+
+    /**
+     * Appends a "sorted" operation to the provided stream.
+     *
+     * @param <T> the type of both input and output elements
+     * @param upstream a reference stream with element type T
+     */
+    static <T> LongStream makeLong(AbstractPipeline<?, Long, ?> upstream) {
+        return new OfLong(upstream);
+    }
+
+    /**
+     * Appends a "sorted" operation to the provided stream.
+     *
+     * @param <T> the type of both input and output elements
+     * @param upstream a reference stream with element type T
+     */
+    static <T> DoubleStream makeDouble(AbstractPipeline<?, Double, ?> upstream) {
+        return new OfDouble(upstream);
+    }
+
+    /**
+     * Specialized subtype for sorting reference streams
+     */
+    private static final class OfRef<T> extends ReferencePipeline.StatefulOp<T, T> {
+        /**
+         * Comparator used for sorting
+         */
+        private final boolean isNaturalSort;
+        private final Comparator<? super T> comparator;
+
+        /**
+         * Sort using natural order of {@literal <T>} which must be
+         * {@code Comparable}.
+         */
+        OfRef(AbstractPipeline<?, T, ?> upstream) {
+            super(upstream, StreamShape.REFERENCE,
+                  StreamOpFlag.IS_ORDERED | StreamOpFlag.IS_SORTED);
+            this.isNaturalSort = true;
+            // Will throw CCE when we try to sort if T is not Comparable
+            this.comparator = (Comparator<? super T>) Comparators.naturalOrder();
+        }
+
+        /**
+         * Sort using the provided comparator.
+         *
+         * @param comparator The comparator to be used to evaluate ordering.
+         */
+        OfRef(AbstractPipeline<?, T, ?> upstream, Comparator<? super T> comparator) {
+            super(upstream, StreamShape.REFERENCE,
+                  StreamOpFlag.IS_ORDERED | StreamOpFlag.NOT_SORTED);
+            this.isNaturalSort = false;
+            this.comparator = Objects.requireNonNull(comparator);
+        }
+
+        @Override
+        public Sink<T> opWrapSink(int flags, Sink sink) {
+            Objects.requireNonNull(sink);
+
+            // If the input is already naturally sorted and this operation
+            // also naturally sorted then this is a no-op
+            if (StreamOpFlag.SORTED.isKnown(flags) && isNaturalSort)
+                return sink;
+            else if (StreamOpFlag.SIZED.isKnown(flags))
+                return new SizedRefSortingSink<>(sink, comparator);
+            else
+                return new RefSortingSink<>(sink, comparator);
+        }
+
+        @Override
+        public <P_IN> Node<T> opEvaluateParallel(PipelineHelper<T> helper,
+                                                 Spliterator<P_IN> spliterator,
+                                                 IntFunction<T[]> generator) {
+            // If the input is already naturally sorted and this operation
+            // naturally sorts then collect the output
+            if (StreamOpFlag.SORTED.isKnown(helper.getStreamAndOpFlags()) && isNaturalSort) {
+                return helper.evaluate(spliterator, false, generator);
+            }
+            else {
+                // @@@ Weak two-pass parallel implementation; parallel collect, parallel sort
+                T[] flattenedData = helper.evaluate(spliterator, true, generator).asArray(generator);
+                Arrays.parallelSort(flattenedData, comparator);
+                return Nodes.node(flattenedData);
+            }
+        }
+    }
+
+    /**
+     * Specialized subtype for sorting int streams.
+     */
+    private static final class OfInt extends IntPipeline.StatefulOp<Integer> {
+        OfInt(AbstractPipeline<?, Integer, ?> upstream) {
+            super(upstream, StreamShape.INT_VALUE,
+                  StreamOpFlag.IS_ORDERED | StreamOpFlag.IS_SORTED);
+        }
+
+        @Override
+        public Sink<Integer> opWrapSink(int flags, Sink sink) {
+            Objects.requireNonNull(sink);
+
+            if (StreamOpFlag.SORTED.isKnown(flags))
+                return sink;
+            else if (StreamOpFlag.SIZED.isKnown(flags))
+                return new SizedIntSortingSink(sink);
+            else
+                return new IntSortingSink(sink);
+        }
+
+        @Override
+        public <P_IN> Node<Integer> opEvaluateParallel(PipelineHelper<Integer> helper,
+                                                       Spliterator<P_IN> spliterator,
+                                                       IntFunction<Integer[]> generator) {
+            if (StreamOpFlag.SORTED.isKnown(helper.getStreamAndOpFlags())) {
+                return helper.evaluate(spliterator, false, generator);
+            }
+            else {
+                Node.OfInt n = (Node.OfInt) helper.evaluate(spliterator, true, generator);
+
+                int[] content = n.asIntArray();
+                Arrays.parallelSort(content);
+
+                return Nodes.node(content);
+            }
+        }
+    }
+
+    /**
+     * Specialized subtype for sorting long streams.
+     */
+    private static final class OfLong extends LongPipeline.StatefulOp<Long> {
+        OfLong(AbstractPipeline<?, Long, ?> upstream) {
+            super(upstream, StreamShape.LONG_VALUE,
+                  StreamOpFlag.IS_ORDERED | StreamOpFlag.IS_SORTED);
+        }
+
+        @Override
+        public Sink<Long> opWrapSink(int flags, Sink sink) {
+            Objects.requireNonNull(sink);
+
+            if (StreamOpFlag.SORTED.isKnown(flags))
+                return sink;
+            else if (StreamOpFlag.SIZED.isKnown(flags))
+                return new SizedLongSortingSink(sink);
+            else
+                return new LongSortingSink(sink);
+        }
+
+        @Override
+        public <P_IN> Node<Long> opEvaluateParallel(PipelineHelper<Long> helper,
+                                                    Spliterator<P_IN> spliterator,
+                                                    IntFunction<Long[]> generator) {
+            if (StreamOpFlag.SORTED.isKnown(helper.getStreamAndOpFlags())) {
+                return helper.evaluate(spliterator, false, generator);
+            }
+            else {
+                Node.OfLong n = (Node.OfLong) helper.evaluate(spliterator, true, generator);
+
+                long[] content = n.asLongArray();
+                Arrays.parallelSort(content);
+
+                return Nodes.node(content);
+            }
+        }
+    }
+
+    /**
+     * Specialized subtype for sorting double streams.
+     */
+    private static final class OfDouble extends DoublePipeline.StatefulOp<Double> {
+        OfDouble(AbstractPipeline<?, Double, ?> upstream) {
+            super(upstream, StreamShape.DOUBLE_VALUE,
+                  StreamOpFlag.IS_ORDERED | StreamOpFlag.IS_SORTED);
+        }
+
+        @Override
+        public Sink<Double> opWrapSink(int flags, Sink sink) {
+            Objects.requireNonNull(sink);
+
+            if (StreamOpFlag.SORTED.isKnown(flags))
+                return sink;
+            else if (StreamOpFlag.SIZED.isKnown(flags))
+                return new SizedDoubleSortingSink(sink);
+            else
+                return new DoubleSortingSink(sink);
+        }
+
+        @Override
+        public <P_IN> Node<Double> opEvaluateParallel(PipelineHelper<Double> helper,
+                                                      Spliterator<P_IN> spliterator,
+                                                      IntFunction<Double[]> generator) {
+            if (StreamOpFlag.SORTED.isKnown(helper.getStreamAndOpFlags())) {
+                return helper.evaluate(spliterator, false, generator);
+            }
+            else {
+                Node.OfDouble n = (Node.OfDouble) helper.evaluate(spliterator, true, generator);
+
+                double[] content = n.asDoubleArray();
+                Arrays.parallelSort(content);
+
+                return Nodes.node(content);
+            }
+        }
+    }
+
+    /**
+     * {@link ForkJoinTask} for implementing sort on SIZED reference streams.
+     */
+    private static final class SizedRefSortingSink<T> extends Sink.ChainedReference<T> {
+        private final Comparator<? super T> comparator;
+        private T[] array;
+        private int offset;
+
+        SizedRefSortingSink(Sink sink, Comparator<? super T> comparator) {
+            super(sink);
+            this.comparator = comparator;
+        }
+
+        @Override
+        public void begin(long size) {
+            if (size >= Nodes.MAX_ARRAY_SIZE)
+                throw new IllegalArgumentException("Stream size exceeds max array size");
+            array = (T[]) new Object[(int) size];
+        }
+
+        @Override
+        public void end() {
+            // Need to use offset rather than array.length since the downstream
+            // many be short-circuiting
+            // @@@ A better approach is to know if the downstream short-circuits
+            //     and check sink.cancellationRequested
+            Arrays.sort(array, 0, offset, comparator);
+            downstream.begin(offset);
+            for (int i = 0; i < offset; i++)
+                downstream.accept(array[i]);
+            downstream.end();
+            array = null;
+        }
+
+        @Override
+        public void accept(T t) {
+            array[offset++] = t;
+        }
+    }
+
+    /**
+     * {@link Sink} for implementing sort on reference streams.
+     */
+    private static final class RefSortingSink<T> extends Sink.ChainedReference<T> {
+        private final Comparator<? super T> comparator;
+        private ArrayList<T> list;
+
+        RefSortingSink(Sink sink, Comparator<? super T> comparator) {
+            super(sink);
+            this.comparator = comparator;
+        }
+
+        @Override
+        public void begin(long size) {
+            list = (size >= 0) ? new ArrayList<T>((int) size) : new ArrayList<T>();
+        }
+
+        @Override
+        public void end() {
+            list.sort(comparator);
+            downstream.begin(list.size());
+            list.forEach(downstream::accept);
+            downstream.end();
+            list = null;
+        }
+
+        @Override
+        public void accept(T t) {
+            list.add(t);
+        }
+    }
+
+    /**
+     * {@link Sink} for implementing sort on SIZED int streams.
+     */
+    private static final class SizedIntSortingSink extends Sink.ChainedInt {
+        private int[] array;
+        private int offset;
+
+        SizedIntSortingSink(Sink downstream) {
+            super(downstream);
+        }
+
+        @Override
+        public void begin(long size) {
+            if (size >= Nodes.MAX_ARRAY_SIZE)
+                throw new IllegalArgumentException("Stream size exceeds max array size");
+            array = new int[(int) size];
+        }
+
+        @Override
+        public void end() {
+            Arrays.sort(array, 0, offset);
+            downstream.begin(offset);
+            for (int i = 0; i < offset; i++)
+                downstream.accept(array[i]);
+            downstream.end();
+            array = null;
+        }
+
+        @Override
+        public void accept(int t) {
+            array[offset++] = t;
+        }
+    }
+
+    /**
+     * {@link Sink} for implementing sort on int streams.
+     */
+    private static final class IntSortingSink extends Sink.ChainedInt {
+        private SpinedBuffer.OfInt b;
+
+        IntSortingSink(Sink sink) {
+            super(sink);
+        }
+
+        @Override
+        public void begin(long size) {
+            b = (size > 0) ? new SpinedBuffer.OfInt((int) size) : new SpinedBuffer.OfInt();
+        }
+
+        @Override
+        public void end() {
+            int[] ints = b.asIntArray();
+            Arrays.sort(ints);
+            downstream.begin(ints.length);
+            for (int anInt : ints)
+                downstream.accept(anInt);
+            downstream.end();
+        }
+
+        @Override
+        public void accept(int t) {
+            b.accept(t);
+        }
+    }
+
+    /**
+     * {@link Sink} for implementing sort on SIZED long streams.
+     */
+    private static final class SizedLongSortingSink extends Sink.ChainedLong {
+        private long[] array;
+        private int offset;
+
+        SizedLongSortingSink(Sink downstream) {
+            super(downstream);
+        }
+
+        @Override
+        public void begin(long size) {
+            if (size >= Nodes.MAX_ARRAY_SIZE)
+                throw new IllegalArgumentException("Stream size exceeds max array size");
+            array = new long[(int) size];
+        }
+
+        @Override
+        public void end() {
+            Arrays.sort(array, 0, offset);
+            downstream.begin(offset);
+            for (int i = 0; i < offset; i++)
+                downstream.accept(array[i]);
+            downstream.end();
+            array = null;
+        }
+
+        @Override
+        public void accept(long t) {
+            array[offset++] = t;
+        }
+    }
+
+    /**
+     * {@link Sink} for implementing sort on long streams.
+     */
+    private static final class LongSortingSink extends Sink.ChainedLong {
+        private SpinedBuffer.OfLong b;
+
+        LongSortingSink(Sink sink) {
+            super(sink);
+        }
+
+        @Override
+        public void begin(long size) {
+            b = (size > 0) ? new SpinedBuffer.OfLong((int) size) : new SpinedBuffer.OfLong();
+        }
+
+        @Override
+        public void end() {
+            long[] longs = b.asLongArray();
+            Arrays.sort(longs);
+            downstream.begin(longs.length);
+            for (long aLong : longs)
+                downstream.accept(aLong);
+            downstream.end();
+        }
+
+        @Override
+        public void accept(long t) {
+            b.accept(t);
+        }
+    }
+
+    /**
+     * {@link Sink} for implementing sort on SIZED double streams.
+     */
+    private static final class SizedDoubleSortingSink extends Sink.ChainedDouble {
+        private double[] array;
+        private int offset;
+
+        SizedDoubleSortingSink(Sink downstream) {
+            super(downstream);
+        }
+
+        @Override
+        public void begin(long size) {
+            if (size >= Nodes.MAX_ARRAY_SIZE)
+                throw new IllegalArgumentException("Stream size exceeds max array size");
+            array = new double[(int) size];
+        }
+
+        @Override
+        public void end() {
+            Arrays.sort(array, 0, offset);
+            downstream.begin(offset);
+            for (int i = 0; i < offset; i++)
+                downstream.accept(array[i]);
+            downstream.end();
+            array = null;
+        }
+
+        @Override
+        public void accept(double t) {
+            array[offset++] = t;
+        }
+    }
+
+    /**
+     * {@link Sink} for implementing sort on double streams.
+     */
+    private static final class DoubleSortingSink extends Sink.ChainedDouble {
+        private SpinedBuffer.OfDouble b;
+
+        DoubleSortingSink(Sink sink) {
+            super(sink);
+        }
+
+        @Override
+        public void begin(long size) {
+            b = (size > 0) ? new SpinedBuffer.OfDouble((int) size) : new SpinedBuffer.OfDouble();
+        }
+
+        @Override
+        public void end() {
+            double[] doubles = b.asDoubleArray();
+            Arrays.sort(doubles);
+            downstream.begin(doubles.length);
+            for (double aDouble : doubles)
+                downstream.accept(aDouble);
+            downstream.end();
+        }
+
+        @Override
+        public void accept(double t) {
+            b.accept(t);
+        }
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/SpinedBuffer.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,958 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.Iterator;
+import java.util.List;
+import java.util.PrimitiveIterator;
+import java.util.Spliterator;
+import java.util.Spliterators;
+import java.util.function.Consumer;
+import java.util.function.DoubleConsumer;
+import java.util.function.IntConsumer;
+import java.util.function.IntFunction;
+import java.util.function.LongConsumer;
+
+/**
+ * An ordered collection of elements.  Elements can be added, but not removed.
+ * Goes through a building phase, during which elements can be added, and a
+ * traversal phase, during which elements can be traversed in order but no
+ * further modifications are possible.
+ *
+ * <p> One or more arrays are used to store elements. The use of a multiple
+ * arrays has better performance characteristics than a single array used by
+ * {@link ArrayList}, as when the capacity of the list needs to be increased
+ * no copying of elements is required.  This is usually beneficial in the case
+ * where the results will be traversed a small number of times.
+ *
+ * @param <E> the type of elements in this list
+ * @since 1.8
+ */
+class SpinedBuffer<E>
+        extends AbstractSpinedBuffer
+        implements Consumer<E>, Iterable<E> {
+
+    /*
+     * We optimistically hope that all the data will fit into the first chunk,
+     * so we try to avoid inflating the spine[] and priorElementCount[] arrays
+     * prematurely.  So methods must be prepared to deal with these arrays being
+     * null.  If spine is non-null, then spineIndex points to the current chunk
+     * within the spine, otherwise it is zero.  The spine and priorElementCount
+     * arrays are always the same size, and for any i <= spineIndex,
+     * priorElementCount[i] is the sum of the sizes of all the prior chunks.
+     *
+     * The curChunk pointer is always valid.  The elementIndex is the index of
+     * the next element to be written in curChunk; this may be past the end of
+     * curChunk so we have to check before writing. When we inflate the spine
+     * array, curChunk becomes the first element in it.  When we clear the
+     * buffer, we discard all chunks except the first one, which we clear,
+     * restoring it to the initial single-chunk state.
+     */
+
+    /**
+     * Chunk that we're currently writing into; may or may not be aliased with
+     * the first element of the spine.
+     */
+    protected E[] curChunk;
+
+    /**
+     * All chunks, or null if there is only one chunk.
+     */
+    protected E[][] spine;
+
+    /**
+     * Constructs an empty list with the specified initial capacity.
+     *
+     * @param  initialCapacity  the initial capacity of the list
+     * @throws IllegalArgumentException if the specified initial capacity
+     *         is negative
+     */
+    SpinedBuffer(int initialCapacity) {
+        super(initialCapacity);
+        curChunk = (E[]) new Object[1 << initialChunkPower];
+    }
+
+    /**
+     * Constructs an empty list with an initial capacity of sixteen.
+     */
+    SpinedBuffer() {
+        super();
+        curChunk = (E[]) new Object[1 << initialChunkPower];
+    }
+
+    /**
+     * Returns the current capacity of the buffer
+     */
+    protected long capacity() {
+        return (spineIndex == 0)
+               ? curChunk.length
+               : priorElementCount[spineIndex] + spine[spineIndex].length;
+    }
+
+    private void inflateSpine() {
+        if (spine == null) {
+            spine = (E[][]) new Object[MIN_SPINE_SIZE][];
+            priorElementCount = new long[MIN_SPINE_SIZE];
+            spine[0] = curChunk;
+        }
+    }
+
+    /**
+     * Ensure that the buffer has at least capacity to hold the target size
+     */
+    protected final void ensureCapacity(long targetSize) {
+        long capacity = capacity();
+        if (targetSize > capacity) {
+            inflateSpine();
+            for (int i=spineIndex+1; targetSize > capacity; i++) {
+                if (i >= spine.length) {
+                    int newSpineSize = spine.length * 2;
+                    spine = Arrays.copyOf(spine, newSpineSize);
+                    priorElementCount = Arrays.copyOf(priorElementCount, newSpineSize);
+                }
+                int nextChunkSize = chunkSize(i);
+                spine[i] = (E[]) new Object[nextChunkSize];
+                priorElementCount[i] = priorElementCount[i-1] + spine[i-1].length;
+                capacity += nextChunkSize;
+            }
+        }
+    }
+
+    /**
+     * Force the buffer to increase its capacity.
+     */
+    protected void increaseCapacity() {
+        ensureCapacity(capacity() + 1);
+    }
+
+    /**
+     * Retrieve the element at the specified index.
+     */
+    public E get(long index) {
+        // @@@ can further optimize by caching last seen spineIndex,
+        // which is going to be right most of the time
+        if (spineIndex == 0) {
+            if (index < elementIndex)
+                return curChunk[((int) index)];
+            else
+                throw new IndexOutOfBoundsException(Long.toString(index));
+        }
+
+        if (index >= count())
+            throw new IndexOutOfBoundsException(Long.toString(index));
+
+        for (int j=0; j <= spineIndex; j++)
+            if (index < priorElementCount[j] + spine[j].length)
+                return spine[j][((int) (index - priorElementCount[j]))];
+
+        throw new IndexOutOfBoundsException(Long.toString(index));
+    }
+
+    /**
+     * Copy the elements, starting at the specified offset, into the specified
+     * array.
+     */
+    public void copyInto(E[] array, int offset) {
+        long finalOffset = offset + count();
+        if (finalOffset > array.length || finalOffset < offset) {
+            throw new IndexOutOfBoundsException("does not fit");
+        }
+
+        if (spineIndex == 0)
+            System.arraycopy(curChunk, 0, array, offset, elementIndex);
+        else {
+            // full chunks
+            for (int i=0; i < spineIndex; i++) {
+                System.arraycopy(spine[i], 0, array, offset, spine[i].length);
+                offset += spine[i].length;
+            }
+            if (elementIndex > 0)
+                System.arraycopy(curChunk, 0, array, offset, elementIndex);
+        }
+    }
+
+    /**
+     * Create a new array using the specified array factory, and copy the
+     * elements into it.
+     */
+    public E[] asArray(IntFunction<E[]> arrayFactory) {
+        // @@@ will fail for size == MAX_VALUE
+        E[] result = arrayFactory.apply((int) count());
+
+        copyInto(result, 0);
+
+        return result;
+    }
+
+    @Override
+    public void clear() {
+        if (spine != null) {
+            curChunk = spine[0];
+            for (int i=0; i<curChunk.length; i++)
+                curChunk[i] = null;
+            spine = null;
+            priorElementCount = null;
+        }
+        else {
+            for (int i=0; i<elementIndex; i++)
+                curChunk[i] = null;
+        }
+        elementIndex = 0;
+        spineIndex = 0;
+    }
+
+    @Override
+    public Iterator<E> iterator() {
+        return Spliterators.iteratorFromSpliterator(spliterator());
+    }
+
+    @Override
+    public void forEach(Consumer<? super E> consumer) {
+        // completed chunks, if any
+        for (int j = 0; j < spineIndex; j++)
+            for (E t : spine[j])
+                consumer.accept(t);
+
+        // current chunk
+        for (int i=0; i<elementIndex; i++)
+            consumer.accept(curChunk[i]);
+    }
+
+    @Override
+    public void accept(E e) {
+        if (elementIndex == curChunk.length) {
+            inflateSpine();
+            if (spineIndex+1 >= spine.length || spine[spineIndex+1] == null)
+                increaseCapacity();
+            elementIndex = 0;
+            ++spineIndex;
+            curChunk = spine[spineIndex];
+        }
+        curChunk[elementIndex++] = e;
+    }
+
+    @Override
+    public String toString() {
+        List<E> list = new ArrayList<>();
+        forEach(list::add);
+        return "SpinedBuffer:" + list.toString();
+    }
+
+    private static final int SPLITERATOR_CHARACTERISTICS
+            = Spliterator.SIZED | Spliterator.ORDERED | Spliterator.SUBSIZED;
+
+    /**
+     * Return a {@link Spliterator} describing the contents of the buffer.
+     */
+    public Spliterator<E> spliterator() {
+        return new Spliterator<E>() {
+            // The current spine index
+            int splSpineIndex;
+
+            // The current element index into the current spine
+            int splElementIndex;
+
+            // When splSpineIndex >= spineIndex and splElementIndex >= elementIndex then
+            // this spliterator is fully traversed
+            // tryAdvance can set splSpineIndex > spineIndex if the last spine is full
+
+            // The current spine array
+            E[] splChunk = (spine == null) ? curChunk : spine[0];
+
+            @Override
+            public long estimateSize() {
+                return (spine == null)
+                       ? (elementIndex - splElementIndex)
+                       : count() - (priorElementCount[splSpineIndex] + splElementIndex);
+            }
+
+            @Override
+            public int characteristics() {
+                return SPLITERATOR_CHARACTERISTICS;
+            }
+
+            @Override
+            public boolean tryAdvance(Consumer<? super E> consumer) {
+                if (splSpineIndex < spineIndex
+                    || (splSpineIndex == spineIndex && splElementIndex < elementIndex)) {
+                    consumer.accept(splChunk[splElementIndex++]);
+
+                    if (splElementIndex == splChunk.length) {
+                        splElementIndex = 0;
+                        ++splSpineIndex;
+                        if (spine != null && splSpineIndex < spine.length)
+                            splChunk = spine[splSpineIndex];
+                    }
+                    return true;
+                }
+                return false;
+            }
+
+            @Override
+            public void forEachRemaining(Consumer<? super E> consumer) {
+                if (splSpineIndex < spineIndex
+                    || (splSpineIndex == spineIndex && splElementIndex < elementIndex)) {
+                    int i = splElementIndex;
+                    // completed chunks, if any
+                    for (int sp = splSpineIndex; sp < spineIndex; sp++) {
+                        E[] chunk = spine[sp];
+                        for (; i < chunk.length; i++) {
+                            consumer.accept(chunk[i]);
+                        }
+                        i = 0;
+                    }
+
+                    // current chunk
+                    E[] chunk = curChunk;
+                    int hElementIndex = elementIndex;
+                    for (; i < hElementIndex; i++) {
+                        consumer.accept(chunk[i]);
+                    }
+
+                    splSpineIndex = spineIndex;
+                    splElementIndex = elementIndex;
+                }
+            }
+
+            @Override
+            public Spliterator<E> trySplit() {
+                if (splSpineIndex < spineIndex) {
+                    Spliterator<E> ret = Arrays.spliterator(spine[splSpineIndex],
+                                                            splElementIndex, spine[splSpineIndex].length);
+                    splChunk = spine[++splSpineIndex];
+                    splElementIndex = 0;
+                    return ret;
+                }
+                else if (splSpineIndex == spineIndex) {
+                    int t = (elementIndex - splElementIndex) / 2;
+                    if (t == 0)
+                        return null;
+                    else {
+                        Spliterator<E> ret = Arrays.spliterator(curChunk, splElementIndex, splElementIndex + t);
+                        splElementIndex += t;
+                        return ret;
+                    }
+                }
+                else {
+                    return null;
+                }
+            }
+        };
+    }
+
+    /**
+     * An ordered collection of primitive values.  Elements can be added, but
+     * not removed. Goes through a building phase, during which elements can be
+     * added, and a traversal phase, during which elements can be traversed in
+     * order but no further modifications are possible.
+     *
+     * <p> One or more arrays are used to store elements. The use of a multiple
+     * arrays has better performance characteristics than a single array used by
+     * {@link ArrayList}, as when the capacity of the list needs to be increased
+     * no copying of elements is required.  This is usually beneficial in the case
+     * where the results will be traversed a small number of times.
+     *
+     * @param <E> the wrapper type for this primitive type
+     * @param <T_ARR> the array type for this primitive type
+     * @param <T_CONS> the Consumer type for this primitive type
+     */
+    abstract static class OfPrimitive<E, T_ARR, T_CONS>
+            extends AbstractSpinedBuffer implements Iterable<E> {
+
+        /*
+         * We optimistically hope that all the data will fit into the first chunk,
+         * so we try to avoid inflating the spine[] and priorElementCount[] arrays
+         * prematurely.  So methods must be prepared to deal with these arrays being
+         * null.  If spine is non-null, then spineIndex points to the current chunk
+         * within the spine, otherwise it is zero.  The spine and priorElementCount
+         * arrays are always the same size, and for any i <= spineIndex,
+         * priorElementCount[i] is the sum of the sizes of all the prior chunks.
+         *
+         * The curChunk pointer is always valid.  The elementIndex is the index of
+         * the next element to be written in curChunk; this may be past the end of
+         * curChunk so we have to check before writing. When we inflate the spine
+         * array, curChunk becomes the first element in it.  When we clear the
+         * buffer, we discard all chunks except the first one, which we clear,
+         * restoring it to the initial single-chunk state.
+         */
+
+        // The chunk we're currently writing into
+        T_ARR curChunk;
+
+        // All chunks, or null if there is only one chunk
+        T_ARR[] spine;
+
+        /**
+         * Constructs an empty list with the specified initial capacity.
+         *
+         * @param  initialCapacity  the initial capacity of the list
+         * @throws IllegalArgumentException if the specified initial capacity
+         *         is negative
+         */
+        OfPrimitive(int initialCapacity) {
+            super(initialCapacity);
+            curChunk = newArray(1 << initialChunkPower);
+        }
+
+        /**
+         * Constructs an empty list with an initial capacity of sixteen.
+         */
+        OfPrimitive() {
+            super();
+            curChunk = newArray(1 << initialChunkPower);
+        }
+
+        @Override
+        public abstract Iterator<E> iterator();
+
+        @Override
+        public abstract void forEach(Consumer<? super E> consumer);
+
+        /** Create a new array-of-array of the proper type and size */
+        protected abstract T_ARR[] newArrayArray(int size);
+
+        /** Create a new array of the proper type and size */
+        protected abstract T_ARR newArray(int size);
+
+        /** Get the length of an array */
+        protected abstract int arrayLength(T_ARR array);
+
+        /** Iterate an array with the provided consumer */
+        protected abstract void arrayForEach(T_ARR array, int from, int to,
+                                             T_CONS consumer);
+
+        protected long capacity() {
+            return (spineIndex == 0)
+                   ? arrayLength(curChunk)
+                   : priorElementCount[spineIndex] + arrayLength(spine[spineIndex]);
+        }
+
+        private void inflateSpine() {
+            if (spine == null) {
+                spine = newArrayArray(MIN_SPINE_SIZE);
+                priorElementCount = new long[MIN_SPINE_SIZE];
+                spine[0] = curChunk;
+            }
+        }
+
+        protected final void ensureCapacity(long targetSize) {
+            long capacity = capacity();
+            if (targetSize > capacity) {
+                inflateSpine();
+                for (int i=spineIndex+1; targetSize > capacity; i++) {
+                    if (i >= spine.length) {
+                        int newSpineSize = spine.length * 2;
+                        spine = Arrays.copyOf(spine, newSpineSize);
+                        priorElementCount = Arrays.copyOf(priorElementCount, newSpineSize);
+                    }
+                    int nextChunkSize = chunkSize(i);
+                    spine[i] = newArray(nextChunkSize);
+                    priorElementCount[i] = priorElementCount[i-1] + arrayLength(spine[i - 1]);
+                    capacity += nextChunkSize;
+                }
+            }
+        }
+
+        protected void increaseCapacity() {
+            ensureCapacity(capacity() + 1);
+        }
+
+        protected int chunkFor(long index) {
+            if (spineIndex == 0) {
+                if (index < elementIndex)
+                    return 0;
+                else
+                    throw new IndexOutOfBoundsException(Long.toString(index));
+            }
+
+            if (index >= count())
+                throw new IndexOutOfBoundsException(Long.toString(index));
+
+            for (int j=0; j <= spineIndex; j++)
+                if (index < priorElementCount[j] + arrayLength(spine[j]))
+                    return j;
+
+            throw new IndexOutOfBoundsException(Long.toString(index));
+        }
+
+        public void copyInto(T_ARR array, int offset) {
+            long finalOffset = offset + count();
+            if (finalOffset > arrayLength(array) || finalOffset < offset) {
+                throw new IndexOutOfBoundsException("does not fit");
+            }
+
+            if (spineIndex == 0)
+                System.arraycopy(curChunk, 0, array, offset, elementIndex);
+            else {
+                // full chunks
+                for (int i=0; i < spineIndex; i++) {
+                    System.arraycopy(spine[i], 0, array, offset, arrayLength(spine[i]));
+                    offset += arrayLength(spine[i]);
+                }
+                if (elementIndex > 0)
+                    System.arraycopy(curChunk, 0, array, offset, elementIndex);
+            }
+        }
+
+        public T_ARR asPrimitiveArray() {
+            // @@@ will fail for size == MAX_VALUE
+            T_ARR result = newArray((int) count());
+            copyInto(result, 0);
+            return result;
+        }
+
+        protected void preAccept() {
+            if (elementIndex == arrayLength(curChunk)) {
+                inflateSpine();
+                if (spineIndex+1 >= spine.length || spine[spineIndex+1] == null)
+                    increaseCapacity();
+                elementIndex = 0;
+                ++spineIndex;
+                curChunk = spine[spineIndex];
+            }
+        }
+
+        public void clear() {
+            if (spine != null) {
+                curChunk = spine[0];
+                spine = null;
+                priorElementCount = null;
+            }
+            elementIndex = 0;
+            spineIndex = 0;
+        }
+
+        public void forEach(T_CONS consumer) {
+            // completed chunks, if any
+            for (int j = 0; j < spineIndex; j++)
+                arrayForEach(spine[j], 0, arrayLength(spine[j]), consumer);
+
+            // current chunk
+            arrayForEach(curChunk, 0, elementIndex, consumer);
+        }
+
+        abstract class BaseSpliterator<T_SPLITER extends Spliterator<E>>
+                implements Spliterator<E> {
+            // The current spine index
+            int splSpineIndex;
+
+            // The current element index into the current spine
+            int splElementIndex;
+
+            // When splSpineIndex >= spineIndex and splElementIndex >= elementIndex then
+            // this spliterator is fully traversed
+            // tryAdvance can set splSpineIndex > spineIndex if the last spine is full
+
+            // The current spine array
+            T_ARR splChunk = (spine == null) ? curChunk : spine[0];
+
+            abstract void arrayForOne(T_ARR array, int index, T_CONS consumer);
+
+            abstract T_SPLITER arraySpliterator(T_ARR array, int offset, int len);
+
+            @Override
+            public long estimateSize() {
+                return (spine == null)
+                       ? (elementIndex - splElementIndex)
+                       : count() - (priorElementCount[splSpineIndex] + splElementIndex);
+            }
+
+            @Override
+            public int characteristics() {
+                return SPLITERATOR_CHARACTERISTICS;
+            }
+
+            public boolean tryAdvance(T_CONS consumer) {
+                if (splSpineIndex < spineIndex
+                    || (splSpineIndex == spineIndex && splElementIndex < elementIndex)) {
+                    arrayForOne(splChunk, splElementIndex++, consumer);
+
+                    if (splElementIndex == arrayLength(splChunk)) {
+                        splElementIndex = 0;
+                        ++splSpineIndex;
+                        if (spine != null && splSpineIndex < spine.length)
+                            splChunk = spine[splSpineIndex];
+                    }
+                    return true;
+                }
+                return false;
+            }
+
+            public void forEachRemaining(T_CONS consumer) {
+                if (splSpineIndex < spineIndex
+                    || (splSpineIndex == spineIndex && splElementIndex < elementIndex)) {
+                    int i = splElementIndex;
+                    // completed chunks, if any
+                    for (int sp = splSpineIndex; sp < spineIndex; sp++) {
+                        T_ARR chunk = spine[sp];
+                        arrayForEach(chunk, i, arrayLength(chunk), consumer);
+                        i = 0;
+                    }
+
+                    arrayForEach(curChunk, i, elementIndex, consumer);
+
+                    splSpineIndex = spineIndex;
+                    splElementIndex = elementIndex;
+                }
+            }
+
+            @Override
+            public T_SPLITER trySplit() {
+                if (splSpineIndex < spineIndex) {
+                    T_SPLITER ret = arraySpliterator(spine[splSpineIndex], splElementIndex,
+                                                     arrayLength(spine[splSpineIndex]) - splElementIndex);
+                    splChunk = spine[++splSpineIndex];
+                    splElementIndex = 0;
+                    return ret;
+                }
+                else if (splSpineIndex == spineIndex) {
+                    int t = (elementIndex - splElementIndex) / 2;
+                    if (t == 0)
+                        return null;
+                    else {
+                        T_SPLITER ret = arraySpliterator(curChunk, splElementIndex, t);
+                        splElementIndex += t;
+                        return ret;
+                    }
+                }
+                else {
+                    return null;
+                }
+            }
+        }
+    }
+
+    /**
+     * An ordered collection of {@code int} values.
+     */
+    static class OfInt extends SpinedBuffer.OfPrimitive<Integer, int[], IntConsumer>
+            implements IntConsumer {
+        OfInt() { }
+
+        OfInt(int initialCapacity) {
+            super(initialCapacity);
+        }
+
+        @Override
+        public void forEach(Consumer<? super Integer> consumer) {
+            if (consumer instanceof IntConsumer) {
+                forEach((IntConsumer) consumer);
+            }
+            else {
+                if (Tripwire.ENABLED)
+                    Tripwire.trip(getClass(), "{0} calling SpinedBuffer.OfInt.forEach(Consumer)");
+                spliterator().forEachRemaining(consumer);
+            }
+        }
+
+        @Override
+        protected int[][] newArrayArray(int size) {
+            return new int[size][];
+        }
+
+        @Override
+        protected int[] newArray(int size) {
+            return new int[size];
+        }
+
+        @Override
+        protected int arrayLength(int[] array) {
+            return array.length;
+        }
+
+        @Override
+        protected void arrayForEach(int[] array,
+                                    int from, int to,
+                                    IntConsumer consumer) {
+            for (int i = from; i < to; i++)
+                consumer.accept(array[i]);
+        }
+
+        @Override
+        public void accept(int i) {
+            preAccept();
+            curChunk[elementIndex++] = i;
+        }
+
+        public int get(long index) {
+            int ch = chunkFor(index);
+            if (spineIndex == 0 && ch == 0)
+                return curChunk[(int) index];
+            else
+                return spine[ch][(int) (index-priorElementCount[ch])];
+        }
+
+        public int[] asIntArray() {
+            return asPrimitiveArray();
+        }
+
+        @Override
+        public PrimitiveIterator.OfInt iterator() {
+            return Spliterators.iteratorFromSpliterator(spliterator());
+        }
+
+        public Spliterator.OfInt spliterator() {
+            class Splitr extends BaseSpliterator<Spliterator.OfInt>
+                    implements Spliterator.OfInt {
+
+                @Override
+                void arrayForOne(int[] array, int index, IntConsumer consumer) {
+                    consumer.accept(array[index]);
+                }
+
+                @Override
+                Spliterator.OfInt arraySpliterator(int[] array, int offset, int len) {
+                    return Arrays.spliterator(array, offset, offset+len);
+                }
+            };
+            return new Splitr();
+        }
+
+        @Override
+        public String toString() {
+            int[] array = asIntArray();
+            if (array.length < 200) {
+                return String.format("%s[length=%d, chunks=%d]%s",
+                                     getClass().getSimpleName(), array.length,
+                                     spineIndex, Arrays.toString(array));
+            }
+            else {
+                int[] array2 = Arrays.copyOf(array, 200);
+                return String.format("%s[length=%d, chunks=%d]%s...",
+                                     getClass().getSimpleName(), array.length,
+                                     spineIndex, Arrays.toString(array2));
+            }
+        }
+    }
+
+    /**
+     * An ordered collection of {@code long} values.
+     */
+    static class OfLong extends SpinedBuffer.OfPrimitive<Long, long[], LongConsumer>
+            implements LongConsumer {
+        OfLong() { }
+
+        OfLong(int initialCapacity) {
+            super(initialCapacity);
+        }
+
+        @Override
+        public void forEach(Consumer<? super Long> consumer) {
+            if (consumer instanceof LongConsumer) {
+                forEach((LongConsumer) consumer);
+            }
+            else {
+                if (Tripwire.ENABLED)
+                    Tripwire.trip(getClass(), "{0} calling SpinedBuffer.OfLong.forEach(Consumer)");
+                spliterator().forEachRemaining(consumer);
+            }
+        }
+
+        @Override
+        protected long[][] newArrayArray(int size) {
+            return new long[size][];
+        }
+
+        @Override
+        protected long[] newArray(int size) {
+            return new long[size];
+        }
+
+        @Override
+        protected int arrayLength(long[] array) {
+            return array.length;
+        }
+
+        @Override
+        protected void arrayForEach(long[] array,
+                                    int from, int to,
+                                    LongConsumer consumer) {
+            for (int i = from; i < to; i++)
+                consumer.accept(array[i]);
+        }
+
+        @Override
+        public void accept(long i) {
+            preAccept();
+            curChunk[elementIndex++] = i;
+        }
+
+        public long get(long index) {
+            int ch = chunkFor(index);
+            if (spineIndex == 0 && ch == 0)
+                return curChunk[(int) index];
+            else
+                return spine[ch][(int) (index-priorElementCount[ch])];
+        }
+
+        public long[] asLongArray() {
+            return asPrimitiveArray();
+        }
+
+        @Override
+        public PrimitiveIterator.OfLong iterator() {
+            return Spliterators.iteratorFromSpliterator(spliterator());
+        }
+
+
+        public Spliterator.OfLong spliterator() {
+            class Splitr extends BaseSpliterator<Spliterator.OfLong>
+                    implements Spliterator.OfLong {
+                @Override
+                void arrayForOne(long[] array, int index, LongConsumer consumer) {
+                    consumer.accept(array[index]);
+                }
+
+                @Override
+                Spliterator.OfLong arraySpliterator(long[] array, int offset, int len) {
+                    return Arrays.spliterator(array, offset, offset+len);
+                }
+            };
+            return new Splitr();
+        }
+
+        @Override
+        public String toString() {
+            long[] array = asLongArray();
+            if (array.length < 200) {
+                return String.format("%s[length=%d, chunks=%d]%s",
+                                     getClass().getSimpleName(), array.length,
+                                     spineIndex, Arrays.toString(array));
+            }
+            else {
+                long[] array2 = Arrays.copyOf(array, 200);
+                return String.format("%s[length=%d, chunks=%d]%s...",
+                                     getClass().getSimpleName(), array.length,
+                                     spineIndex, Arrays.toString(array2));
+            }
+        }
+    }
+
+    /**
+     * An ordered collection of {@code double} values.
+     */
+    static class OfDouble
+            extends SpinedBuffer.OfPrimitive<Double, double[], DoubleConsumer>
+            implements DoubleConsumer {
+        OfDouble() { }
+
+        OfDouble(int initialCapacity) {
+            super(initialCapacity);
+        }
+
+        @Override
+        public void forEach(Consumer<? super Double> consumer) {
+            if (consumer instanceof DoubleConsumer) {
+                forEach((DoubleConsumer) consumer);
+            }
+            else {
+                if (Tripwire.ENABLED)
+                    Tripwire.trip(getClass(), "{0} calling SpinedBuffer.OfDouble.forEach(Consumer)");
+                spliterator().forEachRemaining(consumer);
+            }
+        }
+
+        @Override
+        protected double[][] newArrayArray(int size) {
+            return new double[size][];
+        }
+
+        @Override
+        protected double[] newArray(int size) {
+            return new double[size];
+        }
+
+        @Override
+        protected int arrayLength(double[] array) {
+            return array.length;
+        }
+
+        @Override
+        protected void arrayForEach(double[] array,
+                                    int from, int to,
+                                    DoubleConsumer consumer) {
+            for (int i = from; i < to; i++)
+                consumer.accept(array[i]);
+        }
+
+        @Override
+        public void accept(double i) {
+            preAccept();
+            curChunk[elementIndex++] = i;
+        }
+
+        public double get(long index) {
+            int ch = chunkFor(index);
+            if (spineIndex == 0 && ch == 0)
+                return curChunk[(int) index];
+            else
+                return spine[ch][(int) (index-priorElementCount[ch])];
+        }
+
+        public double[] asDoubleArray() {
+            return asPrimitiveArray();
+        }
+
+        @Override
+        public PrimitiveIterator.OfDouble iterator() {
+            return Spliterators.iteratorFromSpliterator(spliterator());
+        }
+
+        public Spliterator.OfDouble spliterator() {
+            class Splitr extends BaseSpliterator<Spliterator.OfDouble>
+                    implements Spliterator.OfDouble {
+                @Override
+                void arrayForOne(double[] array, int index, DoubleConsumer consumer) {
+                    consumer.accept(array[index]);
+                }
+
+                @Override
+                Spliterator.OfDouble arraySpliterator(double[] array, int offset, int len) {
+                    return Arrays.spliterator(array, offset, offset+len);
+                }
+            }
+            return new Splitr();
+        }
+
+        @Override
+        public String toString() {
+            double[] array = asDoubleArray();
+            if (array.length < 200) {
+                return String.format("%s[length=%d, chunks=%d]%s",
+                                     getClass().getSimpleName(), array.length,
+                                     spineIndex, Arrays.toString(array));
+            }
+            else {
+                double[] array2 = Arrays.copyOf(array, 200);
+                return String.format("%s[length=%d, chunks=%d]%s...",
+                                     getClass().getSimpleName(), array.length,
+                                     spineIndex, Arrays.toString(array2));
+            }
+        }
+    }
+}
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/StreamSpliterators.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,636 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.Comparator;
+import java.util.Spliterator;
+import java.util.function.BooleanSupplier;
+import java.util.function.Consumer;
+import java.util.function.DoubleConsumer;
+import java.util.function.IntConsumer;
+import java.util.function.LongConsumer;
+import java.util.function.Supplier;
+
+/**
+ * Spliterator implementations for wrapping and delegating spliterators, used
+ * in the implementation of the {@link Stream#spliterator()} method.
+ *
+ * @since 1.8
+ */
+class StreamSpliterators {
+
+    /**
+     * Abstract wrapping spliterator that binds to the spliterator of a
+     * pipeline helper on first operation.
+     *
+     * <p>This spliterator is not late-binding and will bind to the source
+     * spliterator when first operated on.
+     *
+     * <p>A wrapping spliterator produced from a sequential stream
+     * cannot be split if there are stateful operations present.
+     */
+    private static abstract class AbstractWrappingSpliterator<P_IN, P_OUT,
+                                                              T_BUFFER extends AbstractSpinedBuffer>
+            implements Spliterator<P_OUT> {
+
+        // @@@ Detect if stateful operations are present or not
+        //     If not then can split otherwise cannot
+
+        /**
+         * True if this spliterator supports splitting
+         */
+        final boolean isParallel;
+
+        final PipelineHelper<P_OUT> ph;
+
+        /**
+         * Supplier for the source spliterator.  Client provides either a
+         * spliterator or a supplier.
+         */
+        private Supplier<Spliterator<P_IN>> spliteratorSupplier;
+
+        /**
+         * Source spliterator.  Either provided from client or obtained from
+         * supplier.
+         */
+        Spliterator<P_IN> spliterator;
+
+        /**
+         * Sink chain for the downstream stages of the pipeline, ultimately
+         * leading to the buffer. Used during partial traversal.
+         */
+        Sink<P_IN> bufferSink;
+
+        /**
+         * A function that advances one element of the spliterator, pushing
+         * it to bufferSink.  Returns whether any elements were processed.
+         * Used during partial traversal.
+         */
+        BooleanSupplier pusher;
+
+        /** Next element to consume from the buffer, used during partial traversal */
+        long nextToConsume;
+
+        /** Buffer into which elements are pushed.  Used during partial traversal. */
+        T_BUFFER buffer;
+
+        /**
+         * True if full traversal has occurred (with possible cancelation).
+         * If doing a partial traversal, there may be still elements in buffer.
+         */
+        boolean finished;
+
+        /**
+         * Construct an AbstractWrappingSpliterator from a
+         * {@code Supplier<Spliterator>}.
+         */
+        AbstractWrappingSpliterator(PipelineHelper<P_OUT> ph,
+                                    Supplier<Spliterator<P_IN>> spliteratorSupplier,
+                                    boolean parallel) {
+            this.ph = ph;
+            this.spliteratorSupplier = spliteratorSupplier;
+            this.spliterator = null;
+            this.isParallel = parallel;
+        }
+
+        /**
+         * Construct an AbstractWrappingSpliterator from a
+         * {@code Spliterator}.
+         */
+        AbstractWrappingSpliterator(PipelineHelper<P_OUT> ph,
+                                    Spliterator<P_IN> spliterator,
+                                    boolean parallel) {
+            this.ph = ph;
+            this.spliteratorSupplier = null;
+            this.spliterator = spliterator;
+            this.isParallel = parallel;
+        }
+
+        /**
+         * Called before advancing to set up spliterator, if needed.
+         */
+        final void init() {
+            if (spliterator == null) {
+                spliterator = spliteratorSupplier.get();
+                spliteratorSupplier = null;
+            }
+        }
+
+        /**
+         * Get an element from the source, pushing it into the sink chain,
+         * setting up the buffer if needed
+         * @return whether there are elements to consume from the buffer
+         */
+        final boolean doAdvance() {
+            if (buffer == null) {
+                if (finished)
+                    return false;
+
+                init();
+                initPartialTraversalState();
+                nextToConsume = 0;
+                bufferSink.begin(spliterator.getExactSizeIfKnown());
+                return fillBuffer();
+            }
+            else {
+                ++nextToConsume;
+                boolean hasNext = nextToConsume < buffer.count();
+                if (!hasNext) {
+                    nextToConsume = 0;
+                    buffer.clear();
+                    hasNext = fillBuffer();
+                }
+                return hasNext;
+            }
+        }
+
+        /**
+         * Invokes the shape-specific constructor with the provided arguments
+         * and returns the result.
+         */
+        abstract AbstractWrappingSpliterator<P_IN, P_OUT, ?> wrap(Spliterator<P_IN> s);
+
+        /**
+         * Initializes buffer, sink chain, and pusher for a shape-specific
+         * implementation.
+         */
+        abstract void initPartialTraversalState();
+
+        @Override
+        public Spliterator<P_OUT> trySplit() {
+            if (isParallel && !finished) {
+                init();
+
+                Spliterator<P_IN> split = spliterator.trySplit();
+                return (split == null) ? null : wrap(split);
+            }
+            else
+                return null;
+        }
+
+        /**
+         * If the buffer is empty, push elements into the sink chain until
+         * the source is empty or cancellation is requested.
+         * @return whether there are elements to consume from the buffer
+         */
+        private boolean fillBuffer() {
+            while (buffer.count() == 0) {
+                if (bufferSink.cancellationRequested() || !pusher.getAsBoolean()) {
+                    if (finished)
+                        return false;
+                    else {
+                        bufferSink.end(); // might trigger more elements
+                        finished = true;
+                    }
+                }
+            }
+            return true;
+        }
+
+        @Override
+        public final long estimateSize() {
+            init();
+            return StreamOpFlag.SIZED.isKnown(ph.getStreamAndOpFlags())
+                   ? spliterator.estimateSize()
+                   : Long.MAX_VALUE;
+        }
+
+        @Override
+        public final long getExactSizeIfKnown() {
+            init();
+            return StreamOpFlag.SIZED.isKnown(ph.getStreamAndOpFlags())
+                   ? spliterator.getExactSizeIfKnown()
+                   : -1;
+        }
+
+        @Override
+        public final int characteristics() {
+            init();
+
+            // Get the characteristics from the pipeline
+            int c = StreamOpFlag.toCharacteristics(StreamOpFlag.toStreamFlags(ph.getStreamAndOpFlags()));
+
+            // Mask off the size and uniform characteristics and replace with
+            // those of the spliterator
+            // Note that a non-uniform spliterator can change from something
+            // with an exact size to an estimate for a sub-split, for example
+            // with HashSet where the size is known at the top level spliterator
+            // but for sub-splits only an estimate is known
+            if ((c & Spliterator.SIZED) != 0) {
+                c &= ~(Spliterator.SIZED | Spliterator.SUBSIZED);
+                c |= (spliterator.characteristics() & Spliterator.SIZED & Spliterator.SUBSIZED);
+            }
+
+            return c;
+        }
+
+        @Override
+        public Comparator<? super P_OUT> getComparator() {
+            if (!hasCharacteristics(SORTED))
+                throw new IllegalStateException();
+            return null;
+        }
+
+        @Override
+        public final String toString() {
+            return String.format("%s[%s]", getClass().getName(), spliterator);
+        }
+    }
+
+    static final class WrappingSpliterator<P_IN, P_OUT>
+            extends AbstractWrappingSpliterator<P_IN, P_OUT, SpinedBuffer<P_OUT>> {
+
+        WrappingSpliterator(PipelineHelper<P_OUT> ph,
+                            Supplier<Spliterator<P_IN>> supplier,
+                            boolean parallel) {
+            super(ph, supplier, parallel);
+        }
+
+        WrappingSpliterator(PipelineHelper<P_OUT> ph,
+                            Spliterator<P_IN> spliterator,
+                            boolean parallel) {
+            super(ph, spliterator, parallel);
+        }
+
+        @Override
+        WrappingSpliterator<P_IN, P_OUT> wrap(Spliterator<P_IN> s) {
+            return new WrappingSpliterator<>(ph, s, isParallel);
+        }
+
+        @Override
+        void initPartialTraversalState() {
+            SpinedBuffer<P_OUT> b = new SpinedBuffer<>();
+            buffer = b;
+            bufferSink = ph.wrapSink(b::accept);
+            pusher = () -> spliterator.tryAdvance(bufferSink);
+        }
+
+        @Override
+        public boolean tryAdvance(Consumer<? super P_OUT> consumer) {
+            boolean hasNext = doAdvance();
+            if (hasNext)
+                consumer.accept(buffer.get(nextToConsume));
+            return hasNext;
+        }
+
+        @Override
+        public void forEachRemaining(Consumer<? super P_OUT> consumer) {
+            if (buffer == null && !finished) {
+                init();
+
+                ph.wrapAndCopyInto((Sink<P_OUT>) consumer::accept, spliterator);
+                finished = true;
+            }
+            else {
+                while (tryAdvance(consumer)) { }
+            }
+        }
+    }
+
+    static final class IntWrappingSpliterator<P_IN>
+            extends AbstractWrappingSpliterator<P_IN, Integer, SpinedBuffer.OfInt>
+            implements Spliterator.OfInt {
+
+        IntWrappingSpliterator(PipelineHelper<Integer> ph,
+                               Supplier<Spliterator<P_IN>> supplier,
+                               boolean parallel) {
+            super(ph, supplier, parallel);
+        }
+
+        IntWrappingSpliterator(PipelineHelper<Integer> ph,
+                               Spliterator<P_IN> spliterator,
+                               boolean parallel) {
+            super(ph, spliterator, parallel);
+        }
+
+        @Override
+        AbstractWrappingSpliterator<P_IN, Integer, ?> wrap(Spliterator<P_IN> s) {
+            return new IntWrappingSpliterator<>(ph, s, isParallel);
+        }
+
+        @Override
+        void initPartialTraversalState() {
+            SpinedBuffer.OfInt b = new SpinedBuffer.OfInt();
+            buffer = b;
+            bufferSink = ph.wrapSink((Sink.OfInt) b::accept);
+            pusher = () -> spliterator.tryAdvance(bufferSink);
+        }
+
+        @Override
+        public Spliterator.OfInt trySplit() {
+            return (Spliterator.OfInt) super.trySplit();
+        }
+
+        @Override
+        public boolean tryAdvance(IntConsumer consumer) {
+            boolean hasNext = doAdvance();
+            if (hasNext)
+                consumer.accept(buffer.get(nextToConsume));
+            return hasNext;
+        }
+
+        @Override
+        public void forEachRemaining(IntConsumer consumer) {
+            if (buffer == null && !finished) {
+                init();
+
+                ph.wrapAndCopyInto((Sink.OfInt) consumer::accept, spliterator);
+                finished = true;
+            }
+            else {
+                while (tryAdvance(consumer)) { }
+            }
+        }
+    }
+
+    static final class LongWrappingSpliterator<P_IN>
+            extends AbstractWrappingSpliterator<P_IN, Long, SpinedBuffer.OfLong>
+            implements Spliterator.OfLong {
+
+        LongWrappingSpliterator(PipelineHelper<Long> ph,
+                                Supplier<Spliterator<P_IN>> supplier,
+                                boolean parallel) {
+            super(ph, supplier, parallel);
+        }
+
+        LongWrappingSpliterator(PipelineHelper<Long> ph,
+                                Spliterator<P_IN> spliterator,
+                                boolean parallel) {
+            super(ph, spliterator, parallel);
+        }
+
+        @Override
+        AbstractWrappingSpliterator<P_IN, Long, ?> wrap(Spliterator<P_IN> s) {
+            return new LongWrappingSpliterator<>(ph, s, isParallel);
+        }
+
+        @Override
+        void initPartialTraversalState() {
+            SpinedBuffer.OfLong b = new SpinedBuffer.OfLong();
+            buffer = b;
+            bufferSink = ph.wrapSink((Sink.OfLong) b::accept);
+            pusher = () -> spliterator.tryAdvance(bufferSink);
+        }
+
+        @Override
+        public Spliterator.OfLong trySplit() {
+            return (Spliterator.OfLong) super.trySplit();
+        }
+
+        @Override
+        public boolean tryAdvance(LongConsumer consumer) {
+            boolean hasNext = doAdvance();
+            if (hasNext)
+                consumer.accept(buffer.get(nextToConsume));
+            return hasNext;
+        }
+
+        @Override
+        public void forEachRemaining(LongConsumer consumer) {
+            if (buffer == null && !finished) {
+                init();
+
+                ph.wrapAndCopyInto((Sink.OfLong) consumer::accept, spliterator);
+                finished = true;
+            }
+            else {
+                while (tryAdvance(consumer)) { }
+            }
+        }
+    }
+
+    static final class DoubleWrappingSpliterator<P_IN>
+            extends AbstractWrappingSpliterator<P_IN, Double, SpinedBuffer.OfDouble>
+            implements Spliterator.OfDouble {
+
+        DoubleWrappingSpliterator(PipelineHelper<Double> ph,
+                                  Supplier<Spliterator<P_IN>> supplier,
+                                  boolean parallel) {
+            super(ph, supplier, parallel);
+        }
+
+        DoubleWrappingSpliterator(PipelineHelper<Double> ph,
+                                  Spliterator<P_IN> spliterator,
+                                  boolean parallel) {
+            super(ph, spliterator, parallel);
+        }
+
+        @Override
+        AbstractWrappingSpliterator<P_IN, Double, ?> wrap(Spliterator<P_IN> s) {
+            return new DoubleWrappingSpliterator<>(ph, s, isParallel);
+        }
+
+        @Override
+        void initPartialTraversalState() {
+            SpinedBuffer.OfDouble b = new SpinedBuffer.OfDouble();
+            buffer = b;
+            bufferSink = ph.wrapSink((Sink.OfDouble) b::accept);
+            pusher = () -> spliterator.tryAdvance(bufferSink);
+        }
+
+        @Override
+        public Spliterator.OfDouble trySplit() {
+            return (Spliterator.OfDouble) super.trySplit();
+        }
+
+        @Override
+        public boolean tryAdvance(DoubleConsumer consumer) {
+            boolean hasNext = doAdvance();
+            if (hasNext)
+                consumer.accept(buffer.get(nextToConsume));
+            return hasNext;
+        }
+
+        @Override
+        public void forEachRemaining(DoubleConsumer consumer) {
+            if (buffer == null && !finished) {
+                init();
+
+                ph.wrapAndCopyInto((Sink.OfDouble) consumer::accept, spliterator);
+                finished = true;
+            }
+            else {
+                while (tryAdvance(consumer)) { }
+            }
+        }
+    }
+
+    /**
+     * Spliterator implementation that delegates to an underlying spliterator,
+     * acquiring the spliterator from a {@code Supplier<Spliterator>} on the
+     * first call to any spliterator method.
+     * @param <T>
+     */
+    static class DelegatingSpliterator<T> implements Spliterator<T> {
+        private final Supplier<Spliterator<T>> supplier;
+
+        private Spliterator<T> s;
+
+        @SuppressWarnings("unchecked")
+        DelegatingSpliterator(Supplier<? extends Spliterator<T>> supplier) {
+            this.supplier = (Supplier<Spliterator<T>>) supplier;
+        }
+
+        Spliterator<T> get() {
+            if (s == null) {
+                s = supplier.get();
+            }
+            return s;
+        }
+
+        @Override
+        public Spliterator<T> trySplit() {
+            return get().trySplit();
+        }
+
+        @Override
+        public boolean tryAdvance(Consumer<? super T> consumer) {
+            return get().tryAdvance(consumer);
+        }
+
+        @Override
+        public void forEachRemaining(Consumer<? super T> consumer) {
+            get().forEachRemaining(consumer);
+        }
+
+        @Override
+        public long estimateSize() {
+            return get().estimateSize();
+        }
+
+        @Override
+        public int characteristics() {
+            return get().characteristics();
+        }
+
+        @Override
+        public Comparator<? super T> getComparator() {
+            return get().getComparator();
+        }
+
+        @Override
+        public long getExactSizeIfKnown() {
+            return get().getExactSizeIfKnown();
+        }
+
+        @Override
+        public String toString() {
+            return getClass().getName() + "[" + get() + "]";
+        }
+
+        static final class OfInt extends DelegatingSpliterator<Integer> implements Spliterator.OfInt {
+            private Spliterator.OfInt s;
+
+            OfInt(Supplier<Spliterator.OfInt> supplier) {
+                super(supplier);
+            }
+
+            @Override
+            Spliterator.OfInt get() {
+                if (s == null) {
+                    s = (Spliterator.OfInt) super.get();
+                }
+                return s;
+            }
+
+            @Override
+            public Spliterator.OfInt trySplit() {
+                return get().trySplit();
+            }
+
+            @Override
+            public boolean tryAdvance(IntConsumer consumer) {
+                return get().tryAdvance(consumer);
+            }
+
+            @Override
+            public void forEachRemaining(IntConsumer consumer) {
+                get().forEachRemaining(consumer);
+            }
+        }
+
+        static final class OfLong extends DelegatingSpliterator<Long> implements Spliterator.OfLong {
+            private Spliterator.OfLong s;
+
+            OfLong(Supplier<Spliterator.OfLong> supplier) {
+                super(supplier);
+            }
+
+            @Override
+            Spliterator.OfLong get() {
+                if (s == null) {
+                    s = (Spliterator.OfLong) super.get();
+                }
+                return s;
+            }
+
+            @Override
+            public Spliterator.OfLong trySplit() {
+                return get().trySplit();
+            }
+
+            @Override
+            public boolean tryAdvance(LongConsumer consumer) {
+                return get().tryAdvance(consumer);
+            }
+
+            @Override
+            public void forEachRemaining(LongConsumer consumer) {
+                get().forEachRemaining(consumer);
+            }
+        }
+
+        static final class OfDouble extends DelegatingSpliterator<Double> implements Spliterator.OfDouble {
+            private Spliterator.OfDouble s;
+
+            OfDouble(Supplier<Spliterator.OfDouble> supplier) {
+                super(supplier);
+            }
+
+            @Override
+            Spliterator.OfDouble get() {
+                if (s == null) {
+                    s = (Spliterator.OfDouble) super.get();
+                }
+                return s;
+            }
+
+            @Override
+            public Spliterator.OfDouble trySplit() {
+                return get().trySplit();
+            }
+
+            @Override
+            public boolean tryAdvance(DoubleConsumer consumer) {
+                return get().tryAdvance(consumer);
+            }
+
+            @Override
+            public void forEachRemaining(DoubleConsumer consumer) {
+                get().forEachRemaining(consumer);
+            }
+        }
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/StreamSupport.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,511 @@
+/*
+ * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.Objects;
+import java.util.Spliterator;
+import java.util.function.Supplier;
+
+/**
+ * Low-level utility methods for creating and manipulating streams.
+ *
+ * <p>This class is mostly for library writers presenting stream views
+ * of their data structures; most static stream methods for end users are in
+ * {@link Streams}.
+ *
+ * <p>Unless otherwise stated, streams are created as sequential
+ * streams.  A sequential stream can be transformed into a parallel stream by
+ * calling the {@code parallel()} method on the created stream.
+ *
+ * @since 1.8
+ */
+public class StreamSupport {
+    /**
+     * Creates a new sequential {@code Stream} from a {@code Spliterator}.
+     *
+     * <p>The spliterator is only traversed, split, or queried for estimated
+     * size after the terminal operation of the stream pipeline commences.
+     *
+     * <p>It is strongly recommended the spliterator report a characteristic of
+     * {@code IMMUTABLE} or {@code CONCURRENT}, or be
+     * <a href="Spliterator.html#binding">late-binding</a>.  Otherwise,
+     * {@link #stream(Supplier, int)} should be used to
+     * reduce the scope of potential interference with the source.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param <T> the type of stream elements
+     * @param spliterator a {@code Spliterator} describing the stream elements
+     * @return a new sequential {@code Stream}
+     */
+    public static <T> Stream<T> stream(Spliterator<T> spliterator) {
+        Objects.requireNonNull(spliterator);
+        return new ReferencePipeline.Head<>(spliterator,
+                                            StreamOpFlag.fromCharacteristics(spliterator),
+                                            false);
+    }
+
+    /**
+     * Creates a new parallel {@code Stream} from a {@code Spliterator}.
+     *
+     * <p>The spliterator is only traversed, split, or queried for estimated
+     * size after the terminal operation of the stream pipeline commences.
+     *
+     * <p>It is strongly recommended the spliterator report a characteristic of
+     * {@code IMMUTABLE} or {@code CONCURRENT}, or be
+     * <a href="Spliterator.html#binding">late-binding</a>.  Otherwise,
+     * {@link #stream(Supplier, int)} should be used to
+     * reduce the scope of potential interference with the source.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param <T> the type of stream elements
+     * @param spliterator a {@code Spliterator} describing the stream elements
+     * @return a new parallel {@code Stream}
+     */
+    public static <T> Stream<T> parallelStream(Spliterator<T> spliterator) {
+        Objects.requireNonNull(spliterator);
+        return new ReferencePipeline.Head<>(spliterator,
+                                            StreamOpFlag.fromCharacteristics(spliterator),
+                                            true);
+    }
+
+    /**
+     * Creates a new sequential {@code Stream} from a {@code Supplier} of
+     * {@code Spliterator}.
+     *
+     * <p>The {@link Supplier#get()} method will be invoked on the supplier no
+     * more than once, and after the terminal operation of the stream pipeline
+     * commences.
+     *
+     * <p>For spliterators that report a characteristic of {@code IMMUTABLE}
+     * or {@code CONCURRENT}, or that are
+     * <a href="Spliterator.html#binding">late-binding</a>, it is likely
+     * more efficient to use {@link #stream(java.util.Spliterator)} instead.
+     * The use of a {@code Supplier} in this form provides a level of
+     * indirection that reduces the scope of potential interference with the
+     * source.  Since the supplier is only invoked after the terminal operation
+     * commences, any modifications to the source up to the start of the
+     * terminal operation are reflected in the stream result.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param <T> the type of stream elements
+     * @param supplier a {@code Supplier} of a {@code Spliterator}
+     * @param characteristics Spliterator characteristics of the supplied
+     *        {@code Spliterator}.  The characteristics must be equal to
+     *        {@code source.get().getCharacteristics()}.
+     * @return a new sequential {@code Stream}
+     * @see #stream(Spliterator)
+     */
+    public static <T> Stream<T> stream(Supplier<? extends Spliterator<T>> supplier,
+                                      int characteristics) {
+        Objects.requireNonNull(supplier);
+        return new ReferencePipeline.Head<>(supplier,
+                                            StreamOpFlag.fromCharacteristics(characteristics),
+                                            false);
+    }
+
+    /**
+     * Creates a new parallel {@code Stream} from a {@code Supplier} of
+     * {@code Spliterator}.
+     *
+     * <p>The {@link Supplier#get()} method will be invoked on the supplier no
+     * more than once, and after the terminal operation of the stream pipeline
+     * commences.
+     *
+     * <p>For spliterators that report a characteristic of {@code IMMUTABLE}
+     * or {@code CONCURRENT}, or that are
+     * <a href="Spliterator.html#binding">late-binding</a>, it is likely
+     * more efficient to use {@link #stream(Spliterator)} instead.
+     * The use of a {@code Supplier} in this form provides a level of
+     * indirection that reduces the scope of potential interference with the
+     * source.  Since the supplier is only invoked after the terminal operation
+     * commences, any modifications to the source up to the start of the
+     * terminal operation are reflected in the stream result.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param <T> the type of stream elements
+     * @param supplier a {@code Supplier} of a {@code Spliterator}
+     * @param characteristics Spliterator characteristics of the supplied
+     *        {@code Spliterator}.  The characteristics must be equal to
+     *        {@code source.get().getCharacteristics()}
+     * @return a new parallel {@code Stream}
+     * @see #parallelStream(Spliterator)
+     */
+    public static <T> Stream<T> parallelStream(Supplier<? extends Spliterator<T>> supplier,
+                                              int characteristics) {
+        Objects.requireNonNull(supplier);
+        return new ReferencePipeline.Head<>(supplier,
+                                            StreamOpFlag.fromCharacteristics(characteristics),
+                                            true);
+    }
+
+    /**
+     * Creates a new sequential {@code IntStream} from a {@code Spliterator.OfInt}.
+     *
+     * <p>The spliterator is only traversed, split, or queried for estimated size
+     * after the terminal operation of the stream pipeline commences.
+     *
+     * <p>It is strongly recommended the spliterator report a characteristic of
+     * {@code IMMUTABLE} or {@code CONCURRENT}, or be
+     * <a href="Spliterator.html#binding">late-binding</a>.  Otherwise,
+     * {@link #stream(Supplier, int)}} should be used to
+     * reduce the scope of potential interference with the source.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param spliterator a {@code Spliterator.OfInt} describing the stream elements
+     * @return a new sequential {@code IntStream}
+     */
+    public static IntStream intStream(Spliterator.OfInt spliterator) {
+        return new IntPipeline.Head<>(spliterator,
+                                      StreamOpFlag.fromCharacteristics(spliterator),
+                                      false);
+    }
+
+    /**
+     * Creates a new parallel {@code IntStream} from a {@code Spliterator.OfInt}.
+     *
+     * <p>he spliterator is only traversed, split, or queried for estimated size
+     * after the terminal operation of the stream pipeline commences.
+     *
+     * <p>It is strongly recommended the spliterator report a characteristic of
+     * {@code IMMUTABLE} or {@code CONCURRENT}, or be
+     * <a href="Spliterator.html#binding">late-binding</a>.  Otherwise,
+     * {@link #stream(Supplier, int)}} should be used to
+     * reduce the scope of potential interference with the source.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param spliterator a {@code Spliterator.OfInt} describing the stream elements
+     * @return a new parallel {@code IntStream}
+     */
+    public static IntStream intParallelStream(Spliterator.OfInt spliterator) {
+        return new IntPipeline.Head<>(spliterator,
+                                      StreamOpFlag.fromCharacteristics(spliterator),
+                                      true);
+    }
+
+    /**
+     * Creates a new sequential {@code IntStream} from a {@code Supplier} of
+     * {@code Spliterator.OfInt}.
+     *
+     * <p>The {@link Supplier#get()} method will be invoked on the supplier no
+     * more than once, and after the terminal operation of the stream pipeline
+     * commences.
+     *
+     * <p>For spliterators that report a characteristic of {@code IMMUTABLE}
+     * or {@code CONCURRENT}, or that are
+     * <a href="Spliterator.html#binding">late-binding</a>, it is likely
+     * more efficient to use {@link #intStream(Spliterator.OfInt)} instead.
+     * The use of a {@code Supplier} in this form provides a level of
+     * indirection that reduces the scope of potential interference with the
+     * source.  Since the supplier is only invoked after the terminal operation
+     * commences, any modifications to the source up to the start of the
+     * terminal operation are reflected in the stream result.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param supplier a {@code Supplier} of a {@code Spliterator.OfInt}
+     * @param characteristics Spliterator characteristics of the supplied
+     *        {@code Spliterator.OfInt}.  The characteristics must be equal to
+     *        {@code source.get().getCharacteristics()}
+     * @return a new sequential {@code IntStream}
+     * @see #intStream(Spliterator.OfInt)
+     */
+    public static IntStream intStream(Supplier<? extends Spliterator.OfInt> supplier,
+                                      int characteristics) {
+        return new IntPipeline.Head<>(supplier,
+                                      StreamOpFlag.fromCharacteristics(characteristics),
+                                      false);
+    }
+
+    /**
+     * Creates a new parallel {@code IntStream} from a {@code Supplier} of
+     * {@code Spliterator.OfInt}.
+     *
+     * <p>The {@link Supplier#get()} method will be invoked on the supplier no
+     * more than once, and after the terminal operation of the stream pipeline
+     * commences.
+     *
+     * <p>For spliterators that report a characteristic of {@code IMMUTABLE}
+     * or {@code CONCURRENT}, or that are
+     * <a href="Spliterator.html#binding">late-binding</a>, it is likely
+     * more efficient to use {@link #intStream(Spliterator.OfInt)} instead.
+     * The use of a {@code Supplier} in this form provides a level of
+     * indirection that reduces the scope of potential interference with the
+     * source.  Since the supplier is only invoked after the terminal operation
+     * commences, any modifications to the source up to the start of the
+     * terminal operation are reflected in the stream result.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param supplier a {@code Supplier} of a {@code Spliterator.OfInt}
+     * @param characteristics Spliterator characteristics of the supplied
+     *        {@code Spliterator.OfInt}.  The characteristics must be equal to
+     *        {@code source.get().getCharacteristics()}
+     * @return a new parallel {@code IntStream}
+     * @see #intParallelStream(Spliterator.OfInt)
+     */
+    public static IntStream intParallelStream(Supplier<? extends Spliterator.OfInt> supplier,
+                                              int characteristics) {
+        return new IntPipeline.Head<>(supplier,
+                                      StreamOpFlag.fromCharacteristics(characteristics),
+                                      true);
+    }
+
+    /**
+     * Creates a new sequential {@code LongStream} from a {@code Spliterator.OfLong}.
+     *
+     * <p>The spliterator is only traversed, split, or queried for estimated
+     * size after the terminal operation of the stream pipeline commences.
+     *
+     * <p>It is strongly recommended the spliterator report a characteristic of
+     * {@code IMMUTABLE} or {@code CONCURRENT}, or be
+     * <a href="Spliterator.html#binding">late-binding</a>.  Otherwise,
+     * {@link #stream(Supplier, int)} should be used to
+     * reduce the scope of potential interference with the source.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param spliterator a {@code Spliterator.OfLong} describing the stream
+     * elements
+     * @return a new sequential {@code LongStream}
+     */
+    public static LongStream longStream(Spliterator.OfLong spliterator) {
+        return new LongPipeline.Head<>(spliterator,
+                                       StreamOpFlag.fromCharacteristics(spliterator),
+                                       false);
+    }
+
+    /**
+     * Creates a new parallel {@code LongStream} from a {@code Spliterator.OfLong}.
+     *
+     * <p>The spliterator is only traversed, split, or queried for estimated
+     * size after the terminal operation of the stream pipeline commences.
+     *
+     * <p>It is strongly recommended the spliterator report a characteristic of
+     * {@code IMMUTABLE} or {@code CONCURRENT}, or be
+     * <a href="Spliterator.html#binding">late-binding</a>.  Otherwise,
+     * {@link #stream(Supplier, int)} should be used to
+     * reduce the scope of potential interference with the source.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param spliterator a {@code Spliterator.OfLong} describing the stream elements
+     * @return a new parallel {@code LongStream}
+     */
+    public static LongStream longParallelStream(Spliterator.OfLong spliterator) {
+        return new LongPipeline.Head<>(spliterator,
+                                       StreamOpFlag.fromCharacteristics(spliterator),
+                                       true);
+    }
+
+    /**
+     * Creates a new sequential {@code LongStream} from a {@code Supplier} of
+     * {@code Spliterator.OfLong}.
+     *
+     * <p>The {@link Supplier#get()} method will be invoked on the supplier no
+     * more than once, and after the terminal operation of the stream pipeline
+     * commences.
+     *
+     * <p>For spliterators that report a characteristic of {@code IMMUTABLE}
+     * or {@code CONCURRENT}, or that are
+     * <a href="Spliterator.html#binding">late-binding</a>, it is likely
+     * more efficient to use {@link #longStream(Spliterator.OfLong)} instead.
+     * The use of a {@code Supplier} in this form provides a level of
+     * indirection that reduces the scope of potential interference with the
+     * source.  Since the supplier is only invoked after the terminal operation
+     * commences, any modifications to the source up to the start of the
+     * terminal operation are reflected in the stream result.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param supplier a {@code Supplier} of a {@code Spliterator.OfLong}
+     * @param characteristics Spliterator characteristics of the supplied
+     *        {@code Spliterator.OfLong}.  The characteristics must be equal to
+     *        {@code source.get().getCharacteristics()}
+     * @return a new sequential {@code LongStream}
+     * @see #longStream(Spliterator.OfLong)
+     */
+    public static LongStream longStream(Supplier<? extends Spliterator.OfLong> supplier,
+                                        int characteristics) {
+        return new LongPipeline.Head<>(supplier,
+                                       StreamOpFlag.fromCharacteristics(characteristics),
+                                       false);
+    }
+
+    /**
+     * Creates a new parallel {@code LongStream} from a {@code Supplier} of
+     * {@code Spliterator.OfLong}.
+     *
+     * <p>The {@link Supplier#get()} method will be invoked on the supplier no
+     * more than once, and after the terminal operation of the stream pipeline
+     * commences.
+     *
+     * <p>For spliterators that report a characteristic of {@code IMMUTABLE}
+     * or {@code CONCURRENT}, or that are
+     * <a href="Spliterator.html#binding">late-binding</a>, it is likely
+     * more efficient to use {@link #longStream(Spliterator.OfLong)} instead.
+     * The use of a {@code Supplier} in this form provides a level of
+     * indirection that reduces the scope of potential interference with the
+     * source.  Since the supplier is only invoked after the terminal operation
+     * commences, any modifications to the source up to the start of the
+     * terminal operation are reflected in the stream result.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param supplier A {@code Supplier} of a {@code Spliterator.OfLong}
+     * @param characteristics Spliterator characteristics of the supplied
+     *        {@code Spliterator.OfLong}.  The characteristics must be equal to
+     *        {@code source.get().getCharacteristics()}
+     * @return A new parallel {@code LongStream}
+     * @see #longParallelStream(Spliterator.OfLong)
+     */
+    public static LongStream longParallelStream(Supplier<? extends Spliterator.OfLong> supplier,
+                                                int characteristics) {
+        return new LongPipeline.Head<>(supplier,
+                                       StreamOpFlag.fromCharacteristics(characteristics),
+                                       true);
+    }
+
+    /**
+     * Creates a new sequential {@code DoubleStream} from a
+     * {@code Spliterator.OfDouble}.
+     *
+     * <p>The spliterator is only traversed, split, or queried for estimated size
+     * after the terminal operation of the stream pipeline commences.
+     *
+     * <p>It is strongly recommended the spliterator report a characteristic of
+     * {@code IMMUTABLE} or {@code CONCURRENT}, or be
+     * <a href="Spliterator.html#binding">late-binding</a>.  Otherwise,
+     * {@link #stream(Supplier, int)} should be used to
+     * reduce the scope of potential interference with the source.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param spliterator A {@code Spliterator.OfDouble} describing the stream elements
+     * @return A new sequential {@code DoubleStream}
+     */
+    public static DoubleStream doubleStream(Spliterator.OfDouble spliterator) {
+        return new DoublePipeline.Head<>(spliterator,
+                                         StreamOpFlag.fromCharacteristics(spliterator),
+                                         false);
+    }
+
+    /**
+     * Creates a new parallel {@code DoubleStream} from a
+     * {@code Spliterator.OfDouble}.
+     *
+     * <p>The spliterator is only traversed, split, or queried for estimated size
+     * after the terminal operation of the stream pipeline commences.
+     *
+     * <p>It is strongly recommended the spliterator report a characteristic of
+     * {@code IMMUTABLE} or {@code CONCURRENT}, or be
+     * <a href="Spliterator.html#binding">late-binding</a>.  Otherwise,
+     * {@link #stream(Supplier, int)} should be used to
+     * reduce the scope of potential interference with the source.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param spliterator A {@code Spliterator.OfDouble} describing the stream elements
+     * @return A new parallel {@code DoubleStream}
+     */
+    public static DoubleStream doubleParallelStream(Spliterator.OfDouble spliterator) {
+        return new DoublePipeline.Head<>(spliterator,
+                                         StreamOpFlag.fromCharacteristics(spliterator),
+                                         true);
+    }
+
+    /**
+     * Creates a new sequential {@code DoubleStream} from a {@code Supplier} of
+     * {@code Spliterator.OfDouble}.
+     * <p>
+     * The {@link Supplier#get()} method will be invoked on the supplier no
+     * more than once, and after the terminal operation of the stream pipeline
+     * commences.
+     * <p>
+     * For spliterators that report a characteristic of {@code IMMUTABLE}
+     * or {@code CONCURRENT}, or that are
+     * <a href="Spliterator.html#binding">late-binding</a>, it is likely
+     * more efficient to use {@link #doubleStream(Spliterator.OfDouble)} instead.
+     * The use of a {@code Supplier} in this form provides a level of
+     * indirection that reduces the scope of potential interference with the
+     * source.  Since the supplier is only invoked after the terminal operation
+     * commences, any modifications to the source up to the start of the
+     * terminal operation are reflected in the stream result.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param supplier A {@code Supplier} of a {@code Spliterator.OfDouble}
+     * @param characteristics Spliterator characteristics of the supplied
+     *        {@code Spliterator.OfDouble}.  The characteristics must be equal to
+     *        {@code source.get().getCharacteristics()}
+     * @return A new sequential {@code DoubleStream}
+     * @see #doubleStream(Spliterator.OfDouble)
+     */
+    public static DoubleStream doubleStream(Supplier<? extends Spliterator.OfDouble> supplier,
+                                            int characteristics) {
+        return new DoublePipeline.Head<>(supplier,
+                                         StreamOpFlag.fromCharacteristics(characteristics),
+                                         false);
+    }
+
+    /**
+     * Creates a new parallel {@code DoubleStream} from a {@code Supplier} of
+     * {@code Spliterator.OfDouble}.
+     *
+     * <p>The {@link Supplier#get()} method will be invoked on the supplier no
+     * more than once, and after the terminal operation of the stream pipeline
+     * commences.
+     *
+     * <p>For spliterators that report a characteristic of {@code IMMUTABLE}
+     * or {@code CONCURRENT}, or that are
+     * <a href="Spliterator.html#binding">late-binding</a>, it is likely
+     * more efficient to use {@link #doubleStream(Spliterator.OfDouble)} instead.
+     * The use of a {@code Supplier} in this form provides a level of
+     * indirection that reduces the scope of potential interference with the
+     * source.  Since the supplier is only invoked after the terminal operation
+     * commences, any modifications to the source up to the start of the
+     * terminal operation are reflected in the stream result.  See
+     * <a href="package-summary.html#Non-Interference">Non-Interference</a> for
+     * more details.
+     *
+     * @param supplier a {@code Supplier} of a {@code Spliterator.OfDouble}
+     * @param characteristics Spliterator characteristics of the supplied
+     *        {@code Spliterator.OfDouble}.  The characteristics must be equal to
+     *        {@code source.get().getCharacteristics()}
+     * @return a new parallel {@code DoubleStream}
+     * @see #doubleParallelStream(Spliterator.OfDouble)
+     */
+    public static DoubleStream doubleParallelStream(Supplier<? extends Spliterator.OfDouble> supplier,
+                                                    int characteristics) {
+        return new DoublePipeline.Head<>(supplier,
+                                         StreamOpFlag.fromCharacteristics(characteristics),
+                                         true);
+    }
+}