annotate src/share/vm/utilities/globalDefinitions.hpp @ 3860:59c790074993

8003635: NPG: AsynchGetCallTrace broken by Method* virtual call Summary: Make metaspace::contains be lock free and used to see if something is in metaspace, also compare Method* with vtbl pointer. Reviewed-by: dholmes, sspitsyn, dcubed, jmasa
author coleenp
date Wed, 28 Nov 2012 17:50:21 -0500
parents e4f764ddb06a
children 203f64878aab
rev   line source
duke@0 1 /*
brutisso@3327 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
trims@1472 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1472 20 * or visit www.oracle.com if you need additional information or have any
trims@1472 21 * questions.
duke@0 22 *
duke@0 23 */
duke@0 24
stefank@1879 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@1879 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@1879 27
dcubed@2767 28 #ifndef __STDC_FORMAT_MACROS
never@2721 29 #define __STDC_FORMAT_MACROS
dcubed@2767 30 #endif
never@2721 31
stefank@1879 32 #ifdef TARGET_COMPILER_gcc
stefank@1879 33 # include "utilities/globalDefinitions_gcc.hpp"
stefank@1879 34 #endif
stefank@1879 35 #ifdef TARGET_COMPILER_visCPP
stefank@1879 36 # include "utilities/globalDefinitions_visCPP.hpp"
stefank@1879 37 #endif
stefank@1879 38 #ifdef TARGET_COMPILER_sparcWorks
stefank@1879 39 # include "utilities/globalDefinitions_sparcWorks.hpp"
stefank@1879 40 #endif
stefank@1879 41
stefank@1879 42 #include "utilities/macros.hpp"
stefank@1879 43
duke@0 44 // This file holds all globally used constants & types, class (forward)
duke@0 45 // declarations and a few frequently used utility functions.
duke@0 46
duke@0 47 //----------------------------------------------------------------------------------------------------
duke@0 48 // Constants
duke@0 49
duke@0 50 const int LogBytesPerShort = 1;
duke@0 51 const int LogBytesPerInt = 2;
duke@0 52 #ifdef _LP64
duke@0 53 const int LogBytesPerWord = 3;
duke@0 54 #else
duke@0 55 const int LogBytesPerWord = 2;
duke@0 56 #endif
duke@0 57 const int LogBytesPerLong = 3;
duke@0 58
duke@0 59 const int BytesPerShort = 1 << LogBytesPerShort;
duke@0 60 const int BytesPerInt = 1 << LogBytesPerInt;
duke@0 61 const int BytesPerWord = 1 << LogBytesPerWord;
duke@0 62 const int BytesPerLong = 1 << LogBytesPerLong;
duke@0 63
duke@0 64 const int LogBitsPerByte = 3;
duke@0 65 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@0 66 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@0 67 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@0 68 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@0 69
duke@0 70 const int BitsPerByte = 1 << LogBitsPerByte;
duke@0 71 const int BitsPerShort = 1 << LogBitsPerShort;
duke@0 72 const int BitsPerInt = 1 << LogBitsPerInt;
duke@0 73 const int BitsPerWord = 1 << LogBitsPerWord;
duke@0 74 const int BitsPerLong = 1 << LogBitsPerLong;
duke@0 75
duke@0 76 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@0 77 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@0 78
duke@0 79 const int WordsPerLong = 2; // Number of stack entries for longs
duke@0 80
coleenp@113 81 const int oopSize = sizeof(char*); // Full-width oop
coleenp@113 82 extern int heapOopSize; // Oop within a java object
duke@0 83 const int wordSize = sizeof(char*);
duke@0 84 const int longSize = sizeof(jlong);
duke@0 85 const int jintSize = sizeof(jint);
duke@0 86 const int size_tSize = sizeof(size_t);
duke@0 87
coleenp@113 88 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@0 89
coleenp@113 90 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@113 91 extern int LogBitsPerHeapOop;
coleenp@113 92 extern int BytesPerHeapOop;
coleenp@113 93 extern int BitsPerHeapOop;
duke@0 94
kvn@1491 95 // Oop encoding heap max
kvn@1491 96 extern uint64_t OopEncodingHeapMax;
kvn@1491 97
duke@0 98 const int BitsPerJavaInteger = 32;
twisti@559 99 const int BitsPerJavaLong = 64;
duke@0 100 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@0 101
coleenp@113 102 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@113 103 const int jintAsStringSize = 12;
coleenp@113 104
duke@0 105 // In fact this should be
duke@0 106 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@0 107 // see os::set_memory_serialize_page()
duke@0 108 #ifdef _LP64
duke@0 109 const int SerializePageShiftCount = 4;
duke@0 110 #else
duke@0 111 const int SerializePageShiftCount = 3;
duke@0 112 #endif
duke@0 113
duke@0 114 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@0 115 // pointer into the heap. We require that object sizes be measured in
duke@0 116 // units of heap words, so that that
duke@0 117 // HeapWord* hw;
duke@0 118 // hw += oop(hw)->foo();
duke@0 119 // works, where foo is a method (like size or scavenge) that returns the
duke@0 120 // object size.
duke@0 121 class HeapWord {
duke@0 122 friend class VMStructs;
jmasa@263 123 private:
duke@0 124 char* i;
jmasa@361 125 #ifndef PRODUCT
jmasa@263 126 public:
jmasa@263 127 char* value() { return i; }
jmasa@263 128 #endif
duke@0 129 };
duke@0 130
coleenp@3602 131 // Analogous opaque struct for metadata allocated from
coleenp@3602 132 // metaspaces.
coleenp@3602 133 class MetaWord {
coleenp@3602 134 friend class VMStructs;
coleenp@3602 135 private:
coleenp@3602 136 char* i;
coleenp@3602 137 };
coleenp@3602 138
duke@0 139 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@113 140 const int HeapWordSize = sizeof(HeapWord);
duke@0 141 #ifdef _LP64
coleenp@113 142 const int LogHeapWordSize = 3;
duke@0 143 #else
coleenp@113 144 const int LogHeapWordSize = 2;
duke@0 145 #endif
coleenp@113 146 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@113 147 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@0 148
duke@0 149 // The larger HeapWordSize for 64bit requires larger heaps
duke@0 150 // for the same application running in 64bit. See bug 4967770.
duke@0 151 // The minimum alignment to a heap word size is done. Other
duke@0 152 // parts of the memory system may required additional alignment
duke@0 153 // and are responsible for those alignments.
duke@0 154 #ifdef _LP64
duke@0 155 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@0 156 #else
duke@0 157 #define ScaleForWordSize(x) (x)
duke@0 158 #endif
duke@0 159
duke@0 160 // The minimum number of native machine words necessary to contain "byte_size"
duke@0 161 // bytes.
duke@0 162 inline size_t heap_word_size(size_t byte_size) {
duke@0 163 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@0 164 }
duke@0 165
duke@0 166
duke@0 167 const size_t K = 1024;
duke@0 168 const size_t M = K*K;
duke@0 169 const size_t G = M*K;
duke@0 170 const size_t HWperKB = K / sizeof(HeapWord);
duke@0 171
duke@0 172 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
duke@0 173 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
duke@0 174
duke@0 175 // Constants for converting from a base unit to milli-base units. For
duke@0 176 // example from seconds to milliseconds and microseconds
duke@0 177
duke@0 178 const int MILLIUNITS = 1000; // milli units per base unit
duke@0 179 const int MICROUNITS = 1000000; // micro units per base unit
duke@0 180 const int NANOUNITS = 1000000000; // nano units per base unit
duke@0 181
johnc@2904 182 const jlong NANOSECS_PER_SEC = CONST64(1000000000);
johnc@2904 183 const jint NANOSECS_PER_MILLISEC = 1000000;
johnc@2904 184
duke@0 185 inline const char* proper_unit_for_byte_size(size_t s) {
brutisso@3331 186 #ifdef _LP64
brutisso@3331 187 if (s >= 10*G) {
brutisso@3331 188 return "G";
brutisso@3331 189 }
brutisso@3331 190 #endif
duke@0 191 if (s >= 10*M) {
duke@0 192 return "M";
duke@0 193 } else if (s >= 10*K) {
duke@0 194 return "K";
duke@0 195 } else {
duke@0 196 return "B";
duke@0 197 }
duke@0 198 }
duke@0 199
brutisso@3327 200 template <class T>
brutisso@3327 201 inline T byte_size_in_proper_unit(T s) {
brutisso@3331 202 #ifdef _LP64
brutisso@3331 203 if (s >= 10*G) {
brutisso@3331 204 return (T)(s/G);
brutisso@3331 205 }
brutisso@3331 206 #endif
duke@0 207 if (s >= 10*M) {
brutisso@3327 208 return (T)(s/M);
duke@0 209 } else if (s >= 10*K) {
brutisso@3327 210 return (T)(s/K);
duke@0 211 } else {
duke@0 212 return s;
duke@0 213 }
duke@0 214 }
duke@0 215
duke@0 216 //----------------------------------------------------------------------------------------------------
duke@0 217 // VM type definitions
duke@0 218
duke@0 219 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@0 220 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@0 221
duke@0 222 typedef intptr_t intx;
duke@0 223 typedef uintptr_t uintx;
duke@0 224
duke@0 225 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@0 226 const intx max_intx = (uintx)min_intx - 1;
duke@0 227 const uintx max_uintx = (uintx)-1;
duke@0 228
duke@0 229 // Table of values:
duke@0 230 // sizeof intx 4 8
duke@0 231 // min_intx 0x80000000 0x8000000000000000
duke@0 232 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@0 233 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@0 234
duke@0 235 typedef unsigned int uint; NEEDS_CLEANUP
duke@0 236
duke@0 237
duke@0 238 //----------------------------------------------------------------------------------------------------
duke@0 239 // Java type definitions
duke@0 240
duke@0 241 // All kinds of 'plain' byte addresses
duke@0 242 typedef signed char s_char;
duke@0 243 typedef unsigned char u_char;
duke@0 244 typedef u_char* address;
duke@0 245 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@0 246 // except for some implementations of a C++
duke@0 247 // linkage pointer to function. Should never
duke@0 248 // need one of those to be placed in this
duke@0 249 // type anyway.
duke@0 250
duke@0 251 // Utility functions to "portably" (?) bit twiddle pointers
duke@0 252 // Where portable means keep ANSI C++ compilers quiet
duke@0 253
duke@0 254 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@0 255 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@0 256
duke@0 257 // Utility functions to "portably" make cast to/from function pointers.
duke@0 258
duke@0 259 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@0 260 inline address_word castable_address(address x) { return address_word(x) ; }
duke@0 261 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@0 262
duke@0 263 // Pointer subtraction.
duke@0 264 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@0 265 // the range we might need to find differences from one end of the heap
duke@0 266 // to the other.
duke@0 267 // A typical use might be:
duke@0 268 // if (pointer_delta(end(), top()) >= size) {
duke@0 269 // // enough room for an object of size
duke@0 270 // ...
duke@0 271 // and then additions like
duke@0 272 // ... top() + size ...
duke@0 273 // are safe because we know that top() is at least size below end().
duke@0 274 inline size_t pointer_delta(const void* left,
duke@0 275 const void* right,
duke@0 276 size_t element_size) {
duke@0 277 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@0 278 }
duke@0 279 // A version specialized for HeapWord*'s.
duke@0 280 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@0 281 return pointer_delta(left, right, sizeof(HeapWord));
duke@0 282 }
coleenp@3602 283 // A version specialized for MetaWord*'s.
coleenp@3602 284 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
coleenp@3602 285 return pointer_delta(left, right, sizeof(MetaWord));
coleenp@3602 286 }
duke@0 287
duke@0 288 //
duke@0 289 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@0 290 // directly without at best a warning. This macro accomplishes it silently
duke@0 291 // In every case that is present at this point the value be cast is a pointer
duke@0 292 // to a C linkage function. In somecase the type used for the cast reflects
duke@0 293 // that linkage and a picky compiler would not complain. In other cases because
duke@0 294 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@0 295 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@0 296 // picky enough to catch these instances (which are few). It is possible that
duke@0 297 // using templates could fix these for all cases. This use of templates is likely
duke@0 298 // so far from the middle of the road that it is likely to be problematic in
duke@0 299 // many C++ compilers.
duke@0 300 //
duke@0 301 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
duke@0 302 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@0 303
duke@0 304 // Unsigned byte types for os and stream.hpp
duke@0 305
duke@0 306 // Unsigned one, two, four and eigth byte quantities used for describing
duke@0 307 // the .class file format. See JVM book chapter 4.
duke@0 308
duke@0 309 typedef jubyte u1;
duke@0 310 typedef jushort u2;
duke@0 311 typedef juint u4;
duke@0 312 typedef julong u8;
duke@0 313
duke@0 314 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@0 315 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@0 316 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@0 317 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@0 318
phh@2992 319 typedef jbyte s1;
phh@2992 320 typedef jshort s2;
phh@2992 321 typedef jint s4;
phh@2992 322 typedef jlong s8;
phh@2992 323
duke@0 324 //----------------------------------------------------------------------------------------------------
duke@0 325 // JVM spec restrictions
duke@0 326
duke@0 327 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@0 328
duke@0 329
duke@0 330 //----------------------------------------------------------------------------------------------------
hseigel@3842 331 // Minimum StringTableSize value
hseigel@3842 332
hseigel@3842 333 const int defaultStringTableSize=1009;
hseigel@3842 334
hseigel@3842 335
hseigel@3842 336 //----------------------------------------------------------------------------------------------------
duke@0 337 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@0 338 //
duke@0 339 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@0 340
duke@0 341 #define HOTSWAP
duke@0 342
duke@0 343 //----------------------------------------------------------------------------------------------------
duke@0 344 // Object alignment, in units of HeapWords.
duke@0 345 //
duke@0 346 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@0 347 // reference fields can be naturally aligned.
duke@0 348
kvn@1491 349 extern int MinObjAlignment;
kvn@1491 350 extern int MinObjAlignmentInBytes;
kvn@1491 351 extern int MinObjAlignmentInBytesMask;
duke@0 352
kvn@1491 353 extern int LogMinObjAlignment;
kvn@1491 354 extern int LogMinObjAlignmentInBytes;
coleenp@113 355
roland@3724 356 const int LogKlassAlignmentInBytes = 3;
roland@3724 357 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
roland@3724 358 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
roland@3724 359 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
roland@3724 360
roland@3724 361 // Klass encoding metaspace max size
roland@3724 362 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
roland@3724 363
duke@0 364 // Machine dependent stuff
duke@0 365
stefank@1879 366 #ifdef TARGET_ARCH_x86
stefank@1879 367 # include "globalDefinitions_x86.hpp"
stefank@1879 368 #endif
stefank@1879 369 #ifdef TARGET_ARCH_sparc
stefank@1879 370 # include "globalDefinitions_sparc.hpp"
stefank@1879 371 #endif
stefank@1879 372 #ifdef TARGET_ARCH_zero
stefank@1879 373 # include "globalDefinitions_zero.hpp"
stefank@1879 374 #endif
bobv@2073 375 #ifdef TARGET_ARCH_arm
bobv@2073 376 # include "globalDefinitions_arm.hpp"
bobv@2073 377 #endif
bobv@2073 378 #ifdef TARGET_ARCH_ppc
bobv@2073 379 # include "globalDefinitions_ppc.hpp"
bobv@2073 380 #endif
stefank@1879 381
duke@0 382
duke@0 383 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@0 384 // Note: this value must be a power of 2
duke@0 385
duke@0 386 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@0 387
duke@0 388 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@0 389 // for use in places like enum definitions that require compile-time constant
duke@0 390 // expressions and a function for all other places so as to get type checking.
duke@0 391
duke@0 392 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@0 393
duke@0 394 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@0 395 return align_size_up_(size, alignment);
duke@0 396 }
duke@0 397
duke@0 398 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@0 399
duke@0 400 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@0 401 return align_size_down_(size, alignment);
duke@0 402 }
duke@0 403
duke@0 404 // Align objects by rounding up their size, in HeapWord units.
duke@0 405
duke@0 406 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
duke@0 407
duke@0 408 inline intptr_t align_object_size(intptr_t size) {
duke@0 409 return align_size_up(size, MinObjAlignment);
duke@0 410 }
duke@0 411
kvn@1491 412 inline bool is_object_aligned(intptr_t addr) {
kvn@1491 413 return addr == align_object_size(addr);
kvn@1491 414 }
kvn@1491 415
duke@0 416 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@0 417
duke@0 418 inline intptr_t align_object_offset(intptr_t offset) {
duke@0 419 return align_size_up(offset, HeapWordsPerLong);
duke@0 420 }
duke@0 421
jcoomes@1585 422 // The expected size in bytes of a cache line, used to pad data structures.
jcoomes@1585 423 #define DEFAULT_CACHE_LINE_SIZE 64
jcoomes@1585 424
jcoomes@1585 425 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
jcoomes@1585 426 // expected cache line size (a power of two). The first addend avoids sharing
jcoomes@1585 427 // when the start address is not a multiple of alignment; the second maintains
jcoomes@1585 428 // alignment of starting addresses that happen to be a multiple.
jcoomes@1585 429 #define PADDING_SIZE(type, alignment) \
jcoomes@1585 430 ((alignment) + align_size_up_(sizeof(type), alignment))
jcoomes@1585 431
jcoomes@1585 432 // Templates to create a subclass padded to avoid cache line sharing. These are
jcoomes@1585 433 // effective only when applied to derived-most (leaf) classes.
jcoomes@1585 434
jcoomes@1585 435 // When no args are passed to the base ctor.
jcoomes@1585 436 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
jcoomes@1585 437 class Padded: public T {
jcoomes@1585 438 private:
jcoomes@1585 439 char _pad_buf_[PADDING_SIZE(T, alignment)];
jcoomes@1585 440 };
jcoomes@1585 441
jcoomes@1585 442 // When either 0 or 1 args may be passed to the base ctor.
jcoomes@1585 443 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
jcoomes@1585 444 class Padded01: public T {
jcoomes@1585 445 public:
jcoomes@1585 446 Padded01(): T() { }
jcoomes@1585 447 Padded01(Arg1T arg1): T(arg1) { }
jcoomes@1585 448 private:
jcoomes@1585 449 char _pad_buf_[PADDING_SIZE(T, alignment)];
jcoomes@1585 450 };
duke@0 451
duke@0 452 //----------------------------------------------------------------------------------------------------
duke@0 453 // Utility macros for compilers
duke@0 454 // used to silence compiler warnings
duke@0 455
duke@0 456 #define Unused_Variable(var) var
duke@0 457
duke@0 458
duke@0 459 //----------------------------------------------------------------------------------------------------
duke@0 460 // Miscellaneous
duke@0 461
duke@0 462 // 6302670 Eliminate Hotspot __fabsf dependency
duke@0 463 // All fabs() callers should call this function instead, which will implicitly
duke@0 464 // convert the operand to double, avoiding a dependency on __fabsf which
duke@0 465 // doesn't exist in early versions of Solaris 8.
duke@0 466 inline double fabsd(double value) {
duke@0 467 return fabs(value);
duke@0 468 }
duke@0 469
duke@0 470 inline jint low (jlong value) { return jint(value); }
duke@0 471 inline jint high(jlong value) { return jint(value >> 32); }
duke@0 472
duke@0 473 // the fancy casts are a hopefully portable way
duke@0 474 // to do unsigned 32 to 64 bit type conversion
duke@0 475 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@0 476 *value |= (jlong)(julong)(juint)low; }
duke@0 477
duke@0 478 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@0 479 *value |= (jlong)high << 32; }
duke@0 480
duke@0 481 inline jlong jlong_from(jint h, jint l) {
duke@0 482 jlong result = 0; // initialization to avoid warning
duke@0 483 set_high(&result, h);
duke@0 484 set_low(&result, l);
duke@0 485 return result;
duke@0 486 }
duke@0 487
duke@0 488 union jlong_accessor {
duke@0 489 jint words[2];
duke@0 490 jlong long_value;
duke@0 491 };
duke@0 492
coleenp@113 493 void basic_types_init(); // cannot define here; uses assert
duke@0 494
duke@0 495
duke@0 496 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@0 497 enum BasicType {
roland@3724 498 T_BOOLEAN = 4,
roland@3724 499 T_CHAR = 5,
roland@3724 500 T_FLOAT = 6,
roland@3724 501 T_DOUBLE = 7,
roland@3724 502 T_BYTE = 8,
roland@3724 503 T_SHORT = 9,
roland@3724 504 T_INT = 10,
roland@3724 505 T_LONG = 11,
roland@3724 506 T_OBJECT = 12,
roland@3724 507 T_ARRAY = 13,
roland@3724 508 T_VOID = 14,
roland@3724 509 T_ADDRESS = 15,
roland@3724 510 T_NARROWOOP = 16,
roland@3724 511 T_METADATA = 17,
roland@3724 512 T_NARROWKLASS = 18,
roland@3724 513 T_CONFLICT = 19, // for stack value type with conflicting contents
roland@3724 514 T_ILLEGAL = 99
duke@0 515 };
duke@0 516
kvn@29 517 inline bool is_java_primitive(BasicType t) {
kvn@29 518 return T_BOOLEAN <= t && t <= T_LONG;
kvn@29 519 }
kvn@29 520
jrose@710 521 inline bool is_subword_type(BasicType t) {
jrose@710 522 // these guys are processed exactly like T_INT in calling sequences:
jrose@710 523 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
jrose@710 524 }
jrose@710 525
jrose@710 526 inline bool is_signed_subword_type(BasicType t) {
jrose@710 527 return (t == T_BYTE || t == T_SHORT);
jrose@710 528 }
jrose@710 529
duke@0 530 // Convert a char from a classfile signature to a BasicType
duke@0 531 inline BasicType char2type(char c) {
duke@0 532 switch( c ) {
duke@0 533 case 'B': return T_BYTE;
duke@0 534 case 'C': return T_CHAR;
duke@0 535 case 'D': return T_DOUBLE;
duke@0 536 case 'F': return T_FLOAT;
duke@0 537 case 'I': return T_INT;
duke@0 538 case 'J': return T_LONG;
duke@0 539 case 'S': return T_SHORT;
duke@0 540 case 'Z': return T_BOOLEAN;
duke@0 541 case 'V': return T_VOID;
duke@0 542 case 'L': return T_OBJECT;
duke@0 543 case '[': return T_ARRAY;
duke@0 544 }
duke@0 545 return T_ILLEGAL;
duke@0 546 }
duke@0 547
duke@0 548 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@0 549 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@0 550 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@0 551 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@0 552 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@0 553 extern BasicType name2type(const char* name);
duke@0 554
duke@0 555 // Auxilary math routines
duke@0 556 // least common multiple
duke@0 557 extern size_t lcm(size_t a, size_t b);
duke@0 558
duke@0 559
duke@0 560 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@0 561 enum BasicTypeSize {
roland@3724 562 T_BOOLEAN_size = 1,
roland@3724 563 T_CHAR_size = 1,
roland@3724 564 T_FLOAT_size = 1,
roland@3724 565 T_DOUBLE_size = 2,
roland@3724 566 T_BYTE_size = 1,
roland@3724 567 T_SHORT_size = 1,
roland@3724 568 T_INT_size = 1,
roland@3724 569 T_LONG_size = 2,
roland@3724 570 T_OBJECT_size = 1,
roland@3724 571 T_ARRAY_size = 1,
roland@3724 572 T_NARROWOOP_size = 1,
roland@3724 573 T_NARROWKLASS_size = 1,
roland@3724 574 T_VOID_size = 0
duke@0 575 };
duke@0 576
duke@0 577
duke@0 578 // maps a BasicType to its instance field storage type:
duke@0 579 // all sub-word integral types are widened to T_INT
duke@0 580 extern BasicType type2field[T_CONFLICT+1];
duke@0 581 extern BasicType type2wfield[T_CONFLICT+1];
duke@0 582
duke@0 583
duke@0 584 // size in bytes
duke@0 585 enum ArrayElementSize {
roland@3724 586 T_BOOLEAN_aelem_bytes = 1,
roland@3724 587 T_CHAR_aelem_bytes = 2,
roland@3724 588 T_FLOAT_aelem_bytes = 4,
roland@3724 589 T_DOUBLE_aelem_bytes = 8,
roland@3724 590 T_BYTE_aelem_bytes = 1,
roland@3724 591 T_SHORT_aelem_bytes = 2,
roland@3724 592 T_INT_aelem_bytes = 4,
roland@3724 593 T_LONG_aelem_bytes = 8,
duke@0 594 #ifdef _LP64
roland@3724 595 T_OBJECT_aelem_bytes = 8,
roland@3724 596 T_ARRAY_aelem_bytes = 8,
duke@0 597 #else
roland@3724 598 T_OBJECT_aelem_bytes = 4,
roland@3724 599 T_ARRAY_aelem_bytes = 4,
duke@0 600 #endif
roland@3724 601 T_NARROWOOP_aelem_bytes = 4,
roland@3724 602 T_NARROWKLASS_aelem_bytes = 4,
roland@3724 603 T_VOID_aelem_bytes = 0
duke@0 604 };
duke@0 605
kvn@29 606 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@29 607 #ifdef ASSERT
kvn@29 608 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@29 609 #else
never@1683 610 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
kvn@29 611 #endif
duke@0 612
duke@0 613
duke@0 614 // JavaValue serves as a container for arbitrary Java values.
duke@0 615
duke@0 616 class JavaValue {
duke@0 617
duke@0 618 public:
duke@0 619 typedef union JavaCallValue {
duke@0 620 jfloat f;
duke@0 621 jdouble d;
duke@0 622 jint i;
duke@0 623 jlong l;
duke@0 624 jobject h;
duke@0 625 } JavaCallValue;
duke@0 626
duke@0 627 private:
duke@0 628 BasicType _type;
duke@0 629 JavaCallValue _value;
duke@0 630
duke@0 631 public:
duke@0 632 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@0 633
duke@0 634 JavaValue(jfloat value) {
duke@0 635 _type = T_FLOAT;
duke@0 636 _value.f = value;
duke@0 637 }
duke@0 638
duke@0 639 JavaValue(jdouble value) {
duke@0 640 _type = T_DOUBLE;
duke@0 641 _value.d = value;
duke@0 642 }
duke@0 643
duke@0 644 jfloat get_jfloat() const { return _value.f; }
duke@0 645 jdouble get_jdouble() const { return _value.d; }
duke@0 646 jint get_jint() const { return _value.i; }
duke@0 647 jlong get_jlong() const { return _value.l; }
duke@0 648 jobject get_jobject() const { return _value.h; }
duke@0 649 JavaCallValue* get_value_addr() { return &_value; }
duke@0 650 BasicType get_type() const { return _type; }
duke@0 651
duke@0 652 void set_jfloat(jfloat f) { _value.f = f;}
duke@0 653 void set_jdouble(jdouble d) { _value.d = d;}
duke@0 654 void set_jint(jint i) { _value.i = i;}
duke@0 655 void set_jlong(jlong l) { _value.l = l;}
duke@0 656 void set_jobject(jobject h) { _value.h = h;}
duke@0 657 void set_type(BasicType t) { _type = t; }
duke@0 658
duke@0 659 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@0 660 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@0 661 jchar get_jchar() const { return (jchar) (_value.i);}
duke@0 662 jshort get_jshort() const { return (jshort) (_value.i);}
duke@0 663
duke@0 664 };
duke@0 665
duke@0 666
duke@0 667 #define STACK_BIAS 0
duke@0 668 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@0 669 // in order to extend the reach of the stack pointer.
duke@0 670 #if defined(SPARC) && defined(_LP64)
duke@0 671 #undef STACK_BIAS
duke@0 672 #define STACK_BIAS 0x7ff
duke@0 673 #endif
duke@0 674
duke@0 675
duke@0 676 // TosState describes the top-of-stack state before and after the execution of
duke@0 677 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
duke@0 678 // registers. The TosState corresponds to the 'machine represention' of this cached
duke@0 679 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@0 680 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@0 681 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@0 682 // state when it comes to machine representation but is used separately for (oop)
duke@0 683 // type specific operations (e.g. verification code).
duke@0 684
duke@0 685 enum TosState { // describes the tos cache contents
duke@0 686 btos = 0, // byte, bool tos cached
jrose@726 687 ctos = 1, // char tos cached
jrose@726 688 stos = 2, // short tos cached
duke@0 689 itos = 3, // int tos cached
duke@0 690 ltos = 4, // long tos cached
duke@0 691 ftos = 5, // float tos cached
duke@0 692 dtos = 6, // double tos cached
duke@0 693 atos = 7, // object cached
duke@0 694 vtos = 8, // tos not cached
duke@0 695 number_of_states,
duke@0 696 ilgl // illegal state: should not occur
duke@0 697 };
duke@0 698
duke@0 699
duke@0 700 inline TosState as_TosState(BasicType type) {
duke@0 701 switch (type) {
duke@0 702 case T_BYTE : return btos;
jrose@726 703 case T_BOOLEAN: return btos; // FIXME: Add ztos
duke@0 704 case T_CHAR : return ctos;
duke@0 705 case T_SHORT : return stos;
duke@0 706 case T_INT : return itos;
duke@0 707 case T_LONG : return ltos;
duke@0 708 case T_FLOAT : return ftos;
duke@0 709 case T_DOUBLE : return dtos;
duke@0 710 case T_VOID : return vtos;
duke@0 711 case T_ARRAY : // fall through
duke@0 712 case T_OBJECT : return atos;
duke@0 713 }
duke@0 714 return ilgl;
duke@0 715 }
duke@0 716
jrose@726 717 inline BasicType as_BasicType(TosState state) {
jrose@726 718 switch (state) {
jrose@726 719 //case ztos: return T_BOOLEAN;//FIXME
jrose@726 720 case btos : return T_BYTE;
jrose@726 721 case ctos : return T_CHAR;
jrose@726 722 case stos : return T_SHORT;
jrose@726 723 case itos : return T_INT;
jrose@726 724 case ltos : return T_LONG;
jrose@726 725 case ftos : return T_FLOAT;
jrose@726 726 case dtos : return T_DOUBLE;
jrose@726 727 case atos : return T_OBJECT;
jrose@726 728 case vtos : return T_VOID;
jrose@726 729 }
jrose@726 730 return T_ILLEGAL;
jrose@726 731 }
jrose@726 732
duke@0 733
duke@0 734 // Helper function to convert BasicType info into TosState
duke@0 735 // Note: Cannot define here as it uses global constant at the time being.
duke@0 736 TosState as_TosState(BasicType type);
duke@0 737
duke@0 738
duke@0 739 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
duke@0 740
duke@0 741 enum ReferenceType {
duke@0 742 REF_NONE, // Regular class
duke@0 743 REF_OTHER, // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
duke@0 744 REF_SOFT, // Subclass of java/lang/ref/SoftReference
duke@0 745 REF_WEAK, // Subclass of java/lang/ref/WeakReference
duke@0 746 REF_FINAL, // Subclass of java/lang/ref/FinalReference
duke@0 747 REF_PHANTOM // Subclass of java/lang/ref/PhantomReference
duke@0 748 };
duke@0 749
duke@0 750
duke@0 751 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@0 752 // information is needed by the safepoint code.
duke@0 753 //
duke@0 754 // There are 4 essential states:
duke@0 755 //
duke@0 756 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@0 757 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@0 758 // _thread_in_vm : Executing in the vm
duke@0 759 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@0 760 //
duke@0 761 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@0 762 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@0 763 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@0 764 //
duke@0 765 // Given a state, the xxx_trans state can always be found by adding 1.
duke@0 766 //
duke@0 767 enum JavaThreadState {
duke@0 768 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@0 769 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@0 770 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@0 771 _thread_in_native = 4, // running in native code
duke@0 772 _thread_in_native_trans = 5, // corresponding transition state
duke@0 773 _thread_in_vm = 6, // running in VM
duke@0 774 _thread_in_vm_trans = 7, // corresponding transition state
duke@0 775 _thread_in_Java = 8, // running in Java or in stub code
duke@0 776 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@0 777 _thread_blocked = 10, // blocked in vm
duke@0 778 _thread_blocked_trans = 11, // corresponding transition state
duke@0 779 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@0 780 };
duke@0 781
duke@0 782
duke@0 783 // Handy constants for deciding which compiler mode to use.
duke@0 784 enum MethodCompilation {
duke@0 785 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
duke@0 786 InvalidOSREntryBci = -2
duke@0 787 };
duke@0 788
duke@0 789 // Enumeration to distinguish tiers of compilation
duke@0 790 enum CompLevel {
iveresov@1703 791 CompLevel_any = -1,
iveresov@1703 792 CompLevel_all = -1,
iveresov@1703 793 CompLevel_none = 0, // Interpreter
iveresov@1703 794 CompLevel_simple = 1, // C1
iveresov@1703 795 CompLevel_limited_profile = 2, // C1, invocation & backedge counters
iveresov@1703 796 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo
twisti@2294 797 CompLevel_full_optimization = 4, // C2 or Shark
duke@0 798
twisti@2294 799 #if defined(COMPILER2) || defined(SHARK)
iveresov@1703 800 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered
iveresov@1703 801 #elif defined(COMPILER1)
iveresov@1703 802 CompLevel_highest_tier = CompLevel_simple, // pure C1
duke@0 803 #else
iveresov@1703 804 CompLevel_highest_tier = CompLevel_none,
iveresov@1703 805 #endif
iveresov@1703 806
iveresov@1703 807 #if defined(TIERED)
iveresov@1703 808 CompLevel_initial_compile = CompLevel_full_profile // tiered
iveresov@1703 809 #elif defined(COMPILER1)
iveresov@1703 810 CompLevel_initial_compile = CompLevel_simple // pure C1
twisti@2294 811 #elif defined(COMPILER2) || defined(SHARK)
iveresov@1703 812 CompLevel_initial_compile = CompLevel_full_optimization // pure C2
iveresov@1703 813 #else
iveresov@1703 814 CompLevel_initial_compile = CompLevel_none
iveresov@1703 815 #endif
duke@0 816 };
duke@0 817
iveresov@1703 818 inline bool is_c1_compile(int comp_level) {
iveresov@1703 819 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
duke@0 820 }
iveresov@1703 821
iveresov@1703 822 inline bool is_c2_compile(int comp_level) {
duke@0 823 return comp_level == CompLevel_full_optimization;
duke@0 824 }
iveresov@1703 825
duke@0 826 inline bool is_highest_tier_compile(int comp_level) {
duke@0 827 return comp_level == CompLevel_highest_tier;
duke@0 828 }
duke@0 829
duke@0 830 //----------------------------------------------------------------------------------------------------
duke@0 831 // 'Forward' declarations of frequently used classes
duke@0 832 // (in order to reduce interface dependencies & reduce
duke@0 833 // number of unnecessary compilations after changes)
duke@0 834
duke@0 835 class symbolTable;
duke@0 836 class ClassFileStream;
duke@0 837
duke@0 838 class Event;
duke@0 839
duke@0 840 class Thread;
duke@0 841 class VMThread;
duke@0 842 class JavaThread;
duke@0 843 class Threads;
duke@0 844
duke@0 845 class VM_Operation;
duke@0 846 class VMOperationQueue;
duke@0 847
duke@0 848 class CodeBlob;
duke@0 849 class nmethod;
duke@0 850 class OSRAdapter;
duke@0 851 class I2CAdapter;
duke@0 852 class C2IAdapter;
duke@0 853 class CompiledIC;
duke@0 854 class relocInfo;
duke@0 855 class ScopeDesc;
duke@0 856 class PcDesc;
duke@0 857
duke@0 858 class Recompiler;
duke@0 859 class Recompilee;
duke@0 860 class RecompilationPolicy;
duke@0 861 class RFrame;
duke@0 862 class CompiledRFrame;
duke@0 863 class InterpretedRFrame;
duke@0 864
duke@0 865 class frame;
duke@0 866
duke@0 867 class vframe;
duke@0 868 class javaVFrame;
duke@0 869 class interpretedVFrame;
duke@0 870 class compiledVFrame;
duke@0 871 class deoptimizedVFrame;
duke@0 872 class externalVFrame;
duke@0 873 class entryVFrame;
duke@0 874
duke@0 875 class RegisterMap;
duke@0 876
duke@0 877 class Mutex;
duke@0 878 class Monitor;
duke@0 879 class BasicLock;
duke@0 880 class BasicObjectLock;
duke@0 881
duke@0 882 class PeriodicTask;
duke@0 883
duke@0 884 class JavaCallWrapper;
duke@0 885
duke@0 886 class oopDesc;
coleenp@3602 887 class metaDataOopDesc;
duke@0 888
duke@0 889 class NativeCall;
duke@0 890
duke@0 891 class zone;
duke@0 892
duke@0 893 class StubQueue;
duke@0 894
duke@0 895 class outputStream;
duke@0 896
duke@0 897 class ResourceArea;
duke@0 898
duke@0 899 class DebugInformationRecorder;
duke@0 900 class ScopeValue;
duke@0 901 class CompressedStream;
duke@0 902 class DebugInfoReadStream;
duke@0 903 class DebugInfoWriteStream;
duke@0 904 class LocationValue;
duke@0 905 class ConstantValue;
duke@0 906 class IllegalValue;
duke@0 907
duke@0 908 class PrivilegedElement;
duke@0 909 class MonitorArray;
duke@0 910
duke@0 911 class MonitorInfo;
duke@0 912
duke@0 913 class OffsetClosure;
duke@0 914 class OopMapCache;
duke@0 915 class InterpreterOopMap;
duke@0 916 class OopMapCacheEntry;
duke@0 917 class OSThread;
duke@0 918
duke@0 919 typedef int (*OSThreadStartFunc)(void*);
duke@0 920
duke@0 921 class Space;
duke@0 922
duke@0 923 class JavaValue;
duke@0 924 class methodHandle;
duke@0 925 class JavaCallArguments;
duke@0 926
duke@0 927 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@0 928
duke@0 929 extern void basic_fatal(const char* msg);
duke@0 930
duke@0 931
duke@0 932 //----------------------------------------------------------------------------------------------------
duke@0 933 // Special constants for debugging
duke@0 934
duke@0 935 const jint badInt = -3; // generic "bad int" value
duke@0 936 const long badAddressVal = -2; // generic "bad address" value
duke@0 937 const long badOopVal = -1; // generic "bad oop" value
duke@0 938 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@0 939 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@0 940 const int badResourceValue = 0xAB; // value used to zap resource area
duke@0 941 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@0 942 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
duke@0 943 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@0 944 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
coleenp@3602 945 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
duke@0 946 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@0 947 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@0 948
duke@0 949
duke@0 950 // (These must be implemented as #defines because C++ compilers are
duke@0 951 // not obligated to inline non-integral constants!)
duke@0 952 #define badAddress ((address)::badAddressVal)
duke@0 953 #define badOop ((oop)::badOopVal)
duke@0 954 #define badHeapWord (::badHeapWordVal)
duke@0 955 #define badJNIHandle ((oop)::badJNIHandleVal)
duke@0 956
jcoomes@1311 957 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
jcoomes@1311 958 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
duke@0 959
duke@0 960 //----------------------------------------------------------------------------------------------------
duke@0 961 // Utility functions for bitfield manipulations
duke@0 962
duke@0 963 const intptr_t AllBits = ~0; // all bits set in a word
duke@0 964 const intptr_t NoBits = 0; // no bits set in a word
duke@0 965 const jlong NoLongBits = 0; // no bits set in a long
duke@0 966 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@0 967
duke@0 968 // get a word with the n.th or the right-most or left-most n bits set
duke@0 969 // (note: #define used only so that they can be used in enum constant definitions)
duke@0 970 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
duke@0 971 #define right_n_bits(n) (nth_bit(n) - 1)
duke@0 972 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
duke@0 973
duke@0 974 // bit-operations using a mask m
duke@0 975 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@0 976 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@0 977 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@0 978 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@0 979 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@0 980
duke@0 981 // bit-operations using the n.th bit
duke@0 982 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@0 983 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@0 984 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@0 985
duke@0 986 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@0 987 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@0 988 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@0 989 }
duke@0 990
duke@0 991
duke@0 992 //----------------------------------------------------------------------------------------------------
duke@0 993 // Utility functions for integers
duke@0 994
duke@0 995 // Avoid use of global min/max macros which may cause unwanted double
duke@0 996 // evaluation of arguments.
duke@0 997 #ifdef max
duke@0 998 #undef max
duke@0 999 #endif
duke@0 1000
duke@0 1001 #ifdef min
duke@0 1002 #undef min
duke@0 1003 #endif
duke@0 1004
duke@0 1005 #define max(a,b) Do_not_use_max_use_MAX2_instead
duke@0 1006 #define min(a,b) Do_not_use_min_use_MIN2_instead
duke@0 1007
duke@0 1008 // It is necessary to use templates here. Having normal overloaded
duke@0 1009 // functions does not work because it is necessary to provide both 32-
duke@0 1010 // and 64-bit overloaded functions, which does not work, and having
duke@0 1011 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@0 1012 // will be even more error-prone than macros.
duke@0 1013 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@0 1014 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@0 1015 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@0 1016 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@0 1017 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@0 1018 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@0 1019
duke@0 1020 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@0 1021
duke@0 1022 // true if x is a power of 2, false otherwise
duke@0 1023 inline bool is_power_of_2(intptr_t x) {
duke@0 1024 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@0 1025 }
duke@0 1026
duke@0 1027 // long version of is_power_of_2
duke@0 1028 inline bool is_power_of_2_long(jlong x) {
duke@0 1029 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@0 1030 }
duke@0 1031
duke@0 1032 //* largest i such that 2^i <= x
duke@0 1033 // A negative value of 'x' will return '31'
duke@0 1034 inline int log2_intptr(intptr_t x) {
duke@0 1035 int i = -1;
duke@0 1036 uintptr_t p = 1;
duke@0 1037 while (p != 0 && p <= (uintptr_t)x) {
duke@0 1038 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@0 1039 i++; p *= 2;
duke@0 1040 }
duke@0 1041 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@605 1042 // (if p = 0 then overflow occurred and i = 31)
duke@0 1043 return i;
duke@0 1044 }
duke@0 1045
duke@0 1046 //* largest i such that 2^i <= x
duke@0 1047 // A negative value of 'x' will return '63'
duke@0 1048 inline int log2_long(jlong x) {
duke@0 1049 int i = -1;
duke@0 1050 julong p = 1;
duke@0 1051 while (p != 0 && p <= (julong)x) {
duke@0 1052 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@0 1053 i++; p *= 2;
duke@0 1054 }
duke@0 1055 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@605 1056 // (if p = 0 then overflow occurred and i = 63)
duke@0 1057 return i;
duke@0 1058 }
duke@0 1059
duke@0 1060 //* the argument must be exactly a power of 2
duke@0 1061 inline int exact_log2(intptr_t x) {
duke@0 1062 #ifdef ASSERT
duke@0 1063 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@0 1064 #endif
duke@0 1065 return log2_intptr(x);
duke@0 1066 }
duke@0 1067
twisti@568 1068 //* the argument must be exactly a power of 2
twisti@568 1069 inline int exact_log2_long(jlong x) {
twisti@568 1070 #ifdef ASSERT
twisti@568 1071 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@568 1072 #endif
twisti@568 1073 return log2_long(x);
twisti@568 1074 }
twisti@568 1075
duke@0 1076
duke@0 1077 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@0 1078 inline intptr_t round_to(intptr_t x, uintx s) {
duke@0 1079 #ifdef ASSERT
duke@0 1080 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@0 1081 #endif
duke@0 1082 const uintx m = s - 1;
duke@0 1083 return mask_bits(x + m, ~m);
duke@0 1084 }
duke@0 1085
duke@0 1086 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@0 1087 inline intptr_t round_down(intptr_t x, uintx s) {
duke@0 1088 #ifdef ASSERT
duke@0 1089 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@0 1090 #endif
duke@0 1091 const uintx m = s - 1;
duke@0 1092 return mask_bits(x, ~m);
duke@0 1093 }
duke@0 1094
duke@0 1095
duke@0 1096 inline bool is_odd (intx x) { return x & 1; }
duke@0 1097 inline bool is_even(intx x) { return !is_odd(x); }
duke@0 1098
duke@0 1099 // "to" should be greater than "from."
duke@0 1100 inline intx byte_size(void* from, void* to) {
duke@0 1101 return (address)to - (address)from;
duke@0 1102 }
duke@0 1103
duke@0 1104 //----------------------------------------------------------------------------------------------------
duke@0 1105 // Avoid non-portable casts with these routines (DEPRECATED)
duke@0 1106
duke@0 1107 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@0 1108 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@0 1109
duke@0 1110 // Given sequence of four bytes, build into a 32-bit word
duke@0 1111 // following the conventions used in class files.
duke@0 1112 // On the 386, this could be realized with a simple address cast.
duke@0 1113 //
duke@0 1114
duke@0 1115 // This routine takes eight bytes:
duke@0 1116 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@1709 1117 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
twisti@1709 1118 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
twisti@1709 1119 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
twisti@1709 1120 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
twisti@1709 1121 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
twisti@1709 1122 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
twisti@1709 1123 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
twisti@1709 1124 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
duke@0 1125 }
duke@0 1126
duke@0 1127 // This routine takes four bytes:
duke@0 1128 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
twisti@1709 1129 return (( u4(c1) << 24 ) & 0xff000000)
twisti@1709 1130 | (( u4(c2) << 16 ) & 0x00ff0000)
twisti@1709 1131 | (( u4(c3) << 8 ) & 0x0000ff00)
twisti@1709 1132 | (( u4(c4) << 0 ) & 0x000000ff);
duke@0 1133 }
duke@0 1134
duke@0 1135 // And this one works if the four bytes are contiguous in memory:
duke@0 1136 inline u4 build_u4_from( u1* p ) {
duke@0 1137 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@0 1138 }
duke@0 1139
duke@0 1140 // Ditto for two-byte ints:
duke@0 1141 inline u2 build_u2_from( u1 c1, u1 c2 ) {
twisti@1709 1142 return u2((( u2(c1) << 8 ) & 0xff00)
twisti@1709 1143 | (( u2(c2) << 0 ) & 0x00ff));
duke@0 1144 }
duke@0 1145
duke@0 1146 // And this one works if the two bytes are contiguous in memory:
duke@0 1147 inline u2 build_u2_from( u1* p ) {
duke@0 1148 return build_u2_from( p[0], p[1] );
duke@0 1149 }
duke@0 1150
duke@0 1151 // Ditto for floats:
duke@0 1152 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@0 1153 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@0 1154 return *(jfloat*)&u;
duke@0 1155 }
duke@0 1156
duke@0 1157 inline jfloat build_float_from( u1* p ) {
duke@0 1158 u4 u = build_u4_from( p );
duke@0 1159 return *(jfloat*)&u;
duke@0 1160 }
duke@0 1161
duke@0 1162
duke@0 1163 // now (64-bit) longs
duke@0 1164
duke@0 1165 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@1709 1166 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
twisti@1709 1167 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
twisti@1709 1168 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
twisti@1709 1169 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
twisti@1709 1170 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
twisti@1709 1171 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
twisti@1709 1172 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
twisti@1709 1173 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
duke@0 1174 }
duke@0 1175
duke@0 1176 inline jlong build_long_from( u1* p ) {
duke@0 1177 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@0 1178 }
duke@0 1179
duke@0 1180
duke@0 1181 // Doubles, too!
duke@0 1182 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@0 1183 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@0 1184 return *(jdouble*)&u;
duke@0 1185 }
duke@0 1186
duke@0 1187 inline jdouble build_double_from( u1* p ) {
duke@0 1188 jlong u = build_long_from( p );
duke@0 1189 return *(jdouble*)&u;
duke@0 1190 }
duke@0 1191
duke@0 1192
duke@0 1193 // Portable routines to go the other way:
duke@0 1194
duke@0 1195 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@0 1196 c1 = u1(x >> 8);
duke@0 1197 c2 = u1(x);
duke@0 1198 }
duke@0 1199
duke@0 1200 inline void explode_short_to( u2 x, u1* p ) {
duke@0 1201 explode_short_to( x, p[0], p[1]);
duke@0 1202 }
duke@0 1203
duke@0 1204 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@0 1205 c1 = u1(x >> 24);
duke@0 1206 c2 = u1(x >> 16);
duke@0 1207 c3 = u1(x >> 8);
duke@0 1208 c4 = u1(x);
duke@0 1209 }
duke@0 1210
duke@0 1211 inline void explode_int_to( u4 x, u1* p ) {
duke@0 1212 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@0 1213 }
duke@0 1214
duke@0 1215
duke@0 1216 // Pack and extract shorts to/from ints:
duke@0 1217
duke@0 1218 inline int extract_low_short_from_int(jint x) {
duke@0 1219 return x & 0xffff;
duke@0 1220 }
duke@0 1221
duke@0 1222 inline int extract_high_short_from_int(jint x) {
duke@0 1223 return (x >> 16) & 0xffff;
duke@0 1224 }
duke@0 1225
duke@0 1226 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@0 1227 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@0 1228 }
duke@0 1229
duke@0 1230 // Printf-style formatters for fixed- and variable-width types as pointers and
never@2721 1231 // integers. These are derived from the definitions in inttypes.h. If the platform
never@2721 1232 // doesn't provide appropriate definitions, they should be provided in
never@2721 1233 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@0 1234
tonyp@2208 1235 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
tonyp@2037 1236
duke@0 1237 // Format 32-bit quantities.
never@2721 1238 #define INT32_FORMAT "%" PRId32
never@2721 1239 #define UINT32_FORMAT "%" PRIu32
never@2721 1240 #define INT32_FORMAT_W(width) "%" #width PRId32
never@2721 1241 #define UINT32_FORMAT_W(width) "%" #width PRIu32
duke@0 1242
never@2721 1243 #define PTR32_FORMAT "0x%08" PRIx32
duke@0 1244
duke@0 1245 // Format 64-bit quantities.
never@2721 1246 #define INT64_FORMAT "%" PRId64
never@2721 1247 #define UINT64_FORMAT "%" PRIu64
never@2721 1248 #define INT64_FORMAT_W(width) "%" #width PRId64
never@2721 1249 #define UINT64_FORMAT_W(width) "%" #width PRIu64
duke@0 1250
never@2721 1251 #define PTR64_FORMAT "0x%016" PRIx64
duke@0 1252
never@2721 1253 // Format pointers which change size between 32- and 64-bit.
duke@0 1254 #ifdef _LP64
never@2721 1255 #define INTPTR_FORMAT "0x%016" PRIxPTR
never@2721 1256 #define PTR_FORMAT "0x%016" PRIxPTR
duke@0 1257 #else // !_LP64
never@2721 1258 #define INTPTR_FORMAT "0x%08" PRIxPTR
never@2721 1259 #define PTR_FORMAT "0x%08" PRIxPTR
duke@0 1260 #endif // _LP64
duke@0 1261
never@2721 1262 #define SSIZE_FORMAT "%" PRIdPTR
never@2721 1263 #define SIZE_FORMAT "%" PRIuPTR
never@2721 1264 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
never@2721 1265 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR
never@2721 1266
never@2721 1267 #define INTX_FORMAT "%" PRIdPTR
never@2721 1268 #define UINTX_FORMAT "%" PRIuPTR
never@2721 1269 #define INTX_FORMAT_W(width) "%" #width PRIdPTR
never@2721 1270 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
never@2721 1271
duke@0 1272
duke@0 1273 // Enable zap-a-lot if in debug version.
duke@0 1274
duke@0 1275 # ifdef ASSERT
duke@0 1276 # ifdef COMPILER2
duke@0 1277 # define ENABLE_ZAP_DEAD_LOCALS
duke@0 1278 #endif /* COMPILER2 */
duke@0 1279 # endif /* ASSERT */
duke@0 1280
duke@0 1281 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
stefank@1879 1282
coleenp@3860 1283 // Dereference vptr
coleenp@3860 1284 // All C++ compilers that we know of have the vtbl pointer in the first
coleenp@3860 1285 // word. If there are exceptions, this function needs to be made compiler
coleenp@3860 1286 // specific.
coleenp@3860 1287 static inline void* dereference_vptr(void* addr) {
coleenp@3860 1288 return *(void**)addr;
coleenp@3860 1289 }
coleenp@3860 1290
stefank@1879 1291 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP