annotate src/share/vm/opto/node.hpp @ 5562:59e8ad757e19

8026844: Various Math functions needs intrinsification Reviewed-by: kvn, twisti
author rbackman
date Fri, 18 Oct 2013 10:41:56 +0200
parents c9ccd7b85f20
children
rev   line source
duke@0 1 /*
coleenp@5179 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
trims@1472 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1472 20 * or visit www.oracle.com if you need additional information or have any
trims@1472 21 * questions.
duke@0 22 *
duke@0 23 */
duke@0 24
stefank@1879 25 #ifndef SHARE_VM_OPTO_NODE_HPP
stefank@1879 26 #define SHARE_VM_OPTO_NODE_HPP
stefank@1879 27
stefank@1879 28 #include "libadt/port.hpp"
stefank@1879 29 #include "libadt/vectset.hpp"
stefank@1879 30 #include "opto/compile.hpp"
stefank@1879 31 #include "opto/type.hpp"
stefank@1879 32
duke@0 33 // Portions of code courtesy of Clifford Click
duke@0 34
duke@0 35 // Optimization - Graph Style
duke@0 36
duke@0 37
duke@0 38 class AbstractLockNode;
duke@0 39 class AddNode;
duke@0 40 class AddPNode;
duke@0 41 class AliasInfo;
duke@0 42 class AllocateArrayNode;
duke@0 43 class AllocateNode;
duke@0 44 class Block;
duke@0 45 class BoolNode;
duke@0 46 class BoxLockNode;
duke@0 47 class CMoveNode;
duke@0 48 class CallDynamicJavaNode;
duke@0 49 class CallJavaNode;
duke@0 50 class CallLeafNode;
duke@0 51 class CallNode;
duke@0 52 class CallRuntimeNode;
duke@0 53 class CallStaticJavaNode;
duke@0 54 class CatchNode;
duke@0 55 class CatchProjNode;
duke@0 56 class CheckCastPPNode;
kvn@1100 57 class ClearArrayNode;
duke@0 58 class CmpNode;
duke@0 59 class CodeBuffer;
duke@0 60 class ConstraintCastNode;
duke@0 61 class ConNode;
duke@0 62 class CountedLoopNode;
duke@0 63 class CountedLoopEndNode;
roland@3724 64 class DecodeNarrowPtrNode;
kvn@168 65 class DecodeNNode;
roland@3724 66 class DecodeNKlassNode;
roland@3724 67 class EncodeNarrowPtrNode;
kvn@168 68 class EncodePNode;
roland@3724 69 class EncodePKlassNode;
duke@0 70 class FastLockNode;
duke@0 71 class FastUnlockNode;
rbackman@5356 72 class FlagsProjNode;
duke@0 73 class IfNode;
kvn@2605 74 class IfFalseNode;
kvn@2605 75 class IfTrueNode;
duke@0 76 class InitializeNode;
duke@0 77 class JVMState;
duke@0 78 class JumpNode;
duke@0 79 class JumpProjNode;
duke@0 80 class LoadNode;
duke@0 81 class LoadStoreNode;
duke@0 82 class LockNode;
duke@0 83 class LoopNode;
kvn@2616 84 class MachBranchNode;
duke@0 85 class MachCallDynamicJavaNode;
duke@0 86 class MachCallJavaNode;
duke@0 87 class MachCallLeafNode;
duke@0 88 class MachCallNode;
duke@0 89 class MachCallRuntimeNode;
duke@0 90 class MachCallStaticJavaNode;
twisti@1915 91 class MachConstantBaseNode;
twisti@1915 92 class MachConstantNode;
kvn@2605 93 class MachGotoNode;
duke@0 94 class MachIfNode;
duke@0 95 class MachNode;
duke@0 96 class MachNullCheckNode;
kvn@2605 97 class MachProjNode;
duke@0 98 class MachReturnNode;
duke@0 99 class MachSafePointNode;
duke@0 100 class MachSpillCopyNode;
duke@0 101 class MachTempNode;
duke@0 102 class Matcher;
rbackman@5562 103 class MathExactNode;
duke@0 104 class MemBarNode;
roland@2957 105 class MemBarStoreStoreNode;
duke@0 106 class MemNode;
duke@0 107 class MergeMemNode;
kvn@3447 108 class MulNode;
duke@0 109 class MultiNode;
duke@0 110 class MultiBranchNode;
duke@0 111 class NeverBranchNode;
duke@0 112 class Node;
duke@0 113 class Node_Array;
duke@0 114 class Node_List;
duke@0 115 class Node_Stack;
duke@0 116 class NullCheckNode;
duke@0 117 class OopMap;
kvn@33 118 class ParmNode;
duke@0 119 class PCTableNode;
duke@0 120 class PhaseCCP;
duke@0 121 class PhaseGVN;
duke@0 122 class PhaseIterGVN;
duke@0 123 class PhaseRegAlloc;
duke@0 124 class PhaseTransform;
duke@0 125 class PhaseValues;
duke@0 126 class PhiNode;
duke@0 127 class Pipeline;
duke@0 128 class ProjNode;
duke@0 129 class RegMask;
duke@0 130 class RegionNode;
duke@0 131 class RootNode;
duke@0 132 class SafePointNode;
kvn@63 133 class SafePointScalarObjectNode;
duke@0 134 class StartNode;
duke@0 135 class State;
duke@0 136 class StoreNode;
duke@0 137 class SubNode;
duke@0 138 class Type;
duke@0 139 class TypeNode;
duke@0 140 class UnlockNode;
kvn@2605 141 class VectorNode;
kvn@3447 142 class LoadVectorNode;
kvn@3447 143 class StoreVectorNode;
duke@0 144 class VectorSet;
duke@0 145 typedef void (*NFunc)(Node&,void*);
duke@0 146 extern "C" {
duke@0 147 typedef int (*C_sort_func_t)(const void *, const void *);
duke@0 148 }
duke@0 149
duke@0 150 // The type of all node counts and indexes.
duke@0 151 // It must hold at least 16 bits, but must also be fast to load and store.
duke@0 152 // This type, if less than 32 bits, could limit the number of possible nodes.
duke@0 153 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
duke@0 154 typedef unsigned int node_idx_t;
duke@0 155
duke@0 156
duke@0 157 #ifndef OPTO_DU_ITERATOR_ASSERT
duke@0 158 #ifdef ASSERT
duke@0 159 #define OPTO_DU_ITERATOR_ASSERT 1
duke@0 160 #else
duke@0 161 #define OPTO_DU_ITERATOR_ASSERT 0
duke@0 162 #endif
duke@0 163 #endif //OPTO_DU_ITERATOR_ASSERT
duke@0 164
duke@0 165 #if OPTO_DU_ITERATOR_ASSERT
duke@0 166 class DUIterator;
duke@0 167 class DUIterator_Fast;
duke@0 168 class DUIterator_Last;
duke@0 169 #else
duke@0 170 typedef uint DUIterator;
duke@0 171 typedef Node** DUIterator_Fast;
duke@0 172 typedef Node** DUIterator_Last;
duke@0 173 #endif
duke@0 174
duke@0 175 // Node Sentinel
duke@0 176 #define NodeSentinel (Node*)-1
duke@0 177
duke@0 178 // Unknown count frequency
duke@0 179 #define COUNT_UNKNOWN (-1.0f)
duke@0 180
duke@0 181 //------------------------------Node-------------------------------------------
duke@0 182 // Nodes define actions in the program. They create values, which have types.
duke@0 183 // They are both vertices in a directed graph and program primitives. Nodes
duke@0 184 // are labeled; the label is the "opcode", the primitive function in the lambda
duke@0 185 // calculus sense that gives meaning to the Node. Node inputs are ordered (so
duke@0 186 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to
duke@0 187 // the Node's function. These inputs also define a Type equation for the Node.
duke@0 188 // Solving these Type equations amounts to doing dataflow analysis.
duke@0 189 // Control and data are uniformly represented in the graph. Finally, Nodes
duke@0 190 // have a unique dense integer index which is used to index into side arrays
duke@0 191 // whenever I have phase-specific information.
duke@0 192
duke@0 193 class Node {
never@2703 194 friend class VMStructs;
never@2703 195
duke@0 196 // Lots of restrictions on cloning Nodes
duke@0 197 Node(const Node&); // not defined; linker error to use these
duke@0 198 Node &operator=(const Node &rhs);
duke@0 199
duke@0 200 public:
duke@0 201 friend class Compile;
duke@0 202 #if OPTO_DU_ITERATOR_ASSERT
duke@0 203 friend class DUIterator_Common;
duke@0 204 friend class DUIterator;
duke@0 205 friend class DUIterator_Fast;
duke@0 206 friend class DUIterator_Last;
duke@0 207 #endif
duke@0 208
duke@0 209 // Because Nodes come and go, I define an Arena of Node structures to pull
duke@0 210 // from. This should allow fast access to node creation & deletion. This
duke@0 211 // field is a local cache of a value defined in some "program fragment" for
duke@0 212 // which these Nodes are just a part of.
duke@0 213
duke@0 214 // New Operator that takes a Compile pointer, this will eventually
duke@0 215 // be the "new" New operator.
coleenp@5179 216 inline void* operator new( size_t x, Compile* C) throw() {
duke@0 217 Node* n = (Node*)C->node_arena()->Amalloc_D(x);
duke@0 218 #ifdef ASSERT
duke@0 219 n->_in = (Node**)n; // magic cookie for assertion check
duke@0 220 #endif
duke@0 221 n->_out = (Node**)C;
duke@0 222 return (void*)n;
duke@0 223 }
duke@0 224
duke@0 225 // Delete is a NOP
duke@0 226 void operator delete( void *ptr ) {}
duke@0 227 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
duke@0 228 void destruct();
duke@0 229
duke@0 230 // Create a new Node. Required is the number is of inputs required for
duke@0 231 // semantic correctness.
duke@0 232 Node( uint required );
duke@0 233
duke@0 234 // Create a new Node with given input edges.
duke@0 235 // This version requires use of the "edge-count" new.
duke@0 236 // E.g. new (C,3) FooNode( C, NULL, left, right );
duke@0 237 Node( Node *n0 );
duke@0 238 Node( Node *n0, Node *n1 );
duke@0 239 Node( Node *n0, Node *n1, Node *n2 );
duke@0 240 Node( Node *n0, Node *n1, Node *n2, Node *n3 );
duke@0 241 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
duke@0 242 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
duke@0 243 Node( Node *n0, Node *n1, Node *n2, Node *n3,
duke@0 244 Node *n4, Node *n5, Node *n6 );
duke@0 245
duke@0 246 // Clone an inherited Node given only the base Node type.
duke@0 247 Node* clone() const;
duke@0 248
duke@0 249 // Clone a Node, immediately supplying one or two new edges.
duke@0 250 // The first and second arguments, if non-null, replace in(1) and in(2),
duke@0 251 // respectively.
duke@0 252 Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
duke@0 253 Node* nn = clone();
duke@0 254 if (in1 != NULL) nn->set_req(1, in1);
duke@0 255 if (in2 != NULL) nn->set_req(2, in2);
duke@0 256 return nn;
duke@0 257 }
duke@0 258
duke@0 259 private:
duke@0 260 // Shared setup for the above constructors.
duke@0 261 // Handles all interactions with Compile::current.
duke@0 262 // Puts initial values in all Node fields except _idx.
duke@0 263 // Returns the initial value for _idx, which cannot
duke@0 264 // be initialized by assignment.
duke@0 265 inline int Init(int req, Compile* C);
duke@0 266
duke@0 267 //----------------- input edge handling
duke@0 268 protected:
duke@0 269 friend class PhaseCFG; // Access to address of _in array elements
duke@0 270 Node **_in; // Array of use-def references to Nodes
duke@0 271 Node **_out; // Array of def-use references to Nodes
duke@0 272
twisti@605 273 // Input edges are split into two categories. Required edges are required
duke@0 274 // for semantic correctness; order is important and NULLs are allowed.
duke@0 275 // Precedence edges are used to help determine execution order and are
duke@0 276 // added, e.g., for scheduling purposes. They are unordered and not
duke@0 277 // duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1
duke@0 278 // are required, from _cnt to _max-1 are precedence edges.
duke@0 279 node_idx_t _cnt; // Total number of required Node inputs.
duke@0 280
duke@0 281 node_idx_t _max; // Actual length of input array.
duke@0 282
duke@0 283 // Output edges are an unordered list of def-use edges which exactly
duke@0 284 // correspond to required input edges which point from other nodes
duke@0 285 // to this one. Thus the count of the output edges is the number of
duke@0 286 // users of this node.
duke@0 287 node_idx_t _outcnt; // Total number of Node outputs.
duke@0 288
duke@0 289 node_idx_t _outmax; // Actual length of output array.
duke@0 290
duke@0 291 // Grow the actual input array to the next larger power-of-2 bigger than len.
duke@0 292 void grow( uint len );
duke@0 293 // Grow the output array to the next larger power-of-2 bigger than len.
duke@0 294 void out_grow( uint len );
duke@0 295
duke@0 296 public:
duke@0 297 // Each Node is assigned a unique small/dense number. This number is used
duke@0 298 // to index into auxiliary arrays of data and bitvectors.
duke@0 299 // It is declared const to defend against inadvertant assignment,
duke@0 300 // since it is used by clients as a naked field.
duke@0 301 const node_idx_t _idx;
duke@0 302
duke@0 303 // Get the (read-only) number of input edges
duke@0 304 uint req() const { return _cnt; }
duke@0 305 uint len() const { return _max; }
duke@0 306 // Get the (read-only) number of output edges
duke@0 307 uint outcnt() const { return _outcnt; }
duke@0 308
duke@0 309 #if OPTO_DU_ITERATOR_ASSERT
duke@0 310 // Iterate over the out-edges of this node. Deletions are illegal.
duke@0 311 inline DUIterator outs() const;
duke@0 312 // Use this when the out array might have changed to suppress asserts.
duke@0 313 inline DUIterator& refresh_out_pos(DUIterator& i) const;
duke@0 314 // Does the node have an out at this position? (Used for iteration.)
duke@0 315 inline bool has_out(DUIterator& i) const;
duke@0 316 inline Node* out(DUIterator& i) const;
duke@0 317 // Iterate over the out-edges of this node. All changes are illegal.
duke@0 318 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
duke@0 319 inline Node* fast_out(DUIterator_Fast& i) const;
duke@0 320 // Iterate over the out-edges of this node, deleting one at a time.
duke@0 321 inline DUIterator_Last last_outs(DUIterator_Last& min) const;
duke@0 322 inline Node* last_out(DUIterator_Last& i) const;
duke@0 323 // The inline bodies of all these methods are after the iterator definitions.
duke@0 324 #else
duke@0 325 // Iterate over the out-edges of this node. Deletions are illegal.
duke@0 326 // This iteration uses integral indexes, to decouple from array reallocations.
duke@0 327 DUIterator outs() const { return 0; }
duke@0 328 // Use this when the out array might have changed to suppress asserts.
duke@0 329 DUIterator refresh_out_pos(DUIterator i) const { return i; }
duke@0 330
duke@0 331 // Reference to the i'th output Node. Error if out of bounds.
duke@0 332 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
duke@0 333 // Does the node have an out at this position? (Used for iteration.)
duke@0 334 bool has_out(DUIterator i) const { return i < _outcnt; }
duke@0 335
duke@0 336 // Iterate over the out-edges of this node. All changes are illegal.
duke@0 337 // This iteration uses a pointer internal to the out array.
duke@0 338 DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
duke@0 339 Node** out = _out;
duke@0 340 // Assign a limit pointer to the reference argument:
duke@0 341 max = out + (ptrdiff_t)_outcnt;
duke@0 342 // Return the base pointer:
duke@0 343 return out;
duke@0 344 }
duke@0 345 Node* fast_out(DUIterator_Fast i) const { return *i; }
duke@0 346 // Iterate over the out-edges of this node, deleting one at a time.
duke@0 347 // This iteration uses a pointer internal to the out array.
duke@0 348 DUIterator_Last last_outs(DUIterator_Last& min) const {
duke@0 349 Node** out = _out;
duke@0 350 // Assign a limit pointer to the reference argument:
duke@0 351 min = out;
duke@0 352 // Return the pointer to the start of the iteration:
duke@0 353 return out + (ptrdiff_t)_outcnt - 1;
duke@0 354 }
duke@0 355 Node* last_out(DUIterator_Last i) const { return *i; }
duke@0 356 #endif
duke@0 357
duke@0 358 // Reference to the i'th input Node. Error if out of bounds.
kvn@3536 359 Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
duke@0 360 // Reference to the i'th output Node. Error if out of bounds.
duke@0 361 // Use this accessor sparingly. We are going trying to use iterators instead.
duke@0 362 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
duke@0 363 // Return the unique out edge.
duke@0 364 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
duke@0 365 // Delete out edge at position 'i' by moving last out edge to position 'i'
duke@0 366 void raw_del_out(uint i) {
duke@0 367 assert(i < _outcnt,"oob");
duke@0 368 assert(_outcnt > 0,"oob");
duke@0 369 #if OPTO_DU_ITERATOR_ASSERT
duke@0 370 // Record that a change happened here.
duke@0 371 debug_only(_last_del = _out[i]; ++_del_tick);
duke@0 372 #endif
duke@0 373 _out[i] = _out[--_outcnt];
duke@0 374 // Smash the old edge so it can't be used accidentally.
duke@0 375 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
duke@0 376 }
duke@0 377
duke@0 378 #ifdef ASSERT
duke@0 379 bool is_dead() const;
duke@0 380 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
duke@0 381 #endif
roland@4154 382 // Check whether node has become unreachable
roland@4154 383 bool is_unreachable(PhaseIterGVN &igvn) const;
duke@0 384
duke@0 385 // Set a required input edge, also updates corresponding output edge
duke@0 386 void add_req( Node *n ); // Append a NEW required input
duke@0 387 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
duke@0 388 void del_req( uint idx ); // Delete required edge & compact
kvn@5191 389 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
duke@0 390 void ins_req( uint i, Node *n ); // Insert a NEW required input
duke@0 391 void set_req( uint i, Node *n ) {
duke@0 392 assert( is_not_dead(n), "can not use dead node");
kvn@3536 393 assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
duke@0 394 assert( !VerifyHashTableKeys || _hash_lock == 0,
duke@0 395 "remove node from hash table before modifying it");
duke@0 396 Node** p = &_in[i]; // cache this._in, across the del_out call
duke@0 397 if (*p != NULL) (*p)->del_out((Node *)this);
duke@0 398 (*p) = n;
duke@0 399 if (n != NULL) n->add_out((Node *)this);
duke@0 400 }
duke@0 401 // Light version of set_req() to init inputs after node creation.
duke@0 402 void init_req( uint i, Node *n ) {
duke@0 403 assert( i == 0 && this == n ||
duke@0 404 is_not_dead(n), "can not use dead node");
duke@0 405 assert( i < _cnt, "oob");
duke@0 406 assert( !VerifyHashTableKeys || _hash_lock == 0,
duke@0 407 "remove node from hash table before modifying it");
duke@0 408 assert( _in[i] == NULL, "sanity");
duke@0 409 _in[i] = n;
duke@0 410 if (n != NULL) n->add_out((Node *)this);
duke@0 411 }
duke@0 412 // Find first occurrence of n among my edges:
duke@0 413 int find_edge(Node* n);
duke@0 414 int replace_edge(Node* old, Node* neww);
kvn@4675 415 int replace_edges_in_range(Node* old, Node* neww, int start, int end);
duke@0 416 // NULL out all inputs to eliminate incoming Def-Use edges.
duke@0 417 // Return the number of edges between 'n' and 'this'
bharadwaj@3880 418 int disconnect_inputs(Node *n, Compile *c);
duke@0 419
duke@0 420 // Quickly, return true if and only if I am Compile::current()->top().
duke@0 421 bool is_top() const {
duke@0 422 assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
duke@0 423 return (_out == NULL);
duke@0 424 }
duke@0 425 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.)
duke@0 426 void setup_is_top();
duke@0 427
duke@0 428 // Strip away casting. (It is depth-limited.)
duke@0 429 Node* uncast() const;
kvn@2972 430 // Return whether two Nodes are equivalent, after stripping casting.
kvn@2972 431 bool eqv_uncast(const Node* n) const {
kvn@2972 432 return (this->uncast() == n->uncast());
kvn@2972 433 }
duke@0 434
duke@0 435 private:
duke@0 436 static Node* uncast_helper(const Node* n);
duke@0 437
duke@0 438 // Add an output edge to the end of the list
duke@0 439 void add_out( Node *n ) {
duke@0 440 if (is_top()) return;
duke@0 441 if( _outcnt == _outmax ) out_grow(_outcnt);
duke@0 442 _out[_outcnt++] = n;
duke@0 443 }
duke@0 444 // Delete an output edge
duke@0 445 void del_out( Node *n ) {
duke@0 446 if (is_top()) return;
duke@0 447 Node** outp = &_out[_outcnt];
duke@0 448 // Find and remove n
duke@0 449 do {
duke@0 450 assert(outp > _out, "Missing Def-Use edge");
duke@0 451 } while (*--outp != n);
duke@0 452 *outp = _out[--_outcnt];
duke@0 453 // Smash the old edge so it can't be used accidentally.
duke@0 454 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
duke@0 455 // Record that a change happened here.
duke@0 456 #if OPTO_DU_ITERATOR_ASSERT
duke@0 457 debug_only(_last_del = n; ++_del_tick);
duke@0 458 #endif
duke@0 459 }
duke@0 460
duke@0 461 public:
duke@0 462 // Globally replace this node by a given new node, updating all uses.
duke@0 463 void replace_by(Node* new_node);
kvn@168 464 // Globally replace this node by a given new node, updating all uses
kvn@168 465 // and cutting input edges of old node.
bharadwaj@3880 466 void subsume_by(Node* new_node, Compile* c) {
kvn@168 467 replace_by(new_node);
bharadwaj@3880 468 disconnect_inputs(NULL, c);
kvn@168 469 }
duke@0 470 void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
duke@0 471 // Find the one non-null required input. RegionNode only
duke@0 472 Node *nonnull_req() const;
duke@0 473 // Add or remove precedence edges
duke@0 474 void add_prec( Node *n );
duke@0 475 void rm_prec( uint i );
duke@0 476 void set_prec( uint i, Node *n ) {
duke@0 477 assert( is_not_dead(n), "can not use dead node");
duke@0 478 assert( i >= _cnt, "not a precedence edge");
duke@0 479 if (_in[i] != NULL) _in[i]->del_out((Node *)this);
duke@0 480 _in[i] = n;
duke@0 481 if (n != NULL) n->add_out((Node *)this);
duke@0 482 }
duke@0 483 // Set this node's index, used by cisc_version to replace current node
duke@0 484 void set_idx(uint new_idx) {
duke@0 485 const node_idx_t* ref = &_idx;
duke@0 486 *(node_idx_t*)ref = new_idx;
duke@0 487 }
duke@0 488 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.)
duke@0 489 void swap_edges(uint i1, uint i2) {
duke@0 490 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
duke@0 491 // Def-Use info is unchanged
duke@0 492 Node* n1 = in(i1);
duke@0 493 Node* n2 = in(i2);
duke@0 494 _in[i1] = n2;
duke@0 495 _in[i2] = n1;
duke@0 496 // If this node is in the hash table, make sure it doesn't need a rehash.
duke@0 497 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
duke@0 498 }
duke@0 499
duke@0 500 // Iterators over input Nodes for a Node X are written as:
duke@0 501 // for( i = 0; i < X.req(); i++ ) ... X[i] ...
duke@0 502 // NOTE: Required edges can contain embedded NULL pointers.
duke@0 503
duke@0 504 //----------------- Other Node Properties
duke@0 505
duke@0 506 // Generate class id for some ideal nodes to avoid virtual query
duke@0 507 // methods is_<Node>().
duke@0 508 // Class id is the set of bits corresponded to the node class and all its
duke@0 509 // super classes so that queries for super classes are also valid.
duke@0 510 // Subclasses of the same super class have different assigned bit
duke@0 511 // (the third parameter in the macro DEFINE_CLASS_ID).
duke@0 512 // Classes with deeper hierarchy are declared first.
duke@0 513 // Classes with the same hierarchy depth are sorted by usage frequency.
duke@0 514 //
duke@0 515 // The query method masks the bits to cut off bits of subclasses
duke@0 516 // and then compare the result with the class id
duke@0 517 // (see the macro DEFINE_CLASS_QUERY below).
duke@0 518 //
duke@0 519 // Class_MachCall=30, ClassMask_MachCall=31
duke@0 520 // 12 8 4 0
duke@0 521 // 0 0 0 0 0 0 0 0 1 1 1 1 0
duke@0 522 // | | | |
duke@0 523 // | | | Bit_Mach=2
duke@0 524 // | | Bit_MachReturn=4
duke@0 525 // | Bit_MachSafePoint=8
duke@0 526 // Bit_MachCall=16
duke@0 527 //
duke@0 528 // Class_CountedLoop=56, ClassMask_CountedLoop=63
duke@0 529 // 12 8 4 0
duke@0 530 // 0 0 0 0 0 0 0 1 1 1 0 0 0
duke@0 531 // | | |
duke@0 532 // | | Bit_Region=8
duke@0 533 // | Bit_Loop=16
duke@0 534 // Bit_CountedLoop=32
duke@0 535
duke@0 536 #define DEFINE_CLASS_ID(cl, supcl, subn) \
duke@0 537 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
duke@0 538 Class_##cl = Class_##supcl + Bit_##cl , \
duke@0 539 ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
duke@0 540
duke@0 541 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
duke@0 542 // so that it's values fits into 16 bits.
duke@0 543 enum NodeClasses {
duke@0 544 Bit_Node = 0x0000,
duke@0 545 Class_Node = 0x0000,
duke@0 546 ClassMask_Node = 0xFFFF,
duke@0 547
duke@0 548 DEFINE_CLASS_ID(Multi, Node, 0)
duke@0 549 DEFINE_CLASS_ID(SafePoint, Multi, 0)
duke@0 550 DEFINE_CLASS_ID(Call, SafePoint, 0)
duke@0 551 DEFINE_CLASS_ID(CallJava, Call, 0)
duke@0 552 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0)
duke@0 553 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1)
duke@0 554 DEFINE_CLASS_ID(CallRuntime, Call, 1)
duke@0 555 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0)
duke@0 556 DEFINE_CLASS_ID(Allocate, Call, 2)
duke@0 557 DEFINE_CLASS_ID(AllocateArray, Allocate, 0)
duke@0 558 DEFINE_CLASS_ID(AbstractLock, Call, 3)
duke@0 559 DEFINE_CLASS_ID(Lock, AbstractLock, 0)
duke@0 560 DEFINE_CLASS_ID(Unlock, AbstractLock, 1)
duke@0 561 DEFINE_CLASS_ID(MultiBranch, Multi, 1)
duke@0 562 DEFINE_CLASS_ID(PCTable, MultiBranch, 0)
duke@0 563 DEFINE_CLASS_ID(Catch, PCTable, 0)
duke@0 564 DEFINE_CLASS_ID(Jump, PCTable, 1)
duke@0 565 DEFINE_CLASS_ID(If, MultiBranch, 1)
duke@0 566 DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
duke@0 567 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
duke@0 568 DEFINE_CLASS_ID(Start, Multi, 2)
duke@0 569 DEFINE_CLASS_ID(MemBar, Multi, 3)
roland@2957 570 DEFINE_CLASS_ID(Initialize, MemBar, 0)
roland@2957 571 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
rbackman@5562 572 DEFINE_CLASS_ID(MathExact, Multi, 4)
duke@0 573
duke@0 574 DEFINE_CLASS_ID(Mach, Node, 1)
duke@0 575 DEFINE_CLASS_ID(MachReturn, Mach, 0)
duke@0 576 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
duke@0 577 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
duke@0 578 DEFINE_CLASS_ID(MachCallJava, MachCall, 0)
duke@0 579 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0)
duke@0 580 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1)
duke@0 581 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1)
duke@0 582 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0)
kvn@2616 583 DEFINE_CLASS_ID(MachBranch, Mach, 1)
kvn@2616 584 DEFINE_CLASS_ID(MachIf, MachBranch, 0)
kvn@2616 585 DEFINE_CLASS_ID(MachGoto, MachBranch, 1)
kvn@2616 586 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2)
kvn@2616 587 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2)
kvn@2616 588 DEFINE_CLASS_ID(MachTemp, Mach, 3)
kvn@2616 589 DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
kvn@2616 590 DEFINE_CLASS_ID(MachConstant, Mach, 5)
duke@0 591
kvn@2605 592 DEFINE_CLASS_ID(Type, Node, 2)
duke@0 593 DEFINE_CLASS_ID(Phi, Type, 0)
duke@0 594 DEFINE_CLASS_ID(ConstraintCast, Type, 1)
duke@0 595 DEFINE_CLASS_ID(CheckCastPP, Type, 2)
duke@0 596 DEFINE_CLASS_ID(CMove, Type, 3)
kvn@63 597 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
roland@3724 598 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
roland@3724 599 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
roland@3724 600 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
roland@3724 601 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
roland@3724 602 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
roland@3724 603 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
duke@0 604
kvn@2605 605 DEFINE_CLASS_ID(Proj, Node, 3)
kvn@2605 606 DEFINE_CLASS_ID(CatchProj, Proj, 0)
kvn@2605 607 DEFINE_CLASS_ID(JumpProj, Proj, 1)
kvn@2605 608 DEFINE_CLASS_ID(IfTrue, Proj, 2)
kvn@2605 609 DEFINE_CLASS_ID(IfFalse, Proj, 3)
kvn@2605 610 DEFINE_CLASS_ID(Parm, Proj, 4)
kvn@2605 611 DEFINE_CLASS_ID(MachProj, Proj, 5)
kvn@2605 612
kvn@2605 613 DEFINE_CLASS_ID(Mem, Node, 4)
duke@0 614 DEFINE_CLASS_ID(Load, Mem, 0)
kvn@3447 615 DEFINE_CLASS_ID(LoadVector, Load, 0)
duke@0 616 DEFINE_CLASS_ID(Store, Mem, 1)
kvn@3447 617 DEFINE_CLASS_ID(StoreVector, Store, 0)
duke@0 618 DEFINE_CLASS_ID(LoadStore, Mem, 2)
duke@0 619
kvn@2605 620 DEFINE_CLASS_ID(Region, Node, 5)
kvn@2605 621 DEFINE_CLASS_ID(Loop, Region, 0)
kvn@2605 622 DEFINE_CLASS_ID(Root, Loop, 0)
kvn@2605 623 DEFINE_CLASS_ID(CountedLoop, Loop, 1)
kvn@2605 624
kvn@2605 625 DEFINE_CLASS_ID(Sub, Node, 6)
kvn@2605 626 DEFINE_CLASS_ID(Cmp, Sub, 0)
kvn@2605 627 DEFINE_CLASS_ID(FastLock, Cmp, 0)
kvn@2605 628 DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
rbackman@5356 629 DEFINE_CLASS_ID(FlagsProj, Cmp, 2)
kvn@2605 630
duke@0 631 DEFINE_CLASS_ID(MergeMem, Node, 7)
duke@0 632 DEFINE_CLASS_ID(Bool, Node, 8)
duke@0 633 DEFINE_CLASS_ID(AddP, Node, 9)
duke@0 634 DEFINE_CLASS_ID(BoxLock, Node, 10)
duke@0 635 DEFINE_CLASS_ID(Add, Node, 11)
kvn@3447 636 DEFINE_CLASS_ID(Mul, Node, 12)
kvn@3447 637 DEFINE_CLASS_ID(Vector, Node, 13)
kvn@3447 638 DEFINE_CLASS_ID(ClearArray, Node, 14)
duke@0 639
kvn@1100 640 _max_classes = ClassMask_ClearArray
duke@0 641 };
duke@0 642 #undef DEFINE_CLASS_ID
duke@0 643
duke@0 644 // Flags are sorted by usage frequency.
duke@0 645 enum NodeFlags {
duke@0 646 Flag_is_Copy = 0x01, // should be first bit to avoid shift
kvn@2605 647 Flag_rematerialize = Flag_is_Copy << 1,
duke@0 648 Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
duke@0 649 Flag_is_macro = Flag_needs_anti_dependence_check << 1,
duke@0 650 Flag_is_Con = Flag_is_macro << 1,
duke@0 651 Flag_is_cisc_alternate = Flag_is_Con << 1,
kvn@2616 652 Flag_is_dead_loop_safe = Flag_is_cisc_alternate << 1,
duke@0 653 Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
kvn@2614 654 Flag_avoid_back_to_back = Flag_may_be_short_branch << 1,
roland@2881 655 Flag_has_call = Flag_avoid_back_to_back << 1,
roland@4154 656 Flag_is_expensive = Flag_has_call << 1,
roland@4154 657 _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
duke@0 658 };
duke@0 659
duke@0 660 private:
duke@0 661 jushort _class_id;
duke@0 662 jushort _flags;
duke@0 663
duke@0 664 protected:
duke@0 665 // These methods should be called from constructors only.
duke@0 666 void init_class_id(jushort c) {
duke@0 667 assert(c <= _max_classes, "invalid node class");
duke@0 668 _class_id = c; // cast out const
duke@0 669 }
duke@0 670 void init_flags(jushort fl) {
duke@0 671 assert(fl <= _max_flags, "invalid node flag");
duke@0 672 _flags |= fl;
duke@0 673 }
duke@0 674 void clear_flag(jushort fl) {
duke@0 675 assert(fl <= _max_flags, "invalid node flag");
duke@0 676 _flags &= ~fl;
duke@0 677 }
duke@0 678
duke@0 679 public:
duke@0 680 const jushort class_id() const { return _class_id; }
duke@0 681
duke@0 682 const jushort flags() const { return _flags; }
duke@0 683
duke@0 684 // Return a dense integer opcode number
duke@0 685 virtual int Opcode() const;
duke@0 686
duke@0 687 // Virtual inherited Node size
duke@0 688 virtual uint size_of() const;
duke@0 689
duke@0 690 // Other interesting Node properties
never@1080 691 #define DEFINE_CLASS_QUERY(type) \
never@1080 692 bool is_##type() const { \
duke@0 693 return ((_class_id & ClassMask_##type) == Class_##type); \
never@1080 694 } \
never@1080 695 type##Node *as_##type() const { \
never@1080 696 assert(is_##type(), "invalid node class"); \
never@1080 697 return (type##Node*)this; \
never@1080 698 } \
never@1080 699 type##Node* isa_##type() const { \
never@1080 700 return (is_##type()) ? as_##type() : NULL; \
duke@0 701 }
duke@0 702
duke@0 703 DEFINE_CLASS_QUERY(AbstractLock)
duke@0 704 DEFINE_CLASS_QUERY(Add)
duke@0 705 DEFINE_CLASS_QUERY(AddP)
duke@0 706 DEFINE_CLASS_QUERY(Allocate)
duke@0 707 DEFINE_CLASS_QUERY(AllocateArray)
duke@0 708 DEFINE_CLASS_QUERY(Bool)
duke@0 709 DEFINE_CLASS_QUERY(BoxLock)
kvn@2605 710 DEFINE_CLASS_QUERY(Call)
duke@0 711 DEFINE_CLASS_QUERY(CallDynamicJava)
duke@0 712 DEFINE_CLASS_QUERY(CallJava)
duke@0 713 DEFINE_CLASS_QUERY(CallLeaf)
duke@0 714 DEFINE_CLASS_QUERY(CallRuntime)
duke@0 715 DEFINE_CLASS_QUERY(CallStaticJava)
duke@0 716 DEFINE_CLASS_QUERY(Catch)
duke@0 717 DEFINE_CLASS_QUERY(CatchProj)
duke@0 718 DEFINE_CLASS_QUERY(CheckCastPP)
duke@0 719 DEFINE_CLASS_QUERY(ConstraintCast)
kvn@1100 720 DEFINE_CLASS_QUERY(ClearArray)
duke@0 721 DEFINE_CLASS_QUERY(CMove)
duke@0 722 DEFINE_CLASS_QUERY(Cmp)
duke@0 723 DEFINE_CLASS_QUERY(CountedLoop)
duke@0 724 DEFINE_CLASS_QUERY(CountedLoopEnd)
roland@3724 725 DEFINE_CLASS_QUERY(DecodeNarrowPtr)
kvn@168 726 DEFINE_CLASS_QUERY(DecodeN)
roland@3724 727 DEFINE_CLASS_QUERY(DecodeNKlass)
roland@3724 728 DEFINE_CLASS_QUERY(EncodeNarrowPtr)
kvn@168 729 DEFINE_CLASS_QUERY(EncodeP)
roland@3724 730 DEFINE_CLASS_QUERY(EncodePKlass)
duke@0 731 DEFINE_CLASS_QUERY(FastLock)
duke@0 732 DEFINE_CLASS_QUERY(FastUnlock)
rbackman@5356 733 DEFINE_CLASS_QUERY(FlagsProj)
duke@0 734 DEFINE_CLASS_QUERY(If)
duke@0 735 DEFINE_CLASS_QUERY(IfFalse)
duke@0 736 DEFINE_CLASS_QUERY(IfTrue)
duke@0 737 DEFINE_CLASS_QUERY(Initialize)
duke@0 738 DEFINE_CLASS_QUERY(Jump)
duke@0 739 DEFINE_CLASS_QUERY(JumpProj)
duke@0 740 DEFINE_CLASS_QUERY(Load)
duke@0 741 DEFINE_CLASS_QUERY(LoadStore)
duke@0 742 DEFINE_CLASS_QUERY(Lock)
duke@0 743 DEFINE_CLASS_QUERY(Loop)
duke@0 744 DEFINE_CLASS_QUERY(Mach)
kvn@2616 745 DEFINE_CLASS_QUERY(MachBranch)
duke@0 746 DEFINE_CLASS_QUERY(MachCall)
duke@0 747 DEFINE_CLASS_QUERY(MachCallDynamicJava)
duke@0 748 DEFINE_CLASS_QUERY(MachCallJava)
duke@0 749 DEFINE_CLASS_QUERY(MachCallLeaf)
duke@0 750 DEFINE_CLASS_QUERY(MachCallRuntime)
duke@0 751 DEFINE_CLASS_QUERY(MachCallStaticJava)
twisti@1915 752 DEFINE_CLASS_QUERY(MachConstantBase)
twisti@1915 753 DEFINE_CLASS_QUERY(MachConstant)
kvn@2605 754 DEFINE_CLASS_QUERY(MachGoto)
duke@0 755 DEFINE_CLASS_QUERY(MachIf)
duke@0 756 DEFINE_CLASS_QUERY(MachNullCheck)
kvn@2605 757 DEFINE_CLASS_QUERY(MachProj)
duke@0 758 DEFINE_CLASS_QUERY(MachReturn)
duke@0 759 DEFINE_CLASS_QUERY(MachSafePoint)
duke@0 760 DEFINE_CLASS_QUERY(MachSpillCopy)
duke@0 761 DEFINE_CLASS_QUERY(MachTemp)
rbackman@5562 762 DEFINE_CLASS_QUERY(MathExact)
duke@0 763 DEFINE_CLASS_QUERY(Mem)
duke@0 764 DEFINE_CLASS_QUERY(MemBar)
roland@2957 765 DEFINE_CLASS_QUERY(MemBarStoreStore)
duke@0 766 DEFINE_CLASS_QUERY(MergeMem)
kvn@3447 767 DEFINE_CLASS_QUERY(Mul)
duke@0 768 DEFINE_CLASS_QUERY(Multi)
duke@0 769 DEFINE_CLASS_QUERY(MultiBranch)
kvn@33 770 DEFINE_CLASS_QUERY(Parm)
duke@0 771 DEFINE_CLASS_QUERY(PCTable)
duke@0 772 DEFINE_CLASS_QUERY(Phi)
duke@0 773 DEFINE_CLASS_QUERY(Proj)
duke@0 774 DEFINE_CLASS_QUERY(Region)
duke@0 775 DEFINE_CLASS_QUERY(Root)
duke@0 776 DEFINE_CLASS_QUERY(SafePoint)
kvn@63 777 DEFINE_CLASS_QUERY(SafePointScalarObject)
duke@0 778 DEFINE_CLASS_QUERY(Start)
duke@0 779 DEFINE_CLASS_QUERY(Store)
duke@0 780 DEFINE_CLASS_QUERY(Sub)
duke@0 781 DEFINE_CLASS_QUERY(Type)
kvn@2605 782 DEFINE_CLASS_QUERY(Vector)
kvn@3447 783 DEFINE_CLASS_QUERY(LoadVector)
kvn@3447 784 DEFINE_CLASS_QUERY(StoreVector)
duke@0 785 DEFINE_CLASS_QUERY(Unlock)
duke@0 786
duke@0 787 #undef DEFINE_CLASS_QUERY
duke@0 788
duke@0 789 // duplicate of is_MachSpillCopy()
duke@0 790 bool is_SpillCopy () const {
duke@0 791 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
duke@0 792 }
duke@0 793
duke@0 794 bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
duke@0 795 // The data node which is safe to leave in dead loop during IGVN optimization.
duke@0 796 bool is_dead_loop_safe() const {
kvn@126 797 return is_Phi() || (is_Proj() && in(0) == NULL) ||
kvn@126 798 ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
kvn@126 799 (!is_Proj() || !in(0)->is_Allocate()));
duke@0 800 }
duke@0 801
duke@0 802 // is_Copy() returns copied edge index (0 or 1)
duke@0 803 uint is_Copy() const { return (_flags & Flag_is_Copy); }
duke@0 804
duke@0 805 virtual bool is_CFG() const { return false; }
duke@0 806
duke@0 807 // If this node is control-dependent on a test, can it be
duke@0 808 // rerouted to a dominating equivalent test? This is usually
duke@0 809 // true of non-CFG nodes, but can be false for operations which
duke@0 810 // depend for their correct sequencing on more than one test.
duke@0 811 // (In that case, hoisting to a dominating test may silently
duke@0 812 // skip some other important test.)
duke@0 813 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
duke@0 814
duke@0 815 // When building basic blocks, I need to have a notion of block beginning
duke@0 816 // Nodes, next block selector Nodes (block enders), and next block
duke@0 817 // projections. These calls need to work on their machine equivalents. The
duke@0 818 // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
duke@0 819 bool is_block_start() const {
duke@0 820 if ( is_Region() )
duke@0 821 return this == (const Node*)in(0);
duke@0 822 else
kvn@2605 823 return is_Start();
duke@0 824 }
duke@0 825
duke@0 826 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
duke@0 827 // Goto and Return. This call also returns the block ending Node.
duke@0 828 virtual const Node *is_block_proj() const;
duke@0 829
duke@0 830 // The node is a "macro" node which needs to be expanded before matching
duke@0 831 bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
roland@4154 832 // The node is expensive: the best control is set during loop opts
roland@4154 833 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
duke@0 834
duke@0 835 //----------------- Optimization
duke@0 836
duke@0 837 // Get the worst-case Type output for this Node.
duke@0 838 virtual const class Type *bottom_type() const;
duke@0 839
duke@0 840 // If we find a better type for a node, try to record it permanently.
duke@0 841 // Return true if this node actually changed.
duke@0 842 // Be sure to do the hash_delete game in the "rehash" variant.
duke@0 843 void raise_bottom_type(const Type* new_type);
duke@0 844
duke@0 845 // Get the address type with which this node uses and/or defs memory,
duke@0 846 // or NULL if none. The address type is conservatively wide.
duke@0 847 // Returns non-null for calls, membars, loads, stores, etc.
duke@0 848 // Returns TypePtr::BOTTOM if the node touches memory "broadly".
duke@0 849 virtual const class TypePtr *adr_type() const { return NULL; }
duke@0 850
duke@0 851 // Return an existing node which computes the same function as this node.
duke@0 852 // The optimistic combined algorithm requires this to return a Node which
duke@0 853 // is a small number of steps away (e.g., one of my inputs).
duke@0 854 virtual Node *Identity( PhaseTransform *phase );
duke@0 855
duke@0 856 // Return the set of values this Node can take on at runtime.
duke@0 857 virtual const Type *Value( PhaseTransform *phase ) const;
duke@0 858
duke@0 859 // Return a node which is more "ideal" than the current node.
duke@0 860 // The invariants on this call are subtle. If in doubt, read the
duke@0 861 // treatise in node.cpp above the default implemention AND TEST WITH
duke@0 862 // +VerifyIterativeGVN!
duke@0 863 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@0 864
duke@0 865 // Some nodes have specific Ideal subgraph transformations only if they are
duke@0 866 // unique users of specific nodes. Such nodes should be put on IGVN worklist
duke@0 867 // for the transformations to happen.
duke@0 868 bool has_special_unique_user() const;
duke@0 869
kvn@119 870 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
kvn@119 871 Node* find_exact_control(Node* ctrl);
kvn@119 872
kvn@119 873 // Check if 'this' node dominates or equal to 'sub'.
kvn@119 874 bool dominates(Node* sub, Node_List &nlist);
kvn@119 875
duke@0 876 protected:
duke@0 877 bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
duke@0 878 public:
duke@0 879
duke@0 880 // Idealize graph, using DU info. Done after constant propagation
duke@0 881 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
duke@0 882
duke@0 883 // See if there is valid pipeline info
duke@0 884 static const Pipeline *pipeline_class();
duke@0 885 virtual const Pipeline *pipeline() const;
duke@0 886
duke@0 887 // Compute the latency from the def to this instruction of the ith input node
duke@0 888 uint latency(uint i);
duke@0 889
duke@0 890 // Hash & compare functions, for pessimistic value numbering
duke@0 891
duke@0 892 // If the hash function returns the special sentinel value NO_HASH,
duke@0 893 // the node is guaranteed never to compare equal to any other node.
twisti@605 894 // If we accidentally generate a hash with value NO_HASH the node
duke@0 895 // won't go into the table and we'll lose a little optimization.
duke@0 896 enum { NO_HASH = 0 };
duke@0 897 virtual uint hash() const;
duke@0 898 virtual uint cmp( const Node &n ) const;
duke@0 899
duke@0 900 // Operation appears to be iteratively computed (such as an induction variable)
duke@0 901 // It is possible for this operation to return false for a loop-varying
duke@0 902 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
duke@0 903 bool is_iteratively_computed();
duke@0 904
duke@0 905 // Determine if a node is Counted loop induction variable.
duke@0 906 // The method is defined in loopnode.cpp.
duke@0 907 const Node* is_loop_iv() const;
duke@0 908
duke@0 909 // Return a node with opcode "opc" and same inputs as "this" if one can
duke@0 910 // be found; Otherwise return NULL;
duke@0 911 Node* find_similar(int opc);
duke@0 912
duke@0 913 // Return the unique control out if only one. Null if none or more than one.
duke@0 914 Node* unique_ctrl_out();
duke@0 915
duke@0 916 //----------------- Code Generation
duke@0 917
duke@0 918 // Ideal register class for Matching. Zero means unmatched instruction
duke@0 919 // (these are cloned instead of converted to machine nodes).
duke@0 920 virtual uint ideal_reg() const;
duke@0 921
duke@0 922 static const uint NotAMachineReg; // must be > max. machine register
duke@0 923
duke@0 924 // Do we Match on this edge index or not? Generally false for Control
duke@0 925 // and true for everything else. Weird for calls & returns.
duke@0 926 virtual uint match_edge(uint idx) const;
duke@0 927
duke@0 928 // Register class output is returned in
duke@0 929 virtual const RegMask &out_RegMask() const;
duke@0 930 // Register class input is expected in
duke@0 931 virtual const RegMask &in_RegMask(uint) const;
duke@0 932 // Should we clone rather than spill this instruction?
duke@0 933 bool rematerialize() const;
duke@0 934
duke@0 935 // Return JVM State Object if this Node carries debug info, or NULL otherwise
duke@0 936 virtual JVMState* jvms() const;
duke@0 937
duke@0 938 // Print as assembly
duke@0 939 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
duke@0 940 // Emit bytes starting at parameter 'ptr'
duke@0 941 // Bump 'ptr' by the number of output bytes
duke@0 942 virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
duke@0 943 // Size of instruction in bytes
duke@0 944 virtual uint size(PhaseRegAlloc *ra_) const;
duke@0 945
duke@0 946 // Convenience function to extract an integer constant from a node.
duke@0 947 // If it is not an integer constant (either Con, CastII, or Mach),
duke@0 948 // return value_if_unknown.
duke@0 949 jint find_int_con(jint value_if_unknown) const {
duke@0 950 const TypeInt* t = find_int_type();
duke@0 951 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
duke@0 952 }
duke@0 953 // Return the constant, knowing it is an integer constant already
duke@0 954 jint get_int() const {
duke@0 955 const TypeInt* t = find_int_type();
duke@0 956 guarantee(t != NULL, "must be con");
duke@0 957 return t->get_con();
duke@0 958 }
duke@0 959 // Here's where the work is done. Can produce non-constant int types too.
duke@0 960 const TypeInt* find_int_type() const;
duke@0 961
duke@0 962 // Same thing for long (and intptr_t, via type.hpp):
duke@0 963 jlong get_long() const {
duke@0 964 const TypeLong* t = find_long_type();
duke@0 965 guarantee(t != NULL, "must be con");
duke@0 966 return t->get_con();
duke@0 967 }
duke@0 968 jlong find_long_con(jint value_if_unknown) const {
duke@0 969 const TypeLong* t = find_long_type();
duke@0 970 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
duke@0 971 }
duke@0 972 const TypeLong* find_long_type() const;
duke@0 973
kvn@4676 974 const TypePtr* get_ptr_type() const;
kvn@4676 975
duke@0 976 // These guys are called by code generated by ADLC:
duke@0 977 intptr_t get_ptr() const;
coleenp@113 978 intptr_t get_narrowcon() const;
duke@0 979 jdouble getd() const;
duke@0 980 jfloat getf() const;
duke@0 981
duke@0 982 // Nodes which are pinned into basic blocks
duke@0 983 virtual bool pinned() const { return false; }
duke@0 984
duke@0 985 // Nodes which use memory without consuming it, hence need antidependences
duke@0 986 // More specifically, needs_anti_dependence_check returns true iff the node
duke@0 987 // (a) does a load, and (b) does not perform a store (except perhaps to a
duke@0 988 // stack slot or some other unaliased location).
duke@0 989 bool needs_anti_dependence_check() const;
duke@0 990
duke@0 991 // Return which operand this instruction may cisc-spill. In other words,
duke@0 992 // return operand position that can convert from reg to memory access
duke@0 993 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
duke@0 994 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
duke@0 995
duke@0 996 //----------------- Graph walking
duke@0 997 public:
duke@0 998 // Walk and apply member functions recursively.
duke@0 999 // Supplied (this) pointer is root.
duke@0 1000 void walk(NFunc pre, NFunc post, void *env);
duke@0 1001 static void nop(Node &, void*); // Dummy empty function
duke@0 1002 static void packregion( Node &n, void* );
duke@0 1003 private:
duke@0 1004 void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
duke@0 1005
duke@0 1006 //----------------- Printing, etc
duke@0 1007 public:
duke@0 1008 #ifndef PRODUCT
duke@0 1009 Node* find(int idx) const; // Search the graph for the given idx.
duke@0 1010 Node* find_ctrl(int idx) const; // Search control ancestors for the given idx.
kvn@4043 1011 void dump() const { dump("\n"); } // Print this node.
kvn@4043 1012 void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
duke@0 1013 void dump(int depth) const; // Print this node, recursively to depth d
duke@0 1014 void dump_ctrl(int depth) const; // Print control nodes, to depth d
kvn@4043 1015 virtual void dump_req(outputStream *st = tty) const; // Print required-edge info
kvn@4043 1016 virtual void dump_prec(outputStream *st = tty) const; // Print precedence-edge info
kvn@4043 1017 virtual void dump_out(outputStream *st = tty) const; // Print the output edge info
duke@0 1018 virtual void dump_spec(outputStream *st) const {}; // Print per-node info
duke@0 1019 void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
duke@0 1020 void verify() const; // Check Def-Use info for my subgraph
duke@0 1021 static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
duke@0 1022
duke@0 1023 // This call defines a class-unique string used to identify class instances
duke@0 1024 virtual const char *Name() const;
duke@0 1025
duke@0 1026 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
duke@0 1027 // RegMask Print Functions
duke@0 1028 void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
duke@0 1029 void dump_out_regmask() { out_RegMask().dump(); }
duke@0 1030 static int _in_dump_cnt;
duke@0 1031 static bool in_dump() { return _in_dump_cnt > 0; }
duke@0 1032 void fast_dump() const {
duke@0 1033 tty->print("%4d: %-17s", _idx, Name());
duke@0 1034 for (uint i = 0; i < len(); i++)
duke@0 1035 if (in(i))
duke@0 1036 tty->print(" %4d", in(i)->_idx);
duke@0 1037 else
duke@0 1038 tty->print(" NULL");
duke@0 1039 tty->print("\n");
duke@0 1040 }
duke@0 1041 #endif
duke@0 1042 #ifdef ASSERT
duke@0 1043 void verify_construction();
duke@0 1044 bool verify_jvms(const JVMState* jvms) const;
duke@0 1045 int _debug_idx; // Unique value assigned to every node.
duke@0 1046 int debug_idx() const { return _debug_idx; }
duke@0 1047 void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
duke@0 1048
duke@0 1049 Node* _debug_orig; // Original version of this, if any.
duke@0 1050 Node* debug_orig() const { return _debug_orig; }
duke@0 1051 void set_debug_orig(Node* orig); // _debug_orig = orig
duke@0 1052
duke@0 1053 int _hash_lock; // Barrier to modifications of nodes in the hash table
duke@0 1054 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
duke@0 1055 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
duke@0 1056
duke@0 1057 static void init_NodeProperty();
duke@0 1058
duke@0 1059 #if OPTO_DU_ITERATOR_ASSERT
duke@0 1060 const Node* _last_del; // The last deleted node.
duke@0 1061 uint _del_tick; // Bumped when a deletion happens..
duke@0 1062 #endif
duke@0 1063 #endif
duke@0 1064 };
duke@0 1065
duke@0 1066 //-----------------------------------------------------------------------------
duke@0 1067 // Iterators over DU info, and associated Node functions.
duke@0 1068
duke@0 1069 #if OPTO_DU_ITERATOR_ASSERT
duke@0 1070
duke@0 1071 // Common code for assertion checking on DU iterators.
duke@0 1072 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
duke@0 1073 #ifdef ASSERT
duke@0 1074 protected:
duke@0 1075 bool _vdui; // cached value of VerifyDUIterators
duke@0 1076 const Node* _node; // the node containing the _out array
duke@0 1077 uint _outcnt; // cached node->_outcnt
duke@0 1078 uint _del_tick; // cached node->_del_tick
duke@0 1079 Node* _last; // last value produced by the iterator
duke@0 1080
duke@0 1081 void sample(const Node* node); // used by c'tor to set up for verifies
duke@0 1082 void verify(const Node* node, bool at_end_ok = false);
duke@0 1083 void verify_resync();
duke@0 1084 void reset(const DUIterator_Common& that);
duke@0 1085
duke@0 1086 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
duke@0 1087 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
duke@0 1088 #else
duke@0 1089 #define I_VDUI_ONLY(i,x) { }
duke@0 1090 #endif //ASSERT
duke@0 1091 };
duke@0 1092
duke@0 1093 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x)
duke@0 1094
duke@0 1095 // Default DU iterator. Allows appends onto the out array.
duke@0 1096 // Allows deletion from the out array only at the current point.
duke@0 1097 // Usage:
duke@0 1098 // for (DUIterator i = x->outs(); x->has_out(i); i++) {
duke@0 1099 // Node* y = x->out(i);
duke@0 1100 // ...
duke@0 1101 // }
duke@0 1102 // Compiles in product mode to a unsigned integer index, which indexes
duke@0 1103 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate
duke@0 1104 // also reloads x->_outcnt. If you delete, you must perform "--i" just
duke@0 1105 // before continuing the loop. You must delete only the last-produced
duke@0 1106 // edge. You must delete only a single copy of the last-produced edge,
duke@0 1107 // or else you must delete all copies at once (the first time the edge
duke@0 1108 // is produced by the iterator).
duke@0 1109 class DUIterator : public DUIterator_Common {
duke@0 1110 friend class Node;
duke@0 1111
duke@0 1112 // This is the index which provides the product-mode behavior.
duke@0 1113 // Whatever the product-mode version of the system does to the
duke@0 1114 // DUI index is done to this index. All other fields in
duke@0 1115 // this class are used only for assertion checking.
duke@0 1116 uint _idx;
duke@0 1117
duke@0 1118 #ifdef ASSERT
duke@0 1119 uint _refresh_tick; // Records the refresh activity.
duke@0 1120
duke@0 1121 void sample(const Node* node); // Initialize _refresh_tick etc.
duke@0 1122 void verify(const Node* node, bool at_end_ok = false);
duke@0 1123 void verify_increment(); // Verify an increment operation.
duke@0 1124 void verify_resync(); // Verify that we can back up over a deletion.
duke@0 1125 void verify_finish(); // Verify that the loop terminated properly.
duke@0 1126 void refresh(); // Resample verification info.
duke@0 1127 void reset(const DUIterator& that); // Resample after assignment.
duke@0 1128 #endif
duke@0 1129
duke@0 1130 DUIterator(const Node* node, int dummy_to_avoid_conversion)
duke@0 1131 { _idx = 0; debug_only(sample(node)); }
duke@0 1132
duke@0 1133 public:
duke@0 1134 // initialize to garbage; clear _vdui to disable asserts
duke@0 1135 DUIterator()
duke@0 1136 { /*initialize to garbage*/ debug_only(_vdui = false); }
duke@0 1137
duke@0 1138 void operator++(int dummy_to_specify_postfix_op)
duke@0 1139 { _idx++; VDUI_ONLY(verify_increment()); }
duke@0 1140
duke@0 1141 void operator--()
duke@0 1142 { VDUI_ONLY(verify_resync()); --_idx; }
duke@0 1143
duke@0 1144 ~DUIterator()
duke@0 1145 { VDUI_ONLY(verify_finish()); }
duke@0 1146
duke@0 1147 void operator=(const DUIterator& that)
duke@0 1148 { _idx = that._idx; debug_only(reset(that)); }
duke@0 1149 };
duke@0 1150
duke@0 1151 DUIterator Node::outs() const
duke@0 1152 { return DUIterator(this, 0); }
duke@0 1153 DUIterator& Node::refresh_out_pos(DUIterator& i) const
duke@0 1154 { I_VDUI_ONLY(i, i.refresh()); return i; }
duke@0 1155 bool Node::has_out(DUIterator& i) const
duke@0 1156 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
duke@0 1157 Node* Node::out(DUIterator& i) const
duke@0 1158 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; }
duke@0 1159
duke@0 1160
duke@0 1161 // Faster DU iterator. Disallows insertions into the out array.
duke@0 1162 // Allows deletion from the out array only at the current point.
duke@0 1163 // Usage:
duke@0 1164 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
duke@0 1165 // Node* y = x->fast_out(i);
duke@0 1166 // ...
duke@0 1167 // }
duke@0 1168 // Compiles in product mode to raw Node** pointer arithmetic, with
duke@0 1169 // no reloading of pointers from the original node x. If you delete,
duke@0 1170 // you must perform "--i; --imax" just before continuing the loop.
duke@0 1171 // If you delete multiple copies of the same edge, you must decrement
duke@0 1172 // imax, but not i, multiple times: "--i, imax -= num_edges".
duke@0 1173 class DUIterator_Fast : public DUIterator_Common {
duke@0 1174 friend class Node;
duke@0 1175 friend class DUIterator_Last;
duke@0 1176
duke@0 1177 // This is the pointer which provides the product-mode behavior.
duke@0 1178 // Whatever the product-mode version of the system does to the
duke@0 1179 // DUI pointer is done to this pointer. All other fields in
duke@0 1180 // this class are used only for assertion checking.
duke@0 1181 Node** _outp;
duke@0 1182
duke@0 1183 #ifdef ASSERT
duke@0 1184 void verify(const Node* node, bool at_end_ok = false);
duke@0 1185 void verify_limit();
duke@0 1186 void verify_resync();
duke@0 1187 void verify_relimit(uint n);
duke@0 1188 void reset(const DUIterator_Fast& that);
duke@0 1189 #endif
duke@0 1190
duke@0 1191 // Note: offset must be signed, since -1 is sometimes passed
duke@0 1192 DUIterator_Fast(const Node* node, ptrdiff_t offset)
duke@0 1193 { _outp = node->_out + offset; debug_only(sample(node)); }
duke@0 1194
duke@0 1195 public:
duke@0 1196 // initialize to garbage; clear _vdui to disable asserts
duke@0 1197 DUIterator_Fast()
duke@0 1198 { /*initialize to garbage*/ debug_only(_vdui = false); }
duke@0 1199
duke@0 1200 void operator++(int dummy_to_specify_postfix_op)
duke@0 1201 { _outp++; VDUI_ONLY(verify(_node, true)); }
duke@0 1202
duke@0 1203 void operator--()
duke@0 1204 { VDUI_ONLY(verify_resync()); --_outp; }
duke@0 1205
duke@0 1206 void operator-=(uint n) // applied to the limit only
duke@0 1207 { _outp -= n; VDUI_ONLY(verify_relimit(n)); }
duke@0 1208
duke@0 1209 bool operator<(DUIterator_Fast& limit) {
duke@0 1210 I_VDUI_ONLY(*this, this->verify(_node, true));
duke@0 1211 I_VDUI_ONLY(limit, limit.verify_limit());
duke@0 1212 return _outp < limit._outp;
duke@0 1213 }
duke@0 1214
duke@0 1215 void operator=(const DUIterator_Fast& that)
duke@0 1216 { _outp = that._outp; debug_only(reset(that)); }
duke@0 1217 };
duke@0 1218
duke@0 1219 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
duke@0 1220 // Assign a limit pointer to the reference argument:
duke@0 1221 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
duke@0 1222 // Return the base pointer:
duke@0 1223 return DUIterator_Fast(this, 0);
duke@0 1224 }
duke@0 1225 Node* Node::fast_out(DUIterator_Fast& i) const {
duke@0 1226 I_VDUI_ONLY(i, i.verify(this));
duke@0 1227 return debug_only(i._last=) *i._outp;
duke@0 1228 }
duke@0 1229
duke@0 1230
duke@0 1231 // Faster DU iterator. Requires each successive edge to be removed.
duke@0 1232 // Does not allow insertion of any edges.
duke@0 1233 // Usage:
duke@0 1234 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
duke@0 1235 // Node* y = x->last_out(i);
duke@0 1236 // ...
duke@0 1237 // }
duke@0 1238 // Compiles in product mode to raw Node** pointer arithmetic, with
duke@0 1239 // no reloading of pointers from the original node x.
duke@0 1240 class DUIterator_Last : private DUIterator_Fast {
duke@0 1241 friend class Node;
duke@0 1242
duke@0 1243 #ifdef ASSERT
duke@0 1244 void verify(const Node* node, bool at_end_ok = false);
duke@0 1245 void verify_limit();
duke@0 1246 void verify_step(uint num_edges);
duke@0 1247 #endif
duke@0 1248
duke@0 1249 // Note: offset must be signed, since -1 is sometimes passed
duke@0 1250 DUIterator_Last(const Node* node, ptrdiff_t offset)
duke@0 1251 : DUIterator_Fast(node, offset) { }
duke@0 1252
duke@0 1253 void operator++(int dummy_to_specify_postfix_op) {} // do not use
duke@0 1254 void operator<(int) {} // do not use
duke@0 1255
duke@0 1256 public:
duke@0 1257 DUIterator_Last() { }
duke@0 1258 // initialize to garbage
duke@0 1259
duke@0 1260 void operator--()
duke@0 1261 { _outp--; VDUI_ONLY(verify_step(1)); }
duke@0 1262
duke@0 1263 void operator-=(uint n)
duke@0 1264 { _outp -= n; VDUI_ONLY(verify_step(n)); }
duke@0 1265
duke@0 1266 bool operator>=(DUIterator_Last& limit) {
duke@0 1267 I_VDUI_ONLY(*this, this->verify(_node, true));
duke@0 1268 I_VDUI_ONLY(limit, limit.verify_limit());
duke@0 1269 return _outp >= limit._outp;
duke@0 1270 }
duke@0 1271
duke@0 1272 void operator=(const DUIterator_Last& that)
duke@0 1273 { DUIterator_Fast::operator=(that); }
duke@0 1274 };
duke@0 1275
duke@0 1276 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
duke@0 1277 // Assign a limit pointer to the reference argument:
duke@0 1278 imin = DUIterator_Last(this, 0);
duke@0 1279 // Return the initial pointer:
duke@0 1280 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
duke@0 1281 }
duke@0 1282 Node* Node::last_out(DUIterator_Last& i) const {
duke@0 1283 I_VDUI_ONLY(i, i.verify(this));
duke@0 1284 return debug_only(i._last=) *i._outp;
duke@0 1285 }
duke@0 1286
duke@0 1287 #endif //OPTO_DU_ITERATOR_ASSERT
duke@0 1288
duke@0 1289 #undef I_VDUI_ONLY
duke@0 1290 #undef VDUI_ONLY
duke@0 1291
never@1080 1292 // An Iterator that truly follows the iterator pattern. Doesn't
never@1080 1293 // support deletion but could be made to.
never@1080 1294 //
never@1080 1295 // for (SimpleDUIterator i(n); i.has_next(); i.next()) {
never@1080 1296 // Node* m = i.get();
never@1080 1297 //
never@1080 1298 class SimpleDUIterator : public StackObj {
never@1080 1299 private:
never@1080 1300 Node* node;
never@1080 1301 DUIterator_Fast i;
never@1080 1302 DUIterator_Fast imax;
never@1080 1303 public:
never@1080 1304 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
never@1080 1305 bool has_next() { return i < imax; }
never@1080 1306 void next() { i++; }
never@1080 1307 Node* get() { return node->fast_out(i); }
never@1080 1308 };
never@1080 1309
duke@0 1310
duke@0 1311 //-----------------------------------------------------------------------------
duke@0 1312 // Map dense integer indices to Nodes. Uses classic doubling-array trick.
duke@0 1313 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
duke@0 1314 // Note that the constructor just zeros things, and since I use Arena
duke@0 1315 // allocation I do not need a destructor to reclaim storage.
duke@0 1316 class Node_Array : public ResourceObj {
never@2703 1317 friend class VMStructs;
duke@0 1318 protected:
duke@0 1319 Arena *_a; // Arena to allocate in
duke@0 1320 uint _max;
duke@0 1321 Node **_nodes;
duke@0 1322 void grow( uint i ); // Grow array node to fit
duke@0 1323 public:
duke@0 1324 Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
duke@0 1325 _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
duke@0 1326 for( int i = 0; i < OptoNodeListSize; i++ ) {
duke@0 1327 _nodes[i] = NULL;
duke@0 1328 }
duke@0 1329 }
duke@0 1330
duke@0 1331 Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
duke@0 1332 Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
duke@0 1333 { return (i<_max) ? _nodes[i] : (Node*)NULL; }
duke@0 1334 Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
duke@0 1335 Node **adr() { return _nodes; }
duke@0 1336 // Extend the mapping: index i maps to Node *n.
duke@0 1337 void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
duke@0 1338 void insert( uint i, Node *n );
duke@0 1339 void remove( uint i ); // Remove, preserving order
duke@0 1340 void sort( C_sort_func_t func);
duke@0 1341 void reset( Arena *new_a ); // Zap mapping to empty; reclaim storage
duke@0 1342 void clear(); // Set all entries to NULL, keep storage
duke@0 1343 uint Size() const { return _max; }
duke@0 1344 void dump() const;
duke@0 1345 };
duke@0 1346
duke@0 1347 class Node_List : public Node_Array {
never@2703 1348 friend class VMStructs;
duke@0 1349 uint _cnt;
duke@0 1350 public:
duke@0 1351 Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
duke@0 1352 Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
never@1080 1353 bool contains(Node* n) {
never@1080 1354 for (uint e = 0; e < size(); e++) {
never@1080 1355 if (at(e) == n) return true;
never@1080 1356 }
never@1080 1357 return false;
never@1080 1358 }
duke@0 1359 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
duke@0 1360 void remove( uint i ) { Node_Array::remove(i); _cnt--; }
duke@0 1361 void push( Node *b ) { map(_cnt++,b); }
duke@0 1362 void yank( Node *n ); // Find and remove
duke@0 1363 Node *pop() { return _nodes[--_cnt]; }
duke@0 1364 Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
duke@0 1365 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
duke@0 1366 uint size() const { return _cnt; }
duke@0 1367 void dump() const;
duke@0 1368 };
duke@0 1369
duke@0 1370 //------------------------------Unique_Node_List-------------------------------
duke@0 1371 class Unique_Node_List : public Node_List {
never@2703 1372 friend class VMStructs;
duke@0 1373 VectorSet _in_worklist;
duke@0 1374 uint _clock_index; // Index in list where to pop from next
duke@0 1375 public:
duke@0 1376 Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
duke@0 1377 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
duke@0 1378
duke@0 1379 void remove( Node *n );
duke@0 1380 bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
duke@0 1381 VectorSet &member_set(){ return _in_worklist; }
duke@0 1382
duke@0 1383 void push( Node *b ) {
duke@0 1384 if( !_in_worklist.test_set(b->_idx) )
duke@0 1385 Node_List::push(b);
duke@0 1386 }
duke@0 1387 Node *pop() {
duke@0 1388 if( _clock_index >= size() ) _clock_index = 0;
duke@0 1389 Node *b = at(_clock_index);
kvn@400 1390 map( _clock_index, Node_List::pop());
kvn@400 1391 if (size() != 0) _clock_index++; // Always start from 0
duke@0 1392 _in_worklist >>= b->_idx;
duke@0 1393 return b;
duke@0 1394 }
duke@0 1395 Node *remove( uint i ) {
duke@0 1396 Node *b = Node_List::at(i);
duke@0 1397 _in_worklist >>= b->_idx;
duke@0 1398 map(i,Node_List::pop());
duke@0 1399 return b;
duke@0 1400 }
duke@0 1401 void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
duke@0 1402 void clear() {
duke@0 1403 _in_worklist.Clear(); // Discards storage but grows automatically
duke@0 1404 Node_List::clear();
duke@0 1405 _clock_index = 0;
duke@0 1406 }
duke@0 1407
duke@0 1408 // Used after parsing to remove useless nodes before Iterative GVN
duke@0 1409 void remove_useless_nodes(VectorSet &useful);
duke@0 1410
duke@0 1411 #ifndef PRODUCT
duke@0 1412 void print_set() const { _in_worklist.print(); }
duke@0 1413 #endif
duke@0 1414 };
duke@0 1415
duke@0 1416 // Inline definition of Compile::record_for_igvn must be deferred to this point.
duke@0 1417 inline void Compile::record_for_igvn(Node* n) {
duke@0 1418 _for_igvn->push(n);
duke@0 1419 }
duke@0 1420
duke@0 1421 //------------------------------Node_Stack-------------------------------------
duke@0 1422 class Node_Stack {
never@2703 1423 friend class VMStructs;
duke@0 1424 protected:
duke@0 1425 struct INode {
duke@0 1426 Node *node; // Processed node
duke@0 1427 uint indx; // Index of next node's child
duke@0 1428 };
duke@0 1429 INode *_inode_top; // tos, stack grows up
duke@0 1430 INode *_inode_max; // End of _inodes == _inodes + _max
duke@0 1431 INode *_inodes; // Array storage for the stack
duke@0 1432 Arena *_a; // Arena to allocate in
duke@0 1433 void grow();
duke@0 1434 public:
duke@0 1435 Node_Stack(int size) {
duke@0 1436 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
duke@0 1437 _a = Thread::current()->resource_area();
duke@0 1438 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
duke@0 1439 _inode_max = _inodes + max;
duke@0 1440 _inode_top = _inodes - 1; // stack is empty
duke@0 1441 }
duke@0 1442
duke@0 1443 Node_Stack(Arena *a, int size) : _a(a) {
duke@0 1444 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
duke@0 1445 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
duke@0 1446 _inode_max = _inodes + max;
duke@0 1447 _inode_top = _inodes - 1; // stack is empty
duke@0 1448 }
duke@0 1449
duke@0 1450 void pop() {
duke@0 1451 assert(_inode_top >= _inodes, "node stack underflow");
duke@0 1452 --_inode_top;
duke@0 1453 }
duke@0 1454 void push(Node *n, uint i) {
duke@0 1455 ++_inode_top;
duke@0 1456 if (_inode_top >= _inode_max) grow();
duke@0 1457 INode *top = _inode_top; // optimization
duke@0 1458 top->node = n;
duke@0 1459 top->indx = i;
duke@0 1460 }
duke@0 1461 Node *node() const {
duke@0 1462 return _inode_top->node;
duke@0 1463 }
duke@0 1464 Node* node_at(uint i) const {
duke@0 1465 assert(_inodes + i <= _inode_top, "in range");
duke@0 1466 return _inodes[i].node;
duke@0 1467 }
duke@0 1468 uint index() const {
duke@0 1469 return _inode_top->indx;
duke@0 1470 }
kvn@247 1471 uint index_at(uint i) const {
kvn@247 1472 assert(_inodes + i <= _inode_top, "in range");
kvn@247 1473 return _inodes[i].indx;
kvn@247 1474 }
duke@0 1475 void set_node(Node *n) {
duke@0 1476 _inode_top->node = n;
duke@0 1477 }
duke@0 1478 void set_index(uint i) {
duke@0 1479 _inode_top->indx = i;
duke@0 1480 }
duke@0 1481 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size
kvn@40 1482 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size
duke@0 1483 bool is_nonempty() const { return (_inode_top >= _inodes); }
duke@0 1484 bool is_empty() const { return (_inode_top < _inodes); }
duke@0 1485 void clear() { _inode_top = _inodes - 1; } // retain storage
kvn@2550 1486
kvn@2550 1487 // Node_Stack is used to map nodes.
kvn@2550 1488 Node* find(uint idx) const;
duke@0 1489 };
duke@0 1490
duke@0 1491
duke@0 1492 //-----------------------------Node_Notes--------------------------------------
duke@0 1493 // Debugging or profiling annotations loosely and sparsely associated
duke@0 1494 // with some nodes. See Compile::node_notes_at for the accessor.
duke@0 1495 class Node_Notes VALUE_OBJ_CLASS_SPEC {
never@2703 1496 friend class VMStructs;
duke@0 1497 JVMState* _jvms;
duke@0 1498
duke@0 1499 public:
duke@0 1500 Node_Notes(JVMState* jvms = NULL) {
duke@0 1501 _jvms = jvms;
duke@0 1502 }
duke@0 1503
duke@0 1504 JVMState* jvms() { return _jvms; }
duke@0 1505 void set_jvms(JVMState* x) { _jvms = x; }
duke@0 1506
duke@0 1507 // True if there is nothing here.
duke@0 1508 bool is_clear() {
duke@0 1509 return (_jvms == NULL);
duke@0 1510 }
duke@0 1511
duke@0 1512 // Make there be nothing here.
duke@0 1513 void clear() {
duke@0 1514 _jvms = NULL;
duke@0 1515 }
duke@0 1516
duke@0 1517 // Make a new, clean node notes.
duke@0 1518 static Node_Notes* make(Compile* C) {
duke@0 1519 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
duke@0 1520 nn->clear();
duke@0 1521 return nn;
duke@0 1522 }
duke@0 1523
duke@0 1524 Node_Notes* clone(Compile* C) {
duke@0 1525 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
duke@0 1526 (*nn) = (*this);
duke@0 1527 return nn;
duke@0 1528 }
duke@0 1529
duke@0 1530 // Absorb any information from source.
duke@0 1531 bool update_from(Node_Notes* source) {
duke@0 1532 bool changed = false;
duke@0 1533 if (source != NULL) {
duke@0 1534 if (source->jvms() != NULL) {
duke@0 1535 set_jvms(source->jvms());
duke@0 1536 changed = true;
duke@0 1537 }
duke@0 1538 }
duke@0 1539 return changed;
duke@0 1540 }
duke@0 1541 };
duke@0 1542
duke@0 1543 // Inlined accessors for Compile::node_nodes that require the preceding class:
duke@0 1544 inline Node_Notes*
duke@0 1545 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
duke@0 1546 int idx, bool can_grow) {
duke@0 1547 assert(idx >= 0, "oob");
duke@0 1548 int block_idx = (idx >> _log2_node_notes_block_size);
duke@0 1549 int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
duke@0 1550 if (grow_by >= 0) {
duke@0 1551 if (!can_grow) return NULL;
duke@0 1552 grow_node_notes(arr, grow_by + 1);
duke@0 1553 }
duke@0 1554 // (Every element of arr is a sub-array of length _node_notes_block_size.)
duke@0 1555 return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
duke@0 1556 }
duke@0 1557
duke@0 1558 inline bool
duke@0 1559 Compile::set_node_notes_at(int idx, Node_Notes* value) {
duke@0 1560 if (value == NULL || value->is_clear())
duke@0 1561 return false; // nothing to write => write nothing
duke@0 1562 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
duke@0 1563 assert(loc != NULL, "");
duke@0 1564 return loc->update_from(value);
duke@0 1565 }
duke@0 1566
duke@0 1567
duke@0 1568 //------------------------------TypeNode---------------------------------------
duke@0 1569 // Node with a Type constant.
duke@0 1570 class TypeNode : public Node {
duke@0 1571 protected:
duke@0 1572 virtual uint hash() const; // Check the type
duke@0 1573 virtual uint cmp( const Node &n ) const;
duke@0 1574 virtual uint size_of() const; // Size is bigger
duke@0 1575 const Type* const _type;
duke@0 1576 public:
duke@0 1577 void set_type(const Type* t) {
duke@0 1578 assert(t != NULL, "sanity");
duke@0 1579 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
duke@0 1580 *(const Type**)&_type = t; // cast away const-ness
duke@0 1581 // If this node is in the hash table, make sure it doesn't need a rehash.
duke@0 1582 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
duke@0 1583 }
duke@0 1584 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
duke@0 1585 TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
duke@0 1586 init_class_id(Class_Type);
duke@0 1587 }
duke@0 1588 virtual const Type *Value( PhaseTransform *phase ) const;
duke@0 1589 virtual const Type *bottom_type() const;
duke@0 1590 virtual uint ideal_reg() const;
duke@0 1591 #ifndef PRODUCT
duke@0 1592 virtual void dump_spec(outputStream *st) const;
duke@0 1593 #endif
duke@0 1594 };
stefank@1879 1595
stefank@1879 1596 #endif // SHARE_VM_OPTO_NODE_HPP