annotate src/share/vm/utilities/globalDefinitions.hpp @ 4834:74d14a44c398

Added tag jdk7u60-b01 for changeset 8fd0e931efa5
author asaha
date Wed, 27 Nov 2013 14:57:31 -0800
parents f9b44439e294
children 43009b196480
rev   line source
duke@0 1 /*
brutisso@3728 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
trims@1472 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1472 20 * or visit www.oracle.com if you need additional information or have any
trims@1472 21 * questions.
duke@0 22 *
duke@0 23 */
duke@0 24
stefank@1879 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@1879 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@1879 27
dcubed@2842 28 #ifndef __STDC_FORMAT_MACROS
never@2796 29 #define __STDC_FORMAT_MACROS
dcubed@2842 30 #endif
never@2796 31
stefank@1879 32 #ifdef TARGET_COMPILER_gcc
stefank@1879 33 # include "utilities/globalDefinitions_gcc.hpp"
stefank@1879 34 #endif
stefank@1879 35 #ifdef TARGET_COMPILER_visCPP
stefank@1879 36 # include "utilities/globalDefinitions_visCPP.hpp"
stefank@1879 37 #endif
stefank@1879 38 #ifdef TARGET_COMPILER_sparcWorks
stefank@1879 39 # include "utilities/globalDefinitions_sparcWorks.hpp"
stefank@1879 40 #endif
stefank@1879 41
stefank@1879 42 #include "utilities/macros.hpp"
stefank@1879 43
duke@0 44 // This file holds all globally used constants & types, class (forward)
duke@0 45 // declarations and a few frequently used utility functions.
duke@0 46
duke@0 47 //----------------------------------------------------------------------------------------------------
duke@0 48 // Constants
duke@0 49
duke@0 50 const int LogBytesPerShort = 1;
duke@0 51 const int LogBytesPerInt = 2;
duke@0 52 #ifdef _LP64
duke@0 53 const int LogBytesPerWord = 3;
duke@0 54 #else
duke@0 55 const int LogBytesPerWord = 2;
duke@0 56 #endif
duke@0 57 const int LogBytesPerLong = 3;
duke@0 58
duke@0 59 const int BytesPerShort = 1 << LogBytesPerShort;
duke@0 60 const int BytesPerInt = 1 << LogBytesPerInt;
duke@0 61 const int BytesPerWord = 1 << LogBytesPerWord;
duke@0 62 const int BytesPerLong = 1 << LogBytesPerLong;
duke@0 63
duke@0 64 const int LogBitsPerByte = 3;
duke@0 65 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@0 66 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@0 67 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@0 68 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@0 69
duke@0 70 const int BitsPerByte = 1 << LogBitsPerByte;
duke@0 71 const int BitsPerShort = 1 << LogBitsPerShort;
duke@0 72 const int BitsPerInt = 1 << LogBitsPerInt;
duke@0 73 const int BitsPerWord = 1 << LogBitsPerWord;
duke@0 74 const int BitsPerLong = 1 << LogBitsPerLong;
duke@0 75
duke@0 76 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@0 77 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@0 78
duke@0 79 const int WordsPerLong = 2; // Number of stack entries for longs
duke@0 80
coleenp@113 81 const int oopSize = sizeof(char*); // Full-width oop
coleenp@113 82 extern int heapOopSize; // Oop within a java object
duke@0 83 const int wordSize = sizeof(char*);
duke@0 84 const int longSize = sizeof(jlong);
duke@0 85 const int jintSize = sizeof(jint);
duke@0 86 const int size_tSize = sizeof(size_t);
duke@0 87
coleenp@113 88 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@0 89
coleenp@113 90 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@113 91 extern int LogBitsPerHeapOop;
coleenp@113 92 extern int BytesPerHeapOop;
coleenp@113 93 extern int BitsPerHeapOop;
duke@0 94
kvn@1491 95 // Oop encoding heap max
kvn@1491 96 extern uint64_t OopEncodingHeapMax;
kvn@1491 97
duke@0 98 const int BitsPerJavaInteger = 32;
twisti@559 99 const int BitsPerJavaLong = 64;
duke@0 100 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@0 101
coleenp@113 102 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@113 103 const int jintAsStringSize = 12;
coleenp@113 104
duke@0 105 // In fact this should be
duke@0 106 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@0 107 // see os::set_memory_serialize_page()
duke@0 108 #ifdef _LP64
duke@0 109 const int SerializePageShiftCount = 4;
duke@0 110 #else
duke@0 111 const int SerializePageShiftCount = 3;
duke@0 112 #endif
duke@0 113
duke@0 114 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@0 115 // pointer into the heap. We require that object sizes be measured in
duke@0 116 // units of heap words, so that that
duke@0 117 // HeapWord* hw;
duke@0 118 // hw += oop(hw)->foo();
duke@0 119 // works, where foo is a method (like size or scavenge) that returns the
duke@0 120 // object size.
duke@0 121 class HeapWord {
duke@0 122 friend class VMStructs;
jmasa@263 123 private:
duke@0 124 char* i;
jmasa@361 125 #ifndef PRODUCT
jmasa@263 126 public:
jmasa@263 127 char* value() { return i; }
jmasa@263 128 #endif
duke@0 129 };
duke@0 130
duke@0 131 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@113 132 const int HeapWordSize = sizeof(HeapWord);
duke@0 133 #ifdef _LP64
coleenp@113 134 const int LogHeapWordSize = 3;
duke@0 135 #else
coleenp@113 136 const int LogHeapWordSize = 2;
duke@0 137 #endif
coleenp@113 138 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@113 139 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@0 140
duke@0 141 // The larger HeapWordSize for 64bit requires larger heaps
duke@0 142 // for the same application running in 64bit. See bug 4967770.
duke@0 143 // The minimum alignment to a heap word size is done. Other
duke@0 144 // parts of the memory system may required additional alignment
duke@0 145 // and are responsible for those alignments.
duke@0 146 #ifdef _LP64
duke@0 147 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@0 148 #else
duke@0 149 #define ScaleForWordSize(x) (x)
duke@0 150 #endif
duke@0 151
duke@0 152 // The minimum number of native machine words necessary to contain "byte_size"
duke@0 153 // bytes.
duke@0 154 inline size_t heap_word_size(size_t byte_size) {
duke@0 155 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@0 156 }
duke@0 157
duke@0 158
duke@0 159 const size_t K = 1024;
duke@0 160 const size_t M = K*K;
duke@0 161 const size_t G = M*K;
duke@0 162 const size_t HWperKB = K / sizeof(HeapWord);
duke@0 163
duke@0 164 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
duke@0 165 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
duke@0 166
duke@0 167 // Constants for converting from a base unit to milli-base units. For
duke@0 168 // example from seconds to milliseconds and microseconds
duke@0 169
duke@0 170 const int MILLIUNITS = 1000; // milli units per base unit
duke@0 171 const int MICROUNITS = 1000000; // micro units per base unit
duke@0 172 const int NANOUNITS = 1000000000; // nano units per base unit
duke@0 173
johnc@2988 174 const jlong NANOSECS_PER_SEC = CONST64(1000000000);
johnc@2988 175 const jint NANOSECS_PER_MILLISEC = 1000000;
johnc@2988 176
duke@0 177 inline const char* proper_unit_for_byte_size(size_t s) {
brutisso@3732 178 #ifdef _LP64
brutisso@3732 179 if (s >= 10*G) {
brutisso@3732 180 return "G";
brutisso@3732 181 }
brutisso@3732 182 #endif
duke@0 183 if (s >= 10*M) {
duke@0 184 return "M";
duke@0 185 } else if (s >= 10*K) {
duke@0 186 return "K";
duke@0 187 } else {
duke@0 188 return "B";
duke@0 189 }
duke@0 190 }
duke@0 191
brutisso@3728 192 template <class T>
brutisso@3728 193 inline T byte_size_in_proper_unit(T s) {
brutisso@3732 194 #ifdef _LP64
brutisso@3732 195 if (s >= 10*G) {
brutisso@3732 196 return (T)(s/G);
brutisso@3732 197 }
brutisso@3732 198 #endif
duke@0 199 if (s >= 10*M) {
brutisso@3728 200 return (T)(s/M);
duke@0 201 } else if (s >= 10*K) {
brutisso@3728 202 return (T)(s/K);
duke@0 203 } else {
duke@0 204 return s;
duke@0 205 }
duke@0 206 }
duke@0 207
duke@0 208 //----------------------------------------------------------------------------------------------------
duke@0 209 // VM type definitions
duke@0 210
duke@0 211 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@0 212 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@0 213
duke@0 214 typedef intptr_t intx;
duke@0 215 typedef uintptr_t uintx;
duke@0 216
duke@0 217 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@0 218 const intx max_intx = (uintx)min_intx - 1;
duke@0 219 const uintx max_uintx = (uintx)-1;
duke@0 220
duke@0 221 // Table of values:
duke@0 222 // sizeof intx 4 8
duke@0 223 // min_intx 0x80000000 0x8000000000000000
duke@0 224 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@0 225 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@0 226
duke@0 227 typedef unsigned int uint; NEEDS_CLEANUP
duke@0 228
duke@0 229
duke@0 230 //----------------------------------------------------------------------------------------------------
duke@0 231 // Java type definitions
duke@0 232
duke@0 233 // All kinds of 'plain' byte addresses
duke@0 234 typedef signed char s_char;
duke@0 235 typedef unsigned char u_char;
duke@0 236 typedef u_char* address;
duke@0 237 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@0 238 // except for some implementations of a C++
duke@0 239 // linkage pointer to function. Should never
duke@0 240 // need one of those to be placed in this
duke@0 241 // type anyway.
duke@0 242
duke@0 243 // Utility functions to "portably" (?) bit twiddle pointers
duke@0 244 // Where portable means keep ANSI C++ compilers quiet
duke@0 245
duke@0 246 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@0 247 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@0 248
duke@0 249 // Utility functions to "portably" make cast to/from function pointers.
duke@0 250
duke@0 251 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@0 252 inline address_word castable_address(address x) { return address_word(x) ; }
duke@0 253 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@0 254
duke@0 255 // Pointer subtraction.
duke@0 256 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@0 257 // the range we might need to find differences from one end of the heap
duke@0 258 // to the other.
duke@0 259 // A typical use might be:
duke@0 260 // if (pointer_delta(end(), top()) >= size) {
duke@0 261 // // enough room for an object of size
duke@0 262 // ...
duke@0 263 // and then additions like
duke@0 264 // ... top() + size ...
duke@0 265 // are safe because we know that top() is at least size below end().
duke@0 266 inline size_t pointer_delta(const void* left,
duke@0 267 const void* right,
duke@0 268 size_t element_size) {
duke@0 269 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@0 270 }
duke@0 271 // A version specialized for HeapWord*'s.
duke@0 272 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@0 273 return pointer_delta(left, right, sizeof(HeapWord));
duke@0 274 }
duke@0 275
duke@0 276 //
duke@0 277 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@0 278 // directly without at best a warning. This macro accomplishes it silently
duke@0 279 // In every case that is present at this point the value be cast is a pointer
duke@0 280 // to a C linkage function. In somecase the type used for the cast reflects
duke@0 281 // that linkage and a picky compiler would not complain. In other cases because
duke@0 282 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@0 283 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@0 284 // picky enough to catch these instances (which are few). It is possible that
duke@0 285 // using templates could fix these for all cases. This use of templates is likely
duke@0 286 // so far from the middle of the road that it is likely to be problematic in
duke@0 287 // many C++ compilers.
duke@0 288 //
duke@0 289 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
duke@0 290 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@0 291
duke@0 292 // Unsigned byte types for os and stream.hpp
duke@0 293
duke@0 294 // Unsigned one, two, four and eigth byte quantities used for describing
duke@0 295 // the .class file format. See JVM book chapter 4.
duke@0 296
duke@0 297 typedef jubyte u1;
duke@0 298 typedef jushort u2;
duke@0 299 typedef juint u4;
duke@0 300 typedef julong u8;
duke@0 301
duke@0 302 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@0 303 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@0 304 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@0 305 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@0 306
phh@3081 307 typedef jbyte s1;
phh@3081 308 typedef jshort s2;
phh@3081 309 typedef jint s4;
phh@3081 310 typedef jlong s8;
phh@3081 311
duke@0 312 //----------------------------------------------------------------------------------------------------
duke@0 313 // JVM spec restrictions
duke@0 314
duke@0 315 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@0 316
duke@0 317
duke@0 318 //----------------------------------------------------------------------------------------------------
duke@0 319 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@0 320 //
duke@0 321 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@0 322
duke@0 323 #define HOTSWAP
duke@0 324
duke@0 325 //----------------------------------------------------------------------------------------------------
duke@0 326 // Object alignment, in units of HeapWords.
duke@0 327 //
duke@0 328 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@0 329 // reference fields can be naturally aligned.
duke@0 330
kvn@1491 331 extern int MinObjAlignment;
kvn@1491 332 extern int MinObjAlignmentInBytes;
kvn@1491 333 extern int MinObjAlignmentInBytesMask;
duke@0 334
kvn@1491 335 extern int LogMinObjAlignment;
kvn@1491 336 extern int LogMinObjAlignmentInBytes;
coleenp@113 337
duke@0 338 // Machine dependent stuff
duke@0 339
stefank@1879 340 #ifdef TARGET_ARCH_x86
stefank@1879 341 # include "globalDefinitions_x86.hpp"
stefank@1879 342 #endif
stefank@1879 343 #ifdef TARGET_ARCH_sparc
stefank@1879 344 # include "globalDefinitions_sparc.hpp"
stefank@1879 345 #endif
stefank@1879 346 #ifdef TARGET_ARCH_zero
stefank@1879 347 # include "globalDefinitions_zero.hpp"
stefank@1879 348 #endif
bobv@2073 349 #ifdef TARGET_ARCH_arm
bobv@2073 350 # include "globalDefinitions_arm.hpp"
bobv@2073 351 #endif
bobv@2073 352 #ifdef TARGET_ARCH_ppc
bobv@2073 353 # include "globalDefinitions_ppc.hpp"
bobv@2073 354 #endif
stefank@1879 355
jprovino@4628 356 /*
jprovino@4648 357 * If a platform does not support native stack walking
jprovino@4628 358 * the platform specific globalDefinitions (above)
jprovino@4648 359 * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
jprovino@4628 360 */
jprovino@4648 361 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
jprovino@4648 362 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
jprovino@4628 363 #endif
duke@0 364
duke@0 365 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@0 366 // Note: this value must be a power of 2
duke@0 367
duke@0 368 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@0 369
duke@0 370 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@0 371 // for use in places like enum definitions that require compile-time constant
duke@0 372 // expressions and a function for all other places so as to get type checking.
duke@0 373
duke@0 374 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@0 375
stefank@4822 376 inline bool is_size_aligned(size_t size, size_t alignment) {
stefank@4822 377 return align_size_up_(size, alignment) == size;
stefank@4822 378 }
stefank@4822 379
stefank@4822 380 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
stefank@4822 381 return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
stefank@4822 382 }
stefank@4822 383
duke@0 384 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@0 385 return align_size_up_(size, alignment);
duke@0 386 }
duke@0 387
duke@0 388 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@0 389
duke@0 390 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@0 391 return align_size_down_(size, alignment);
duke@0 392 }
duke@0 393
stefank@4822 394 inline void* align_ptr_up(void* ptr, size_t alignment) {
stefank@4822 395 return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
stefank@4822 396 }
stefank@4822 397
stefank@4822 398 inline void* align_ptr_down(void* ptr, size_t alignment) {
stefank@4822 399 return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
stefank@4822 400 }
stefank@4822 401
duke@0 402 // Align objects by rounding up their size, in HeapWord units.
duke@0 403
duke@0 404 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
duke@0 405
duke@0 406 inline intptr_t align_object_size(intptr_t size) {
duke@0 407 return align_size_up(size, MinObjAlignment);
duke@0 408 }
duke@0 409
kvn@1491 410 inline bool is_object_aligned(intptr_t addr) {
kvn@1491 411 return addr == align_object_size(addr);
kvn@1491 412 }
kvn@1491 413
duke@0 414 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@0 415
duke@0 416 inline intptr_t align_object_offset(intptr_t offset) {
duke@0 417 return align_size_up(offset, HeapWordsPerLong);
duke@0 418 }
duke@0 419
jcoomes@1585 420 // The expected size in bytes of a cache line, used to pad data structures.
jcoomes@1585 421 #define DEFAULT_CACHE_LINE_SIZE 64
jcoomes@1585 422
jcoomes@1585 423 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
jcoomes@1585 424 // expected cache line size (a power of two). The first addend avoids sharing
jcoomes@1585 425 // when the start address is not a multiple of alignment; the second maintains
jcoomes@1585 426 // alignment of starting addresses that happen to be a multiple.
jcoomes@1585 427 #define PADDING_SIZE(type, alignment) \
jcoomes@1585 428 ((alignment) + align_size_up_(sizeof(type), alignment))
jcoomes@1585 429
jcoomes@1585 430 // Templates to create a subclass padded to avoid cache line sharing. These are
jcoomes@1585 431 // effective only when applied to derived-most (leaf) classes.
jcoomes@1585 432
jcoomes@1585 433 // When no args are passed to the base ctor.
jcoomes@1585 434 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
jcoomes@1585 435 class Padded: public T {
jcoomes@1585 436 private:
jcoomes@1585 437 char _pad_buf_[PADDING_SIZE(T, alignment)];
jcoomes@1585 438 };
jcoomes@1585 439
jcoomes@1585 440 // When either 0 or 1 args may be passed to the base ctor.
jcoomes@1585 441 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
jcoomes@1585 442 class Padded01: public T {
jcoomes@1585 443 public:
jcoomes@1585 444 Padded01(): T() { }
jcoomes@1585 445 Padded01(Arg1T arg1): T(arg1) { }
jcoomes@1585 446 private:
jcoomes@1585 447 char _pad_buf_[PADDING_SIZE(T, alignment)];
jcoomes@1585 448 };
duke@0 449
duke@0 450 //----------------------------------------------------------------------------------------------------
duke@0 451 // Utility macros for compilers
duke@0 452 // used to silence compiler warnings
duke@0 453
duke@0 454 #define Unused_Variable(var) var
duke@0 455
duke@0 456
duke@0 457 //----------------------------------------------------------------------------------------------------
duke@0 458 // Miscellaneous
duke@0 459
duke@0 460 // 6302670 Eliminate Hotspot __fabsf dependency
duke@0 461 // All fabs() callers should call this function instead, which will implicitly
duke@0 462 // convert the operand to double, avoiding a dependency on __fabsf which
duke@0 463 // doesn't exist in early versions of Solaris 8.
duke@0 464 inline double fabsd(double value) {
duke@0 465 return fabs(value);
duke@0 466 }
duke@0 467
duke@0 468 inline jint low (jlong value) { return jint(value); }
duke@0 469 inline jint high(jlong value) { return jint(value >> 32); }
duke@0 470
duke@0 471 // the fancy casts are a hopefully portable way
duke@0 472 // to do unsigned 32 to 64 bit type conversion
duke@0 473 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@0 474 *value |= (jlong)(julong)(juint)low; }
duke@0 475
duke@0 476 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@0 477 *value |= (jlong)high << 32; }
duke@0 478
duke@0 479 inline jlong jlong_from(jint h, jint l) {
duke@0 480 jlong result = 0; // initialization to avoid warning
duke@0 481 set_high(&result, h);
duke@0 482 set_low(&result, l);
duke@0 483 return result;
duke@0 484 }
duke@0 485
duke@0 486 union jlong_accessor {
duke@0 487 jint words[2];
duke@0 488 jlong long_value;
duke@0 489 };
duke@0 490
coleenp@113 491 void basic_types_init(); // cannot define here; uses assert
duke@0 492
duke@0 493
duke@0 494 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@0 495 enum BasicType {
duke@0 496 T_BOOLEAN = 4,
duke@0 497 T_CHAR = 5,
duke@0 498 T_FLOAT = 6,
duke@0 499 T_DOUBLE = 7,
duke@0 500 T_BYTE = 8,
duke@0 501 T_SHORT = 9,
duke@0 502 T_INT = 10,
duke@0 503 T_LONG = 11,
duke@0 504 T_OBJECT = 12,
duke@0 505 T_ARRAY = 13,
duke@0 506 T_VOID = 14,
duke@0 507 T_ADDRESS = 15,
coleenp@113 508 T_NARROWOOP= 16,
coleenp@113 509 T_CONFLICT = 17, // for stack value type with conflicting contents
duke@0 510 T_ILLEGAL = 99
duke@0 511 };
duke@0 512
kvn@29 513 inline bool is_java_primitive(BasicType t) {
kvn@29 514 return T_BOOLEAN <= t && t <= T_LONG;
kvn@29 515 }
kvn@29 516
jrose@710 517 inline bool is_subword_type(BasicType t) {
jrose@710 518 // these guys are processed exactly like T_INT in calling sequences:
jrose@710 519 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
jrose@710 520 }
jrose@710 521
jrose@710 522 inline bool is_signed_subword_type(BasicType t) {
jrose@710 523 return (t == T_BYTE || t == T_SHORT);
jrose@710 524 }
jrose@710 525
duke@0 526 // Convert a char from a classfile signature to a BasicType
duke@0 527 inline BasicType char2type(char c) {
duke@0 528 switch( c ) {
duke@0 529 case 'B': return T_BYTE;
duke@0 530 case 'C': return T_CHAR;
duke@0 531 case 'D': return T_DOUBLE;
duke@0 532 case 'F': return T_FLOAT;
duke@0 533 case 'I': return T_INT;
duke@0 534 case 'J': return T_LONG;
duke@0 535 case 'S': return T_SHORT;
duke@0 536 case 'Z': return T_BOOLEAN;
duke@0 537 case 'V': return T_VOID;
duke@0 538 case 'L': return T_OBJECT;
duke@0 539 case '[': return T_ARRAY;
duke@0 540 }
duke@0 541 return T_ILLEGAL;
duke@0 542 }
duke@0 543
duke@0 544 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@0 545 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@0 546 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@0 547 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@0 548 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@0 549 extern BasicType name2type(const char* name);
duke@0 550
duke@0 551 // Auxilary math routines
duke@0 552 // least common multiple
duke@0 553 extern size_t lcm(size_t a, size_t b);
duke@0 554
duke@0 555
duke@0 556 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@0 557 enum BasicTypeSize {
duke@0 558 T_BOOLEAN_size = 1,
duke@0 559 T_CHAR_size = 1,
duke@0 560 T_FLOAT_size = 1,
duke@0 561 T_DOUBLE_size = 2,
duke@0 562 T_BYTE_size = 1,
duke@0 563 T_SHORT_size = 1,
duke@0 564 T_INT_size = 1,
duke@0 565 T_LONG_size = 2,
duke@0 566 T_OBJECT_size = 1,
duke@0 567 T_ARRAY_size = 1,
coleenp@113 568 T_NARROWOOP_size = 1,
duke@0 569 T_VOID_size = 0
duke@0 570 };
duke@0 571
duke@0 572
duke@0 573 // maps a BasicType to its instance field storage type:
duke@0 574 // all sub-word integral types are widened to T_INT
duke@0 575 extern BasicType type2field[T_CONFLICT+1];
duke@0 576 extern BasicType type2wfield[T_CONFLICT+1];
duke@0 577
duke@0 578
duke@0 579 // size in bytes
duke@0 580 enum ArrayElementSize {
duke@0 581 T_BOOLEAN_aelem_bytes = 1,
duke@0 582 T_CHAR_aelem_bytes = 2,
duke@0 583 T_FLOAT_aelem_bytes = 4,
duke@0 584 T_DOUBLE_aelem_bytes = 8,
duke@0 585 T_BYTE_aelem_bytes = 1,
duke@0 586 T_SHORT_aelem_bytes = 2,
duke@0 587 T_INT_aelem_bytes = 4,
duke@0 588 T_LONG_aelem_bytes = 8,
duke@0 589 #ifdef _LP64
duke@0 590 T_OBJECT_aelem_bytes = 8,
duke@0 591 T_ARRAY_aelem_bytes = 8,
duke@0 592 #else
duke@0 593 T_OBJECT_aelem_bytes = 4,
duke@0 594 T_ARRAY_aelem_bytes = 4,
duke@0 595 #endif
coleenp@113 596 T_NARROWOOP_aelem_bytes = 4,
duke@0 597 T_VOID_aelem_bytes = 0
duke@0 598 };
duke@0 599
kvn@29 600 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@29 601 #ifdef ASSERT
kvn@29 602 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@29 603 #else
never@1683 604 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
kvn@29 605 #endif
duke@0 606
duke@0 607
duke@0 608 // JavaValue serves as a container for arbitrary Java values.
duke@0 609
duke@0 610 class JavaValue {
duke@0 611
duke@0 612 public:
duke@0 613 typedef union JavaCallValue {
duke@0 614 jfloat f;
duke@0 615 jdouble d;
duke@0 616 jint i;
duke@0 617 jlong l;
duke@0 618 jobject h;
duke@0 619 } JavaCallValue;
duke@0 620
duke@0 621 private:
duke@0 622 BasicType _type;
duke@0 623 JavaCallValue _value;
duke@0 624
duke@0 625 public:
duke@0 626 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@0 627
duke@0 628 JavaValue(jfloat value) {
duke@0 629 _type = T_FLOAT;
duke@0 630 _value.f = value;
duke@0 631 }
duke@0 632
duke@0 633 JavaValue(jdouble value) {
duke@0 634 _type = T_DOUBLE;
duke@0 635 _value.d = value;
duke@0 636 }
duke@0 637
duke@0 638 jfloat get_jfloat() const { return _value.f; }
duke@0 639 jdouble get_jdouble() const { return _value.d; }
duke@0 640 jint get_jint() const { return _value.i; }
duke@0 641 jlong get_jlong() const { return _value.l; }
duke@0 642 jobject get_jobject() const { return _value.h; }
duke@0 643 JavaCallValue* get_value_addr() { return &_value; }
duke@0 644 BasicType get_type() const { return _type; }
duke@0 645
duke@0 646 void set_jfloat(jfloat f) { _value.f = f;}
duke@0 647 void set_jdouble(jdouble d) { _value.d = d;}
duke@0 648 void set_jint(jint i) { _value.i = i;}
duke@0 649 void set_jlong(jlong l) { _value.l = l;}
duke@0 650 void set_jobject(jobject h) { _value.h = h;}
duke@0 651 void set_type(BasicType t) { _type = t; }
duke@0 652
duke@0 653 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@0 654 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@0 655 jchar get_jchar() const { return (jchar) (_value.i);}
duke@0 656 jshort get_jshort() const { return (jshort) (_value.i);}
duke@0 657
duke@0 658 };
duke@0 659
duke@0 660
duke@0 661 #define STACK_BIAS 0
duke@0 662 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@0 663 // in order to extend the reach of the stack pointer.
duke@0 664 #if defined(SPARC) && defined(_LP64)
duke@0 665 #undef STACK_BIAS
duke@0 666 #define STACK_BIAS 0x7ff
duke@0 667 #endif
duke@0 668
duke@0 669
duke@0 670 // TosState describes the top-of-stack state before and after the execution of
duke@0 671 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
duke@0 672 // registers. The TosState corresponds to the 'machine represention' of this cached
duke@0 673 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@0 674 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@0 675 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@0 676 // state when it comes to machine representation but is used separately for (oop)
duke@0 677 // type specific operations (e.g. verification code).
duke@0 678
duke@0 679 enum TosState { // describes the tos cache contents
duke@0 680 btos = 0, // byte, bool tos cached
jrose@726 681 ctos = 1, // char tos cached
jrose@726 682 stos = 2, // short tos cached
duke@0 683 itos = 3, // int tos cached
duke@0 684 ltos = 4, // long tos cached
duke@0 685 ftos = 5, // float tos cached
duke@0 686 dtos = 6, // double tos cached
duke@0 687 atos = 7, // object cached
duke@0 688 vtos = 8, // tos not cached
duke@0 689 number_of_states,
duke@0 690 ilgl // illegal state: should not occur
duke@0 691 };
duke@0 692
duke@0 693
duke@0 694 inline TosState as_TosState(BasicType type) {
duke@0 695 switch (type) {
duke@0 696 case T_BYTE : return btos;
jrose@726 697 case T_BOOLEAN: return btos; // FIXME: Add ztos
duke@0 698 case T_CHAR : return ctos;
duke@0 699 case T_SHORT : return stos;
duke@0 700 case T_INT : return itos;
duke@0 701 case T_LONG : return ltos;
duke@0 702 case T_FLOAT : return ftos;
duke@0 703 case T_DOUBLE : return dtos;
duke@0 704 case T_VOID : return vtos;
duke@0 705 case T_ARRAY : // fall through
duke@0 706 case T_OBJECT : return atos;
duke@0 707 }
duke@0 708 return ilgl;
duke@0 709 }
duke@0 710
jrose@726 711 inline BasicType as_BasicType(TosState state) {
jrose@726 712 switch (state) {
jrose@726 713 //case ztos: return T_BOOLEAN;//FIXME
jrose@726 714 case btos : return T_BYTE;
jrose@726 715 case ctos : return T_CHAR;
jrose@726 716 case stos : return T_SHORT;
jrose@726 717 case itos : return T_INT;
jrose@726 718 case ltos : return T_LONG;
jrose@726 719 case ftos : return T_FLOAT;
jrose@726 720 case dtos : return T_DOUBLE;
jrose@726 721 case atos : return T_OBJECT;
jrose@726 722 case vtos : return T_VOID;
jrose@726 723 }
jrose@726 724 return T_ILLEGAL;
jrose@726 725 }
jrose@726 726
duke@0 727
duke@0 728 // Helper function to convert BasicType info into TosState
duke@0 729 // Note: Cannot define here as it uses global constant at the time being.
duke@0 730 TosState as_TosState(BasicType type);
duke@0 731
duke@0 732
duke@0 733 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@0 734 // information is needed by the safepoint code.
duke@0 735 //
duke@0 736 // There are 4 essential states:
duke@0 737 //
duke@0 738 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@0 739 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@0 740 // _thread_in_vm : Executing in the vm
duke@0 741 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@0 742 //
duke@0 743 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@0 744 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@0 745 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@0 746 //
duke@0 747 // Given a state, the xxx_trans state can always be found by adding 1.
duke@0 748 //
duke@0 749 enum JavaThreadState {
duke@0 750 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@0 751 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@0 752 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@0 753 _thread_in_native = 4, // running in native code
duke@0 754 _thread_in_native_trans = 5, // corresponding transition state
duke@0 755 _thread_in_vm = 6, // running in VM
duke@0 756 _thread_in_vm_trans = 7, // corresponding transition state
duke@0 757 _thread_in_Java = 8, // running in Java or in stub code
duke@0 758 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@0 759 _thread_blocked = 10, // blocked in vm
duke@0 760 _thread_blocked_trans = 11, // corresponding transition state
duke@0 761 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@0 762 };
duke@0 763
duke@0 764
duke@0 765 // Handy constants for deciding which compiler mode to use.
duke@0 766 enum MethodCompilation {
duke@0 767 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
duke@0 768 InvalidOSREntryBci = -2
duke@0 769 };
duke@0 770
duke@0 771 // Enumeration to distinguish tiers of compilation
duke@0 772 enum CompLevel {
iveresov@1703 773 CompLevel_any = -1,
iveresov@1703 774 CompLevel_all = -1,
iveresov@1703 775 CompLevel_none = 0, // Interpreter
iveresov@1703 776 CompLevel_simple = 1, // C1
iveresov@1703 777 CompLevel_limited_profile = 2, // C1, invocation & backedge counters
iveresov@1703 778 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo
twisti@2294 779 CompLevel_full_optimization = 4, // C2 or Shark
duke@0 780
twisti@2294 781 #if defined(COMPILER2) || defined(SHARK)
iveresov@1703 782 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered
iveresov@1703 783 #elif defined(COMPILER1)
iveresov@1703 784 CompLevel_highest_tier = CompLevel_simple, // pure C1
duke@0 785 #else
iveresov@1703 786 CompLevel_highest_tier = CompLevel_none,
iveresov@1703 787 #endif
iveresov@1703 788
iveresov@1703 789 #if defined(TIERED)
iveresov@1703 790 CompLevel_initial_compile = CompLevel_full_profile // tiered
iveresov@1703 791 #elif defined(COMPILER1)
iveresov@1703 792 CompLevel_initial_compile = CompLevel_simple // pure C1
twisti@2294 793 #elif defined(COMPILER2) || defined(SHARK)
iveresov@1703 794 CompLevel_initial_compile = CompLevel_full_optimization // pure C2
iveresov@1703 795 #else
iveresov@1703 796 CompLevel_initial_compile = CompLevel_none
iveresov@1703 797 #endif
duke@0 798 };
duke@0 799
iveresov@1703 800 inline bool is_c1_compile(int comp_level) {
iveresov@1703 801 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
duke@0 802 }
iveresov@1703 803
iveresov@1703 804 inline bool is_c2_compile(int comp_level) {
duke@0 805 return comp_level == CompLevel_full_optimization;
duke@0 806 }
iveresov@1703 807
duke@0 808 inline bool is_highest_tier_compile(int comp_level) {
duke@0 809 return comp_level == CompLevel_highest_tier;
duke@0 810 }
duke@0 811
duke@0 812 //----------------------------------------------------------------------------------------------------
duke@0 813 // 'Forward' declarations of frequently used classes
duke@0 814 // (in order to reduce interface dependencies & reduce
duke@0 815 // number of unnecessary compilations after changes)
duke@0 816
duke@0 817 class symbolTable;
duke@0 818 class ClassFileStream;
duke@0 819
duke@0 820 class Event;
duke@0 821
duke@0 822 class Thread;
duke@0 823 class VMThread;
duke@0 824 class JavaThread;
duke@0 825 class Threads;
duke@0 826
duke@0 827 class VM_Operation;
duke@0 828 class VMOperationQueue;
duke@0 829
duke@0 830 class CodeBlob;
duke@0 831 class nmethod;
duke@0 832 class OSRAdapter;
duke@0 833 class I2CAdapter;
duke@0 834 class C2IAdapter;
duke@0 835 class CompiledIC;
duke@0 836 class relocInfo;
duke@0 837 class ScopeDesc;
duke@0 838 class PcDesc;
duke@0 839
duke@0 840 class Recompiler;
duke@0 841 class Recompilee;
duke@0 842 class RecompilationPolicy;
duke@0 843 class RFrame;
duke@0 844 class CompiledRFrame;
duke@0 845 class InterpretedRFrame;
duke@0 846
duke@0 847 class frame;
duke@0 848
duke@0 849 class vframe;
duke@0 850 class javaVFrame;
duke@0 851 class interpretedVFrame;
duke@0 852 class compiledVFrame;
duke@0 853 class deoptimizedVFrame;
duke@0 854 class externalVFrame;
duke@0 855 class entryVFrame;
duke@0 856
duke@0 857 class RegisterMap;
duke@0 858
duke@0 859 class Mutex;
duke@0 860 class Monitor;
duke@0 861 class BasicLock;
duke@0 862 class BasicObjectLock;
duke@0 863
duke@0 864 class PeriodicTask;
duke@0 865
duke@0 866 class JavaCallWrapper;
duke@0 867
duke@0 868 class oopDesc;
duke@0 869
duke@0 870 class NativeCall;
duke@0 871
duke@0 872 class zone;
duke@0 873
duke@0 874 class StubQueue;
duke@0 875
duke@0 876 class outputStream;
duke@0 877
duke@0 878 class ResourceArea;
duke@0 879
duke@0 880 class DebugInformationRecorder;
duke@0 881 class ScopeValue;
duke@0 882 class CompressedStream;
duke@0 883 class DebugInfoReadStream;
duke@0 884 class DebugInfoWriteStream;
duke@0 885 class LocationValue;
duke@0 886 class ConstantValue;
duke@0 887 class IllegalValue;
duke@0 888
duke@0 889 class PrivilegedElement;
duke@0 890 class MonitorArray;
duke@0 891
duke@0 892 class MonitorInfo;
duke@0 893
duke@0 894 class OffsetClosure;
duke@0 895 class OopMapCache;
duke@0 896 class InterpreterOopMap;
duke@0 897 class OopMapCacheEntry;
duke@0 898 class OSThread;
duke@0 899
duke@0 900 typedef int (*OSThreadStartFunc)(void*);
duke@0 901
duke@0 902 class Space;
duke@0 903
duke@0 904 class JavaValue;
duke@0 905 class methodHandle;
duke@0 906 class JavaCallArguments;
duke@0 907
duke@0 908 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@0 909
duke@0 910 extern void basic_fatal(const char* msg);
duke@0 911
duke@0 912
duke@0 913 //----------------------------------------------------------------------------------------------------
duke@0 914 // Special constants for debugging
duke@0 915
duke@0 916 const jint badInt = -3; // generic "bad int" value
duke@0 917 const long badAddressVal = -2; // generic "bad address" value
duke@0 918 const long badOopVal = -1; // generic "bad oop" value
duke@0 919 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@0 920 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@0 921 const int badResourceValue = 0xAB; // value used to zap resource area
duke@0 922 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@0 923 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
duke@0 924 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@0 925 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
duke@0 926 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@0 927 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@0 928
duke@0 929
duke@0 930 // (These must be implemented as #defines because C++ compilers are
duke@0 931 // not obligated to inline non-integral constants!)
duke@0 932 #define badAddress ((address)::badAddressVal)
duke@0 933 #define badOop ((oop)::badOopVal)
duke@0 934 #define badHeapWord (::badHeapWordVal)
duke@0 935 #define badJNIHandle ((oop)::badJNIHandleVal)
duke@0 936
jcoomes@1311 937 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
jcoomes@1311 938 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
duke@0 939
duke@0 940 //----------------------------------------------------------------------------------------------------
duke@0 941 // Utility functions for bitfield manipulations
duke@0 942
duke@0 943 const intptr_t AllBits = ~0; // all bits set in a word
duke@0 944 const intptr_t NoBits = 0; // no bits set in a word
duke@0 945 const jlong NoLongBits = 0; // no bits set in a long
duke@0 946 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@0 947
duke@0 948 // get a word with the n.th or the right-most or left-most n bits set
duke@0 949 // (note: #define used only so that they can be used in enum constant definitions)
duke@0 950 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
duke@0 951 #define right_n_bits(n) (nth_bit(n) - 1)
duke@0 952 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
duke@0 953
duke@0 954 // bit-operations using a mask m
duke@0 955 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@0 956 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@0 957 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@0 958 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@0 959 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@0 960
duke@0 961 // bit-operations using the n.th bit
duke@0 962 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@0 963 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@0 964 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@0 965
duke@0 966 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@0 967 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@0 968 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@0 969 }
duke@0 970
duke@0 971
duke@0 972 //----------------------------------------------------------------------------------------------------
duke@0 973 // Utility functions for integers
duke@0 974
duke@0 975 // Avoid use of global min/max macros which may cause unwanted double
duke@0 976 // evaluation of arguments.
duke@0 977 #ifdef max
duke@0 978 #undef max
duke@0 979 #endif
duke@0 980
duke@0 981 #ifdef min
duke@0 982 #undef min
duke@0 983 #endif
duke@0 984
duke@0 985 #define max(a,b) Do_not_use_max_use_MAX2_instead
duke@0 986 #define min(a,b) Do_not_use_min_use_MIN2_instead
duke@0 987
duke@0 988 // It is necessary to use templates here. Having normal overloaded
duke@0 989 // functions does not work because it is necessary to provide both 32-
duke@0 990 // and 64-bit overloaded functions, which does not work, and having
duke@0 991 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@0 992 // will be even more error-prone than macros.
duke@0 993 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@0 994 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@0 995 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@0 996 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@0 997 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@0 998 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@0 999
duke@0 1000 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@0 1001
duke@0 1002 // true if x is a power of 2, false otherwise
duke@0 1003 inline bool is_power_of_2(intptr_t x) {
duke@0 1004 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@0 1005 }
duke@0 1006
duke@0 1007 // long version of is_power_of_2
duke@0 1008 inline bool is_power_of_2_long(jlong x) {
duke@0 1009 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@0 1010 }
duke@0 1011
duke@0 1012 //* largest i such that 2^i <= x
duke@0 1013 // A negative value of 'x' will return '31'
duke@0 1014 inline int log2_intptr(intptr_t x) {
duke@0 1015 int i = -1;
duke@0 1016 uintptr_t p = 1;
duke@0 1017 while (p != 0 && p <= (uintptr_t)x) {
duke@0 1018 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@0 1019 i++; p *= 2;
duke@0 1020 }
duke@0 1021 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@605 1022 // (if p = 0 then overflow occurred and i = 31)
duke@0 1023 return i;
duke@0 1024 }
duke@0 1025
duke@0 1026 //* largest i such that 2^i <= x
duke@0 1027 // A negative value of 'x' will return '63'
duke@0 1028 inline int log2_long(jlong x) {
duke@0 1029 int i = -1;
duke@0 1030 julong p = 1;
duke@0 1031 while (p != 0 && p <= (julong)x) {
duke@0 1032 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@0 1033 i++; p *= 2;
duke@0 1034 }
duke@0 1035 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@605 1036 // (if p = 0 then overflow occurred and i = 63)
duke@0 1037 return i;
duke@0 1038 }
duke@0 1039
duke@0 1040 //* the argument must be exactly a power of 2
duke@0 1041 inline int exact_log2(intptr_t x) {
duke@0 1042 #ifdef ASSERT
duke@0 1043 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@0 1044 #endif
duke@0 1045 return log2_intptr(x);
duke@0 1046 }
duke@0 1047
twisti@568 1048 //* the argument must be exactly a power of 2
twisti@568 1049 inline int exact_log2_long(jlong x) {
twisti@568 1050 #ifdef ASSERT
twisti@568 1051 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@568 1052 #endif
twisti@568 1053 return log2_long(x);
twisti@568 1054 }
twisti@568 1055
duke@0 1056
duke@0 1057 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@0 1058 inline intptr_t round_to(intptr_t x, uintx s) {
duke@0 1059 #ifdef ASSERT
duke@0 1060 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@0 1061 #endif
duke@0 1062 const uintx m = s - 1;
duke@0 1063 return mask_bits(x + m, ~m);
duke@0 1064 }
duke@0 1065
duke@0 1066 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@0 1067 inline intptr_t round_down(intptr_t x, uintx s) {
duke@0 1068 #ifdef ASSERT
duke@0 1069 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@0 1070 #endif
duke@0 1071 const uintx m = s - 1;
duke@0 1072 return mask_bits(x, ~m);
duke@0 1073 }
duke@0 1074
duke@0 1075
duke@0 1076 inline bool is_odd (intx x) { return x & 1; }
duke@0 1077 inline bool is_even(intx x) { return !is_odd(x); }
duke@0 1078
duke@0 1079 // "to" should be greater than "from."
duke@0 1080 inline intx byte_size(void* from, void* to) {
duke@0 1081 return (address)to - (address)from;
duke@0 1082 }
duke@0 1083
duke@0 1084 //----------------------------------------------------------------------------------------------------
duke@0 1085 // Avoid non-portable casts with these routines (DEPRECATED)
duke@0 1086
duke@0 1087 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@0 1088 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@0 1089
duke@0 1090 // Given sequence of four bytes, build into a 32-bit word
duke@0 1091 // following the conventions used in class files.
duke@0 1092 // On the 386, this could be realized with a simple address cast.
duke@0 1093 //
duke@0 1094
duke@0 1095 // This routine takes eight bytes:
duke@0 1096 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@1709 1097 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
twisti@1709 1098 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
twisti@1709 1099 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
twisti@1709 1100 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
twisti@1709 1101 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
twisti@1709 1102 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
twisti@1709 1103 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
twisti@1709 1104 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
duke@0 1105 }
duke@0 1106
duke@0 1107 // This routine takes four bytes:
duke@0 1108 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
twisti@1709 1109 return (( u4(c1) << 24 ) & 0xff000000)
twisti@1709 1110 | (( u4(c2) << 16 ) & 0x00ff0000)
twisti@1709 1111 | (( u4(c3) << 8 ) & 0x0000ff00)
twisti@1709 1112 | (( u4(c4) << 0 ) & 0x000000ff);
duke@0 1113 }
duke@0 1114
duke@0 1115 // And this one works if the four bytes are contiguous in memory:
duke@0 1116 inline u4 build_u4_from( u1* p ) {
duke@0 1117 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@0 1118 }
duke@0 1119
duke@0 1120 // Ditto for two-byte ints:
duke@0 1121 inline u2 build_u2_from( u1 c1, u1 c2 ) {
twisti@1709 1122 return u2((( u2(c1) << 8 ) & 0xff00)
twisti@1709 1123 | (( u2(c2) << 0 ) & 0x00ff));
duke@0 1124 }
duke@0 1125
duke@0 1126 // And this one works if the two bytes are contiguous in memory:
duke@0 1127 inline u2 build_u2_from( u1* p ) {
duke@0 1128 return build_u2_from( p[0], p[1] );
duke@0 1129 }
duke@0 1130
duke@0 1131 // Ditto for floats:
duke@0 1132 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@0 1133 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@0 1134 return *(jfloat*)&u;
duke@0 1135 }
duke@0 1136
duke@0 1137 inline jfloat build_float_from( u1* p ) {
duke@0 1138 u4 u = build_u4_from( p );
duke@0 1139 return *(jfloat*)&u;
duke@0 1140 }
duke@0 1141
duke@0 1142
duke@0 1143 // now (64-bit) longs
duke@0 1144
duke@0 1145 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@1709 1146 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
twisti@1709 1147 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
twisti@1709 1148 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
twisti@1709 1149 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
twisti@1709 1150 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
twisti@1709 1151 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
twisti@1709 1152 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
twisti@1709 1153 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
duke@0 1154 }
duke@0 1155
duke@0 1156 inline jlong build_long_from( u1* p ) {
duke@0 1157 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@0 1158 }
duke@0 1159
duke@0 1160
duke@0 1161 // Doubles, too!
duke@0 1162 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@0 1163 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@0 1164 return *(jdouble*)&u;
duke@0 1165 }
duke@0 1166
duke@0 1167 inline jdouble build_double_from( u1* p ) {
duke@0 1168 jlong u = build_long_from( p );
duke@0 1169 return *(jdouble*)&u;
duke@0 1170 }
duke@0 1171
duke@0 1172
duke@0 1173 // Portable routines to go the other way:
duke@0 1174
duke@0 1175 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@0 1176 c1 = u1(x >> 8);
duke@0 1177 c2 = u1(x);
duke@0 1178 }
duke@0 1179
duke@0 1180 inline void explode_short_to( u2 x, u1* p ) {
duke@0 1181 explode_short_to( x, p[0], p[1]);
duke@0 1182 }
duke@0 1183
duke@0 1184 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@0 1185 c1 = u1(x >> 24);
duke@0 1186 c2 = u1(x >> 16);
duke@0 1187 c3 = u1(x >> 8);
duke@0 1188 c4 = u1(x);
duke@0 1189 }
duke@0 1190
duke@0 1191 inline void explode_int_to( u4 x, u1* p ) {
duke@0 1192 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@0 1193 }
duke@0 1194
duke@0 1195
duke@0 1196 // Pack and extract shorts to/from ints:
duke@0 1197
duke@0 1198 inline int extract_low_short_from_int(jint x) {
duke@0 1199 return x & 0xffff;
duke@0 1200 }
duke@0 1201
duke@0 1202 inline int extract_high_short_from_int(jint x) {
duke@0 1203 return (x >> 16) & 0xffff;
duke@0 1204 }
duke@0 1205
duke@0 1206 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@0 1207 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@0 1208 }
duke@0 1209
duke@0 1210 // Printf-style formatters for fixed- and variable-width types as pointers and
never@2796 1211 // integers. These are derived from the definitions in inttypes.h. If the platform
never@2796 1212 // doesn't provide appropriate definitions, they should be provided in
never@2796 1213 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@0 1214
tonyp@2208 1215 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
tonyp@2037 1216
duke@0 1217 // Format 32-bit quantities.
never@2796 1218 #define INT32_FORMAT "%" PRId32
never@2796 1219 #define UINT32_FORMAT "%" PRIu32
never@2796 1220 #define INT32_FORMAT_W(width) "%" #width PRId32
never@2796 1221 #define UINT32_FORMAT_W(width) "%" #width PRIu32
duke@0 1222
never@2796 1223 #define PTR32_FORMAT "0x%08" PRIx32
duke@0 1224
duke@0 1225 // Format 64-bit quantities.
never@2796 1226 #define INT64_FORMAT "%" PRId64
never@2796 1227 #define UINT64_FORMAT "%" PRIu64
never@2796 1228 #define INT64_FORMAT_W(width) "%" #width PRId64
never@2796 1229 #define UINT64_FORMAT_W(width) "%" #width PRIu64
duke@0 1230
never@2796 1231 #define PTR64_FORMAT "0x%016" PRIx64
duke@0 1232
never@2796 1233 // Format pointers which change size between 32- and 64-bit.
duke@0 1234 #ifdef _LP64
never@2796 1235 #define INTPTR_FORMAT "0x%016" PRIxPTR
never@2796 1236 #define PTR_FORMAT "0x%016" PRIxPTR
duke@0 1237 #else // !_LP64
never@2796 1238 #define INTPTR_FORMAT "0x%08" PRIxPTR
never@2796 1239 #define PTR_FORMAT "0x%08" PRIxPTR
duke@0 1240 #endif // _LP64
duke@0 1241
never@2796 1242 #define SSIZE_FORMAT "%" PRIdPTR
never@2796 1243 #define SIZE_FORMAT "%" PRIuPTR
never@2796 1244 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
never@2796 1245 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR
never@2796 1246
never@2796 1247 #define INTX_FORMAT "%" PRIdPTR
never@2796 1248 #define UINTX_FORMAT "%" PRIuPTR
never@2796 1249 #define INTX_FORMAT_W(width) "%" #width PRIdPTR
never@2796 1250 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
never@2796 1251
duke@0 1252
duke@0 1253 // Enable zap-a-lot if in debug version.
duke@0 1254
duke@0 1255 # ifdef ASSERT
duke@0 1256 # ifdef COMPILER2
duke@0 1257 # define ENABLE_ZAP_DEAD_LOCALS
duke@0 1258 #endif /* COMPILER2 */
duke@0 1259 # endif /* ASSERT */
duke@0 1260
duke@0 1261 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
stefank@1879 1262
stefank@1879 1263 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP