diff src/share/vm/memory/binaryTreeDictionary.cpp @ 3761:685df3c6f84b

7045397: NPG: Add freelists to class loader arenas. Reviewed-by: coleenp, stefank, jprovino, ohair
author jmasa
date Tue, 18 Sep 2012 23:35:42 -0700
parents a297b0e14605
children 0400886d2613
line wrap: on
line diff
--- a/src/share/vm/memory/binaryTreeDictionary.cpp	Fri Oct 19 11:26:17 2012 -0700
+++ b/src/share/vm/memory/binaryTreeDictionary.cpp	Tue Sep 18 23:35:42 2012 -0700
@@ -25,9 +25,15 @@
 #include "precompiled.hpp"
 #include "gc_implementation/shared/allocationStats.hpp"
 #include "memory/binaryTreeDictionary.hpp"
+#include "memory/freeList.hpp"
+#include "memory/freeBlockDictionary.hpp"
+#include "memory/metablock.hpp"
+#include "memory/metachunk.hpp"
 #include "runtime/globals.hpp"
 #include "utilities/ostream.hpp"
 #ifndef SERIALGC
+#include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
+#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
 #include "gc_implementation/shared/spaceDecorator.hpp"
 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
 #endif // SERIALGC
@@ -37,15 +43,18 @@
 // This is currently used in the Concurrent Mark&Sweep implementation.
 ////////////////////////////////////////////////////////////////////////////////
 
-template <class Chunk>
-TreeChunk<Chunk>* TreeChunk<Chunk>::as_TreeChunk(Chunk* fc) {
+template <class Chunk_t, template <class> class FreeList_t>
+size_t TreeChunk<Chunk_t, FreeList_t>::_min_tree_chunk_size = sizeof(TreeChunk<Chunk_t,  FreeList_t>)/HeapWordSize;
+
+template <class Chunk_t, template <class> class FreeList_t>
+TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
   // Do some assertion checking here.
-  return (TreeChunk<Chunk>*) fc;
+  return (TreeChunk<Chunk_t, FreeList_t>*) fc;
 }
 
-template <class Chunk>
-void TreeChunk<Chunk>::verify_tree_chunk_list() const {
-  TreeChunk<Chunk>* nextTC = (TreeChunk<Chunk>*)next();
+template <class Chunk_t, template <class> class FreeList_t>
+void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
+  TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
   if (prev() != NULL) { // interior list node shouldn'r have tree fields
     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
               embedded_list()->right()  == NULL, "should be clear");
@@ -57,53 +66,113 @@
   }
 }
 
+template <class Chunk_t, template <class> class FreeList_t>
+TreeList<Chunk_t, FreeList_t>::TreeList() {}
 
-template <class Chunk>
-TreeList<Chunk>* TreeList<Chunk>::as_TreeList(TreeChunk<Chunk>* tc) {
+template <class Chunk_t, template <class> class FreeList_t>
+TreeList<Chunk_t, FreeList_t>*
+TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
   // This first free chunk in the list will be the tree list.
-  assert(tc->size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "Chunk is too small for a TreeChunk");
-  TreeList<Chunk>* tl = tc->embedded_list();
+  assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
+    "Chunk is too small for a TreeChunk");
+  TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
+  tl->initialize();
   tc->set_list(tl);
-#ifdef ASSERT
-  tl->set_protecting_lock(NULL);
-#endif
-  tl->set_hint(0);
   tl->set_size(tc->size());
   tl->link_head(tc);
   tl->link_tail(tc);
   tl->set_count(1);
-  tl->init_statistics(true /* split_birth */);
-  tl->set_parent(NULL);
-  tl->set_left(NULL);
-  tl->set_right(NULL);
+
   return tl;
 }
 
-template <class Chunk>
-TreeList<Chunk>* TreeList<Chunk>::as_TreeList(HeapWord* addr, size_t size) {
-  TreeChunk<Chunk>* tc = (TreeChunk<Chunk>*) addr;
-  assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "Chunk is too small for a TreeChunk");
-  // The space in the heap will have been mangled initially but
-  // is not remangled when a free chunk is returned to the free list
+
+template <class Chunk_t, template <class> class FreeList_t>
+TreeList<Chunk_t, FreeList_t>*
+get_chunk(size_t size, enum FreeBlockDictionary<Chunk_t>::Dither dither) {
+  FreeBlockDictionary<Chunk_t>::verify_par_locked();
+  Chunk_t* res = get_chunk_from_tree(size, dither);
+  assert(res == NULL || res->is_free(),
+         "Should be returning a free chunk");
+  assert(dither != FreeBlockDictionary<Chunk_t>::exactly ||
+         res->size() == size, "Not correct size");
+  return res;
+}
+
+template <class Chunk_t, template <class> class FreeList_t>
+TreeList<Chunk_t, FreeList_t>*
+TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
+  TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
+  assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
+    "Chunk is too small for a TreeChunk");
+  // The space will have been mangled initially but
+  // is not remangled when a Chunk_t is returned to the free list
   // (since it is used to maintain the chunk on the free list).
-  assert((ZapUnusedHeapArea &&
-          SpaceMangler::is_mangled((HeapWord*) tc->size_addr()) &&
-          SpaceMangler::is_mangled((HeapWord*) tc->prev_addr()) &&
-          SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
-          (tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
-    "Space should be clear or mangled");
+  tc->assert_is_mangled();
   tc->set_size(size);
   tc->link_prev(NULL);
   tc->link_next(NULL);
-  TreeList<Chunk>* tl = TreeList<Chunk>::as_TreeList(tc);
+  TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
   return tl;
 }
 
-template <class Chunk>
-TreeList<Chunk>* TreeList<Chunk>::remove_chunk_replace_if_needed(TreeChunk<Chunk>* tc) {
 
-  TreeList<Chunk>* retTL = this;
-  Chunk* list = head();
+#ifndef SERIALGC
+// Specialize for AdaptiveFreeList which tries to avoid
+// splitting a chunk of a size that is under populated in favor of
+// an over populated size.  The general get_better_list() just returns
+// the current list.
+template <>
+TreeList<FreeChunk, AdaptiveFreeList>*
+TreeList<FreeChunk, AdaptiveFreeList>::get_better_list(
+  BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList>* dictionary) {
+  // A candidate chunk has been found.  If it is already under
+  // populated, get a chunk associated with the hint for this
+  // chunk.
+
+  TreeList<FreeChunk, ::AdaptiveFreeList>* curTL = this;
+  if (surplus() <= 0) {
+    /* Use the hint to find a size with a surplus, and reset the hint. */
+    TreeList<FreeChunk, ::AdaptiveFreeList>* hintTL = this;
+    while (hintTL->hint() != 0) {
+      assert(hintTL->hint() > hintTL->size(),
+        "hint points in the wrong direction");
+      hintTL = dictionary->find_list(hintTL->hint());
+      assert(curTL != hintTL, "Infinite loop");
+      if (hintTL == NULL ||
+          hintTL == curTL /* Should not happen but protect against it */ ) {
+        // No useful hint.  Set the hint to NULL and go on.
+        curTL->set_hint(0);
+        break;
+      }
+      assert(hintTL->size() > curTL->size(), "hint is inconsistent");
+      if (hintTL->surplus() > 0) {
+        // The hint led to a list that has a surplus.  Use it.
+        // Set the hint for the candidate to an overpopulated
+        // size.
+        curTL->set_hint(hintTL->size());
+        // Change the candidate.
+        curTL = hintTL;
+        break;
+      }
+    }
+  }
+  return curTL;
+}
+#endif // SERIALGC
+
+template <class Chunk_t, template <class> class FreeList_t>
+TreeList<Chunk_t, FreeList_t>*
+TreeList<Chunk_t, FreeList_t>::get_better_list(
+  BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
+  return this;
+}
+
+template <class Chunk_t, template <class> class FreeList_t>
+TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
+
+  TreeList<Chunk_t, FreeList_t>* retTL = this;
+  Chunk_t* list = head();
   assert(!list || list != list->next(), "Chunk on list twice");
   assert(tc != NULL, "Chunk being removed is NULL");
   assert(parent() == NULL || this == parent()->left() ||
@@ -112,13 +181,13 @@
   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 
-  Chunk* prevFC = tc->prev();
-  TreeChunk<Chunk>* nextTC = TreeChunk<Chunk>::as_TreeChunk(tc->next());
+  Chunk_t* prevFC = tc->prev();
+  TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
   assert(list != NULL, "should have at least the target chunk");
 
   // Is this the first item on the list?
   if (tc == list) {
-    // The "getChunk..." functions for a TreeList<Chunk> will not return the
+    // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
     // first chunk in the list unless it is the last chunk in the list
     // because the first chunk is also acting as the tree node.
     // When coalescing happens, however, the first chunk in the a tree
@@ -127,8 +196,8 @@
     // allocated when the sweeper yields (giving up the free list lock)
     // to allow mutator activity.  If this chunk is the first in the
     // list and is not the last in the list, do the work to copy the
-    // TreeList<Chunk> from the first chunk to the next chunk and update all
-    // the TreeList<Chunk> pointers in the chunks in the list.
+    // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
+    // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
     if (nextTC == NULL) {
       assert(prevFC == NULL, "Not last chunk in the list");
       set_tail(NULL);
@@ -141,11 +210,11 @@
       // This can be slow for a long list.  Consider having
       // an option that does not allow the first chunk on the
       // list to be coalesced.
-      for (TreeChunk<Chunk>* curTC = nextTC; curTC != NULL;
-          curTC = TreeChunk<Chunk>::as_TreeChunk(curTC->next())) {
+      for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
+          curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
         curTC->set_list(retTL);
       }
-      // Fix the parent to point to the new TreeList<Chunk>.
+      // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
       if (retTL->parent() != NULL) {
         if (this == retTL->parent()->left()) {
           retTL->parent()->set_left(retTL);
@@ -176,9 +245,9 @@
     prevFC->link_after(nextTC);
   }
 
-  // Below this point the embeded TreeList<Chunk> being used for the
+  // Below this point the embeded TreeList<Chunk_t, FreeList_t> being used for the
   // tree node may have changed. Don't use "this"
-  // TreeList<Chunk>*.
+  // TreeList<Chunk_t, FreeList_t>*.
   // chunk should still be a free chunk (bit set in _prev)
   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
     "Wrong sized chunk in list");
@@ -188,7 +257,7 @@
     tc->set_list(NULL);
     bool prev_found = false;
     bool next_found = false;
-    for (Chunk* curFC = retTL->head();
+    for (Chunk_t* curFC = retTL->head();
          curFC != NULL; curFC = curFC->next()) {
       assert(curFC != tc, "Chunk is still in list");
       if (curFC == prevFC) {
@@ -215,8 +284,8 @@
   return retTL;
 }
 
-template <class Chunk>
-void TreeList<Chunk>::return_chunk_at_tail(TreeChunk<Chunk>* chunk) {
+template <class Chunk_t, template <class> class FreeList_t>
+void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
   assert(chunk != NULL, "returning NULL chunk");
   assert(chunk->list() == this, "list should be set for chunk");
   assert(tail() != NULL, "The tree list is embedded in the first chunk");
@@ -225,12 +294,12 @@
   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 
-  Chunk* fc = tail();
+  Chunk_t* fc = tail();
   fc->link_after(chunk);
   link_tail(chunk);
 
   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
-  increment_count();
+  FreeList_t<Chunk_t>::increment_count();
   debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
@@ -238,10 +307,10 @@
 
 // Add this chunk at the head of the list.  "At the head of the list"
 // is defined to be after the chunk pointer to by head().  This is
-// because the TreeList<Chunk> is embedded in the first TreeChunk<Chunk> in the
-// list.  See the definition of TreeChunk<Chunk>.
-template <class Chunk>
-void TreeList<Chunk>::return_chunk_at_head(TreeChunk<Chunk>* chunk) {
+// because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
+// list.  See the definition of TreeChunk<Chunk_t, FreeList_t>.
+template <class Chunk_t, template <class> class FreeList_t>
+void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
   assert(chunk->list() == this, "list should be set for chunk");
   assert(head() != NULL, "The tree list is embedded in the first chunk");
   assert(chunk != NULL, "returning NULL chunk");
@@ -249,7 +318,7 @@
   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 
-  Chunk* fc = head()->next();
+  Chunk_t* fc = head()->next();
   if (fc != NULL) {
     chunk->link_after(fc);
   } else {
@@ -258,28 +327,38 @@
   }
   head()->link_after(chunk);
   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
-  increment_count();
+  FreeList_t<Chunk_t>::increment_count();
   debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 }
 
-template <class Chunk>
-TreeChunk<Chunk>* TreeList<Chunk>::head_as_TreeChunk() {
-  assert(head() == NULL || TreeChunk<Chunk>::as_TreeChunk(head())->list() == this,
-    "Wrong type of chunk?");
-  return TreeChunk<Chunk>::as_TreeChunk(head());
+template <class Chunk_t, template <class> class FreeList_t>
+void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
+  assert((ZapUnusedHeapArea &&
+          SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
+          SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
+          SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
+          (size() == 0 && prev() == NULL && next() == NULL),
+    "Space should be clear or mangled");
 }
 
-template <class Chunk>
-TreeChunk<Chunk>* TreeList<Chunk>::first_available() {
+template <class Chunk_t, template <class> class FreeList_t>
+TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
+  assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
+    "Wrong type of chunk?");
+  return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
+}
+
+template <class Chunk_t, template <class> class FreeList_t>
+TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
   assert(head() != NULL, "The head of the list cannot be NULL");
-  Chunk* fc = head()->next();
-  TreeChunk<Chunk>* retTC;
+  Chunk_t* fc = head()->next();
+  TreeChunk<Chunk_t, FreeList_t>* retTC;
   if (fc == NULL) {
     retTC = head_as_TreeChunk();
   } else {
-    retTC = TreeChunk<Chunk>::as_TreeChunk(fc);
+    retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
   }
   assert(retTC->list() == this, "Wrong type of chunk.");
   return retTC;
@@ -288,41 +367,32 @@
 // Returns the block with the largest heap address amongst
 // those in the list for this size; potentially slow and expensive,
 // use with caution!
-template <class Chunk>
-TreeChunk<Chunk>* TreeList<Chunk>::largest_address() {
+template <class Chunk_t, template <class> class FreeList_t>
+TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
   assert(head() != NULL, "The head of the list cannot be NULL");
-  Chunk* fc = head()->next();
-  TreeChunk<Chunk>* retTC;
+  Chunk_t* fc = head()->next();
+  TreeChunk<Chunk_t, FreeList_t>* retTC;
   if (fc == NULL) {
     retTC = head_as_TreeChunk();
   } else {
     // walk down the list and return the one with the highest
     // heap address among chunks of this size.
-    Chunk* last = fc;
+    Chunk_t* last = fc;
     while (fc->next() != NULL) {
       if ((HeapWord*)last < (HeapWord*)fc) {
         last = fc;
       }
       fc = fc->next();
     }
-    retTC = TreeChunk<Chunk>::as_TreeChunk(last);
+    retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
   }
   assert(retTC->list() == this, "Wrong type of chunk.");
   return retTC;
 }
 
-template <class Chunk>
-BinaryTreeDictionary<Chunk>::BinaryTreeDictionary(bool adaptive_freelists, bool splay) :
-  _splay(splay), _adaptive_freelists(adaptive_freelists),
-  _total_size(0), _total_free_blocks(0), _root(0) {}
-
-template <class Chunk>
-BinaryTreeDictionary<Chunk>::BinaryTreeDictionary(MemRegion mr,
-                                           bool adaptive_freelists,
-                                           bool splay):
-  _adaptive_freelists(adaptive_freelists), _splay(splay)
-{
-  assert(mr.word_size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
+template <class Chunk_t, template <class> class FreeList_t>
+BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
+  assert((mr.byte_size() > min_size()), "minimum chunk size");
 
   reset(mr);
   assert(root()->left() == NULL, "reset check failed");
@@ -333,52 +403,48 @@
   assert(total_free_blocks() == 1, "reset check failed");
 }
 
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::inc_total_size(size_t inc) {
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
   _total_size = _total_size + inc;
 }
 
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::dec_total_size(size_t dec) {
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
   _total_size = _total_size - dec;
 }
 
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::reset(MemRegion mr) {
-  assert(mr.word_size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
-  set_root(TreeList<Chunk>::as_TreeList(mr.start(), mr.word_size()));
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
+  assert((mr.byte_size() > min_size()), "minimum chunk size");
+  set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
   set_total_size(mr.word_size());
   set_total_free_blocks(1);
 }
 
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::reset(HeapWord* addr, size_t byte_size) {
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
   MemRegion mr(addr, heap_word_size(byte_size));
   reset(mr);
 }
 
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::reset() {
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
   set_root(NULL);
   set_total_size(0);
   set_total_free_blocks(0);
 }
 
 // Get a free block of size at least size from tree, or NULL.
-// If a splay step is requested, the removal algorithm (only) incorporates
-// a splay step as follows:
-// . the search proceeds down the tree looking for a possible
-//   match. At the (closest) matching location, an appropriate splay step is applied
-//   (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
-//   if available, and if it's the last chunk, the node is deleted. A deteleted
-//   node is replaced in place by its tree successor.
-template <class Chunk>
-TreeChunk<Chunk>*
-BinaryTreeDictionary<Chunk>::get_chunk_from_tree(size_t size, enum FreeBlockDictionary<Chunk>::Dither dither, bool splay)
+template <class Chunk_t, template <class> class FreeList_t>
+TreeChunk<Chunk_t, FreeList_t>*
+BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
+                              size_t size,
+                              enum FreeBlockDictionary<Chunk_t>::Dither dither)
 {
-  TreeList<Chunk> *curTL, *prevTL;
-  TreeChunk<Chunk>* retTC = NULL;
-  assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
+  TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
+  TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
+
+  assert((size >= min_size()), "minimum chunk size");
   if (FLSVerifyDictionary) {
     verify_tree();
   }
@@ -398,7 +464,7 @@
   }
   if (curTL == NULL) { // couldn't find exact match
 
-    if (dither == FreeBlockDictionary<Chunk>::exactly) return NULL;
+    if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;
 
     // try and find the next larger size by walking back up the search path
     for (curTL = prevTL; curTL != NULL;) {
@@ -410,46 +476,9 @@
   }
   if (curTL != NULL) {
     assert(curTL->size() >= size, "size inconsistency");
-    if (adaptive_freelists()) {
 
-      // A candidate chunk has been found.  If it is already under
-      // populated, get a chunk associated with the hint for this
-      // chunk.
-      if (curTL->surplus() <= 0) {
-        /* Use the hint to find a size with a surplus, and reset the hint. */
-        TreeList<Chunk>* hintTL = curTL;
-        while (hintTL->hint() != 0) {
-          assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
-            "hint points in the wrong direction");
-          hintTL = find_list(hintTL->hint());
-          assert(curTL != hintTL, "Infinite loop");
-          if (hintTL == NULL ||
-              hintTL == curTL /* Should not happen but protect against it */ ) {
-            // No useful hint.  Set the hint to NULL and go on.
-            curTL->set_hint(0);
-            break;
-          }
-          assert(hintTL->size() > size, "hint is inconsistent");
-          if (hintTL->surplus() > 0) {
-            // The hint led to a list that has a surplus.  Use it.
-            // Set the hint for the candidate to an overpopulated
-            // size.
-            curTL->set_hint(hintTL->size());
-            // Change the candidate.
-            curTL = hintTL;
-            break;
-          }
-          // The evm code reset the hint of the candidate as
-          // at an interim point.  Why?  Seems like this leaves
-          // the hint pointing to a list that didn't work.
-          // curTL->set_hint(hintTL->size());
-        }
-      }
-    }
-    // don't waste time splaying if chunk's singleton
-    if (splay && curTL->head()->next() != NULL) {
-      semi_splay_step(curTL);
-    }
+    curTL = curTL->get_better_list(this);
+
     retTC = curTL->first_available();
     assert((retTC != NULL) && (curTL->count() > 0),
       "A list in the binary tree should not be NULL");
@@ -465,9 +494,9 @@
   return retTC;
 }
 
-template <class Chunk>
-TreeList<Chunk>* BinaryTreeDictionary<Chunk>::find_list(size_t size) const {
-  TreeList<Chunk>* curTL;
+template <class Chunk_t, template <class> class FreeList_t>
+TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
+  TreeList<Chunk_t, FreeList_t>* curTL;
   for (curTL = root(); curTL != NULL;) {
     if (curTL->size() == size) {        // exact match
       break;
@@ -484,10 +513,10 @@
 }
 
 
-template <class Chunk>
-bool BinaryTreeDictionary<Chunk>::verify_chunk_in_free_list(Chunk* tc) const {
+template <class Chunk_t, template <class> class FreeList_t>
+bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
   size_t size = tc->size();
-  TreeList<Chunk>* tl = find_list(size);
+  TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
   if (tl == NULL) {
     return false;
   } else {
@@ -495,9 +524,9 @@
   }
 }
 
-template <class Chunk>
-Chunk* BinaryTreeDictionary<Chunk>::find_largest_dict() const {
-  TreeList<Chunk> *curTL = root();
+template <class Chunk_t, template <class> class FreeList_t>
+Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
+  TreeList<Chunk_t, FreeList_t> *curTL = root();
   if (curTL != NULL) {
     while(curTL->right() != NULL) curTL = curTL->right();
     return curTL->largest_address();
@@ -510,15 +539,15 @@
 // chunk in a list on a tree node, just unlink it.
 // If it is the last chunk in the list (the next link is NULL),
 // remove the node and repair the tree.
-template <class Chunk>
-TreeChunk<Chunk>*
-BinaryTreeDictionary<Chunk>::remove_chunk_from_tree(TreeChunk<Chunk>* tc) {
+template <class Chunk_t, template <class> class FreeList_t>
+TreeChunk<Chunk_t, FreeList_t>*
+BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
   assert(tc != NULL, "Should not call with a NULL chunk");
   assert(tc->is_free(), "Header is not marked correctly");
 
-  TreeList<Chunk> *newTL, *parentTL;
-  TreeChunk<Chunk>* retTC;
-  TreeList<Chunk>* tl = tc->list();
+  TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
+  TreeChunk<Chunk_t, FreeList_t>* retTC;
+  TreeList<Chunk_t, FreeList_t>* tl = tc->list();
   debug_only(
     bool removing_only_chunk = false;
     if (tl == _root) {
@@ -538,8 +567,8 @@
 
   retTC = tc;
   // Removing this chunk can have the side effect of changing the node
-  // (TreeList<Chunk>*) in the tree.  If the node is the root, update it.
-  TreeList<Chunk>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
+  // (TreeList<Chunk_t, FreeList_t>*) in the tree.  If the node is the root, update it.
+  TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
   assert(tc->is_free(), "Chunk should still be free");
   assert(replacementTL->parent() == NULL ||
          replacementTL == replacementTL->parent()->left() ||
@@ -549,17 +578,18 @@
     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
     set_root(replacementTL);
   }
-  debug_only(
+#ifdef ASSERT
     if (tl != replacementTL) {
       assert(replacementTL->head() != NULL,
         "If the tree list was replaced, it should not be a NULL list");
-      TreeList<Chunk>* rhl = replacementTL->head_as_TreeChunk()->list();
-      TreeList<Chunk>* rtl = TreeChunk<Chunk>::as_TreeChunk(replacementTL->tail())->list();
+      TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
+      TreeList<Chunk_t, FreeList_t>* rtl =
+        TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
       assert(rhl == replacementTL, "Broken head");
       assert(rtl == replacementTL, "Broken tail");
       assert(replacementTL->size() == tc->size(),  "Broken size");
     }
-  )
+#endif
 
   // Does the tree need to be repaired?
   if (replacementTL->count() == 0) {
@@ -574,7 +604,7 @@
     } else if (replacementTL->right() == NULL) {
       // right is NULL
       newTL = replacementTL->left();
-      debug_only(replacementTL->clearLeft();)
+      debug_only(replacementTL->clear_left();)
     } else {  // we have both children, so, by patriarchal convention,
               // my replacement is least node in right sub-tree
       complicated_splice = true;
@@ -623,7 +653,7 @@
       newTL->set_right(replacementTL->right());
       debug_only(
         replacementTL->clear_right();
-        replacementTL->clearLeft();
+        replacementTL->clear_left();
       )
     }
     assert(replacementTL->right() == NULL &&
@@ -644,21 +674,21 @@
     verify_tree();
   }
   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
-  return TreeChunk<Chunk>::as_TreeChunk(retTC);
+  return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
 }
 
 // Remove the leftmost node (lm) in the tree and return it.
 // If lm has a right child, link it to the left node of
 // the parent of lm.
-template <class Chunk>
-TreeList<Chunk>* BinaryTreeDictionary<Chunk>::remove_tree_minimum(TreeList<Chunk>* tl) {
+template <class Chunk_t, template <class> class FreeList_t>
+TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
   // locate the subtree minimum by walking down left branches
-  TreeList<Chunk>* curTL = tl;
+  TreeList<Chunk_t, FreeList_t>* curTL = tl;
   for (; curTL->left() != NULL; curTL = curTL->left());
   // obviously curTL now has at most one child, a right child
   if (curTL != root()) {  // Should this test just be removed?
-    TreeList<Chunk>* parentTL = curTL->parent();
+    TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
     if (parentTL->left() == curTL) { // curTL is a left child
       parentTL->set_left(curTL->right());
     } else {
@@ -685,31 +715,14 @@
   return curTL;
 }
 
-// Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
-// The simplifications are the following:
-// . we splay only when we delete (not when we insert)
-// . we apply a single spay step per deletion/access
-// By doing such partial splaying, we reduce the amount of restructuring,
-// while getting a reasonably efficient search tree (we think).
-// [Measurements will be needed to (in)validate this expectation.]
-
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::semi_splay_step(TreeList<Chunk>* tc) {
-  // apply a semi-splay step at the given node:
-  // . if root, norting needs to be done
-  // . if child of root, splay once
-  // . else zig-zig or sig-zag depending on path from grandparent
-  if (root() == tc) return;
-  warning("*** Splaying not yet implemented; "
-          "tree operations may be inefficient ***");
-}
-
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::insert_chunk_in_tree(Chunk* fc) {
-  TreeList<Chunk> *curTL, *prevTL;
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
+  TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
   size_t size = fc->size();
 
-  assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "too small to be a TreeList<Chunk>");
+  assert((size >= min_size()),
+    err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
+      size, min_size()));
   if (FLSVerifyDictionary) {
     verify_tree();
   }
@@ -729,9 +742,9 @@
       curTL = curTL->right();
     }
   }
-  TreeChunk<Chunk>* tc = TreeChunk<Chunk>::as_TreeChunk(fc);
+  TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
   // This chunk is being returned to the binary tree.  Its embedded
-  // TreeList<Chunk> should be unused at this point.
+  // TreeList<Chunk_t, FreeList_t> should be unused at this point.
   tc->initialize();
   if (curTL != NULL) {          // exact match
     tc->set_list(curTL);
@@ -739,8 +752,8 @@
   } else {                     // need a new node in tree
     tc->clear_next();
     tc->link_prev(NULL);
-    TreeList<Chunk>* newTL = TreeList<Chunk>::as_TreeList(tc);
-    assert(((TreeChunk<Chunk>*)tc)->list() == newTL,
+    TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
+    assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
       "List was not initialized correctly");
     if (prevTL == NULL) {      // we are the only tree node
       assert(root() == NULL, "control point invariant");
@@ -768,30 +781,30 @@
   }
 }
 
-template <class Chunk>
-size_t BinaryTreeDictionary<Chunk>::max_chunk_size() const {
-  FreeBlockDictionary<Chunk>::verify_par_locked();
-  TreeList<Chunk>* tc = root();
+template <class Chunk_t, template <class> class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
+  FreeBlockDictionary<Chunk_t>::verify_par_locked();
+  TreeList<Chunk_t, FreeList_t>* tc = root();
   if (tc == NULL) return 0;
   for (; tc->right() != NULL; tc = tc->right());
   return tc->size();
 }
 
-template <class Chunk>
-size_t BinaryTreeDictionary<Chunk>::total_list_length(TreeList<Chunk>* tl) const {
+template <class Chunk_t, template <class> class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
   size_t res;
   res = tl->count();
 #ifdef ASSERT
   size_t cnt;
-  Chunk* tc = tl->head();
+  Chunk_t* tc = tl->head();
   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
   assert(res == cnt, "The count is not being maintained correctly");
 #endif
   return res;
 }
 
-template <class Chunk>
-size_t BinaryTreeDictionary<Chunk>::total_size_in_tree(TreeList<Chunk>* tl) const {
+template <class Chunk_t, template <class> class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   if (tl == NULL)
     return 0;
   return (tl->size() * total_list_length(tl)) +
@@ -799,8 +812,8 @@
          total_size_in_tree(tl->right());
 }
 
-template <class Chunk>
-double BinaryTreeDictionary<Chunk>::sum_of_squared_block_sizes(TreeList<Chunk>* const tl) const {
+template <class Chunk_t, template <class> class FreeList_t>
+double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
   if (tl == NULL) {
     return 0.0;
   }
@@ -811,8 +824,8 @@
   return curr;
 }
 
-template <class Chunk>
-size_t BinaryTreeDictionary<Chunk>::total_free_blocks_in_tree(TreeList<Chunk>* tl) const {
+template <class Chunk_t, template <class> class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   if (tl == NULL)
     return 0;
   return total_list_length(tl) +
@@ -820,28 +833,28 @@
          total_free_blocks_in_tree(tl->right());
 }
 
-template <class Chunk>
-size_t BinaryTreeDictionary<Chunk>::num_free_blocks() const {
+template <class Chunk_t, template <class> class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
   assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
          "_total_free_blocks inconsistency");
   return total_free_blocks();
 }
 
-template <class Chunk>
-size_t BinaryTreeDictionary<Chunk>::tree_height_helper(TreeList<Chunk>* tl) const {
+template <class Chunk_t, template <class> class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
   if (tl == NULL)
     return 0;
   return 1 + MAX2(tree_height_helper(tl->left()),
                   tree_height_helper(tl->right()));
 }
 
-template <class Chunk>
-size_t BinaryTreeDictionary<Chunk>::treeHeight() const {
+template <class Chunk_t, template <class> class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
   return tree_height_helper(root());
 }
 
-template <class Chunk>
-size_t BinaryTreeDictionary<Chunk>::total_nodes_helper(TreeList<Chunk>* tl) const {
+template <class Chunk_t, template <class> class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
   if (tl == NULL) {
     return 0;
   }
@@ -849,14 +862,18 @@
     total_nodes_helper(tl->right());
 }
 
-template <class Chunk>
-size_t BinaryTreeDictionary<Chunk>::total_nodes_in_tree(TreeList<Chunk>* tl) const {
+template <class Chunk_t, template <class> class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   return total_nodes_helper(root());
 }
 
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::dict_census_udpate(size_t size, bool split, bool birth){
-  TreeList<Chunk>* nd = find_list(size);
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
+
+#ifndef SERIALGC
+template <>
+void BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::dict_census_update(size_t size, bool split, bool birth){
+  TreeList<FreeChunk, AdaptiveFreeList>* nd = find_list(size);
   if (nd) {
     if (split) {
       if (birth) {
@@ -882,16 +899,26 @@
   //   This is a birth associated with a LinAB.  The chunk
   //     for the LinAB is not in the dictionary.
 }
+#endif // SERIALGC
 
-template <class Chunk>
-bool BinaryTreeDictionary<Chunk>::coal_dict_over_populated(size_t size) {
+template <class Chunk_t, template <class> class FreeList_t>
+bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
+  // For the general type of freelists, encourage coalescing by
+  // returning true.
+  return true;
+}
+
+#ifndef SERIALGC
+template <>
+bool BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::coal_dict_over_populated(size_t size) {
   if (FLSAlwaysCoalesceLarge) return true;
 
-  TreeList<Chunk>* list_of_size = find_list(size);
+  TreeList<FreeChunk, AdaptiveFreeList>* list_of_size = find_list(size);
   // None of requested size implies overpopulated.
   return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
          list_of_size->count() > list_of_size->coal_desired();
 }
+#endif  // SERIALGC
 
 // Closures for walking the binary tree.
 //   do_list() walks the free list in a node applying the closure
@@ -899,19 +926,18 @@
 //   do_tree() walks the nodes in the binary tree applying do_list()
 //     to each list at each node.
 
-template <class Chunk>
+template <class Chunk_t, template <class> class FreeList_t>
 class TreeCensusClosure : public StackObj {
  protected:
-  virtual void do_list(FreeList<Chunk>* fl) = 0;
+  virtual void do_list(FreeList_t<Chunk_t>* fl) = 0;
  public:
-  virtual void do_tree(TreeList<Chunk>* tl) = 0;
+  virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
 };
 
-template <class Chunk>
-class AscendTreeCensusClosure : public TreeCensusClosure<Chunk> {
-  using TreeCensusClosure<Chunk>::do_list;
+template <class Chunk_t, template <class> class FreeList_t>
+class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
  public:
-  void do_tree(TreeList<Chunk>* tl) {
+  void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
     if (tl != NULL) {
       do_tree(tl->left());
       do_list(tl);
@@ -920,11 +946,10 @@
   }
 };
 
-template <class Chunk>
-class DescendTreeCensusClosure : public TreeCensusClosure<Chunk> {
-  using TreeCensusClosure<Chunk>::do_list;
+template <class Chunk_t, template <class> class FreeList_t>
+class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
  public:
-  void do_tree(TreeList<Chunk>* tl) {
+  void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
     if (tl != NULL) {
       do_tree(tl->right());
       do_list(tl);
@@ -935,8 +960,8 @@
 
 // For each list in the tree, calculate the desired, desired
 // coalesce, count before sweep, and surplus before sweep.
-template <class Chunk>
-class BeginSweepClosure : public AscendTreeCensusClosure<Chunk> {
+template <class Chunk_t, template <class> class FreeList_t>
+class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
   double _percentage;
   float _inter_sweep_current;
   float _inter_sweep_estimate;
@@ -951,32 +976,36 @@
    _inter_sweep_estimate(inter_sweep_estimate),
    _intra_sweep_estimate(intra_sweep_estimate) { }
 
-  void do_list(FreeList<Chunk>* fl) {
+  void do_list(FreeList<Chunk_t>* fl) {}
+
+#ifndef SERIALGC
+  void do_list(AdaptiveFreeList<Chunk_t>* fl) {
     double coalSurplusPercent = _percentage;
     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
     fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
     fl->set_before_sweep(fl->count());
     fl->set_bfr_surp(fl->surplus());
   }
+#endif // SERIALGC
 };
 
 // Used to search the tree until a condition is met.
 // Similar to TreeCensusClosure but searches the
 // tree and returns promptly when found.
 
-template <class Chunk>
+template <class Chunk_t, template <class> class FreeList_t>
 class TreeSearchClosure : public StackObj {
  protected:
-  virtual bool do_list(FreeList<Chunk>* fl) = 0;
+  virtual bool do_list(FreeList_t<Chunk_t>* fl) = 0;
  public:
-  virtual bool do_tree(TreeList<Chunk>* tl) = 0;
+  virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
 };
 
 #if 0 //  Don't need this yet but here for symmetry.
-template <class Chunk>
-class AscendTreeSearchClosure : public TreeSearchClosure {
+template <class Chunk_t, template <class> class FreeList_t>
+class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
  public:
-  bool do_tree(TreeList<Chunk>* tl) {
+  bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
     if (tl != NULL) {
       if (do_tree(tl->left())) return true;
       if (do_list(tl)) return true;
@@ -987,11 +1016,10 @@
 };
 #endif
 
-template <class Chunk>
-class DescendTreeSearchClosure : public TreeSearchClosure<Chunk> {
-  using TreeSearchClosure<Chunk>::do_list;
+template <class Chunk_t, template <class> class FreeList_t>
+class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
  public:
-  bool do_tree(TreeList<Chunk>* tl) {
+  bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
     if (tl != NULL) {
       if (do_tree(tl->right())) return true;
       if (do_list(tl)) return true;
@@ -1003,17 +1031,17 @@
 
 // Searches the tree for a chunk that ends at the
 // specified address.
-template <class Chunk>
-class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk> {
+template <class Chunk_t, template <class> class FreeList_t>
+class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
   HeapWord* _target;
-  Chunk* _found;
+  Chunk_t* _found;
 
  public:
   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
-  bool do_list(FreeList<Chunk>* fl) {
-    Chunk* item = fl->head();
+  bool do_list(FreeList_t<Chunk_t>* fl) {
+    Chunk_t* item = fl->head();
     while (item != NULL) {
-      if (item->end() == _target) {
+      if (item->end() == (uintptr_t*) _target) {
         _found = item;
         return true;
       }
@@ -1021,22 +1049,22 @@
     }
     return false;
   }
-  Chunk* found() { return _found; }
+  Chunk_t* found() { return _found; }
 };
 
-template <class Chunk>
-Chunk* BinaryTreeDictionary<Chunk>::find_chunk_ends_at(HeapWord* target) const {
-  EndTreeSearchClosure<Chunk> etsc(target);
+template <class Chunk_t, template <class> class FreeList_t>
+Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
+  EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
   bool found_target = etsc.do_tree(root());
   assert(found_target || etsc.found() == NULL, "Consistency check");
   assert(!found_target || etsc.found() != NULL, "Consistency check");
   return etsc.found();
 }
 
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::begin_sweep_dict_census(double coalSurplusPercent,
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
-  BeginSweepClosure<Chunk> bsc(coalSurplusPercent, inter_sweep_current,
+  BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
                                             inter_sweep_estimate,
                                             intra_sweep_estimate);
   bsc.do_tree(root());
@@ -1045,84 +1073,91 @@
 // Closures and methods for calculating total bytes returned to the
 // free lists in the tree.
 #ifndef PRODUCT
-template <class Chunk>
-class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk> {
+template <class Chunk_t, template <class> class FreeList_t>
+class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
    public:
-  void do_list(FreeList<Chunk>* fl) {
+  void do_list(FreeList_t<Chunk_t>* fl) {
     fl->set_returned_bytes(0);
   }
 };
 
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::initialize_dict_returned_bytes() {
-  InitializeDictReturnedBytesClosure<Chunk> idrb;
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
+  InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
   idrb.do_tree(root());
 }
 
-template <class Chunk>
-class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk> {
+template <class Chunk_t, template <class> class FreeList_t>
+class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
   size_t _dict_returned_bytes;
  public:
   ReturnedBytesClosure() { _dict_returned_bytes = 0; }
-  void do_list(FreeList<Chunk>* fl) {
+  void do_list(FreeList_t<Chunk_t>* fl) {
     _dict_returned_bytes += fl->returned_bytes();
   }
   size_t dict_returned_bytes() { return _dict_returned_bytes; }
 };
 
-template <class Chunk>
-size_t BinaryTreeDictionary<Chunk>::sum_dict_returned_bytes() {
-  ReturnedBytesClosure<Chunk> rbc;
+template <class Chunk_t, template <class> class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
+  ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
   rbc.do_tree(root());
 
   return rbc.dict_returned_bytes();
 }
 
 // Count the number of entries in the tree.
-template <class Chunk>
-class treeCountClosure : public DescendTreeCensusClosure<Chunk> {
+template <class Chunk_t, template <class> class FreeList_t>
+class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
  public:
   uint count;
   treeCountClosure(uint c) { count = c; }
-  void do_list(FreeList<Chunk>* fl) {
+  void do_list(FreeList_t<Chunk_t>* fl) {
     count++;
   }
 };
 
-template <class Chunk>
-size_t BinaryTreeDictionary<Chunk>::total_count() {
-  treeCountClosure<Chunk> ctc(0);
+template <class Chunk_t, template <class> class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
+  treeCountClosure<Chunk_t, FreeList_t> ctc(0);
   ctc.do_tree(root());
   return ctc.count;
 }
 #endif // PRODUCT
 
 // Calculate surpluses for the lists in the tree.
-template <class Chunk>
-class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk> {
+template <class Chunk_t, template <class> class FreeList_t>
+class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
   double percentage;
  public:
   setTreeSurplusClosure(double v) { percentage = v; }
-  void do_list(FreeList<Chunk>* fl) {
+  void do_list(FreeList<Chunk_t>* fl) {}
+
+#ifndef SERIALGC
+  void do_list(AdaptiveFreeList<Chunk_t>* fl) {
     double splitSurplusPercent = percentage;
     fl->set_surplus(fl->count() -
                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
   }
+#endif // SERIALGC
 };
 
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::set_tree_surplus(double splitSurplusPercent) {
-  setTreeSurplusClosure<Chunk> sts(splitSurplusPercent);
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
+  setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
   sts.do_tree(root());
 }
 
 // Set hints for the lists in the tree.
-template <class Chunk>
-class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk> {
+template <class Chunk_t, template <class> class FreeList_t>
+class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
   size_t hint;
  public:
   setTreeHintsClosure(size_t v) { hint = v; }
-  void do_list(FreeList<Chunk>* fl) {
+  void do_list(FreeList<Chunk_t>* fl) {}
+
+#ifndef SERIALGC
+  void do_list(AdaptiveFreeList<Chunk_t>* fl) {
     fl->set_hint(hint);
     assert(fl->hint() == 0 || fl->hint() > fl->size(),
       "Current hint is inconsistent");
@@ -1130,35 +1165,40 @@
       hint = fl->size();
     }
   }
+#endif // SERIALGC
 };
 
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::set_tree_hints(void) {
-  setTreeHintsClosure<Chunk> sth(0);
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
+  setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
   sth.do_tree(root());
 }
 
 // Save count before previous sweep and splits and coalesces.
-template <class Chunk>
-class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk> {
-  void do_list(FreeList<Chunk>* fl) {
+template <class Chunk_t, template <class> class FreeList_t>
+class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
+  void do_list(FreeList<Chunk_t>* fl) {}
+
+#ifndef SERIALGC
+  void do_list(AdaptiveFreeList<Chunk_t>* fl) {
     fl->set_prev_sweep(fl->count());
     fl->set_coal_births(0);
     fl->set_coal_deaths(0);
     fl->set_split_births(0);
     fl->set_split_deaths(0);
   }
+#endif  // SERIALGC
 };
 
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::clear_tree_census(void) {
-  clearTreeCensusClosure<Chunk> ctc;
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
+  clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
   ctc.do_tree(root());
 }
 
 // Do reporting and post sweep clean up.
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::end_sweep_dict_census(double splitSurplusPercent) {
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
   // Does walking the tree 3 times hurt?
   set_tree_surplus(splitSurplusPercent);
   set_tree_hints();
@@ -1169,9 +1209,9 @@
 }
 
 // Print summary statistics
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::report_statistics() const {
-  FreeBlockDictionary<Chunk>::verify_par_locked();
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
+  FreeBlockDictionary<Chunk_t>::verify_par_locked();
   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
          "------------------------------------\n");
   size_t total_size = total_chunk_size(debug_only(NULL));
@@ -1182,36 +1222,47 @@
   if (free_blocks > 0) {
     gclog_or_tty->print("Av.  Block  Size: %d\n", total_size/free_blocks);
   }
-  gclog_or_tty->print("Tree      Height: %d\n", treeHeight());
+  gclog_or_tty->print("Tree      Height: %d\n", tree_height());
 }
 
 // Print census information - counts, births, deaths, etc.
 // for each list in the tree.  Also print some summary
 // information.
-template <class Chunk>
-class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk> {
+template <class Chunk_t, template <class> class FreeList_t>
+class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
   int _print_line;
   size_t _total_free;
-  FreeList<Chunk> _total;
+  FreeList_t<Chunk_t> _total;
 
  public:
   PrintTreeCensusClosure() {
     _print_line = 0;
     _total_free = 0;
   }
-  FreeList<Chunk>* total() { return &_total; }
+  FreeList_t<Chunk_t>* total() { return &_total; }
   size_t total_free() { return _total_free; }
-  void do_list(FreeList<Chunk>* fl) {
+  void do_list(FreeList<Chunk_t>* fl) {
     if (++_print_line >= 40) {
-      FreeList<Chunk>::print_labels_on(gclog_or_tty, "size");
+      FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
       _print_line = 0;
     }
     fl->print_on(gclog_or_tty);
     _total_free +=            fl->count()            * fl->size()        ;
     total()->set_count(      total()->count()       + fl->count()      );
-    total()->set_bfr_surp(    total()->bfr_surp()     + fl->bfr_surp()    );
+  }
+
+#ifndef SERIALGC
+  void do_list(AdaptiveFreeList<Chunk_t>* fl) {
+    if (++_print_line >= 40) {
+      FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
+      _print_line = 0;
+    }
+    fl->print_on(gclog_or_tty);
+    _total_free +=           fl->count()             * fl->size()        ;
+    total()->set_count(      total()->count()        + fl->count()      );
+    total()->set_bfr_surp(   total()->bfr_surp()     + fl->bfr_surp()    );
     total()->set_surplus(    total()->split_deaths() + fl->surplus()    );
-    total()->set_desired(    total()->desired()     + fl->desired()    );
+    total()->set_desired(    total()->desired()      + fl->desired()    );
     total()->set_prev_sweep(  total()->prev_sweep()   + fl->prev_sweep()  );
     total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
     total()->set_coal_births( total()->coal_births()  + fl->coal_births() );
@@ -1219,18 +1270,32 @@
     total()->set_split_births(total()->split_births() + fl->split_births());
     total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
   }
+#endif  // SERIALGC
 };
 
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::print_dict_census(void) const {
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {
 
   gclog_or_tty->print("\nBinaryTree\n");
-  FreeList<Chunk>::print_labels_on(gclog_or_tty, "size");
-  PrintTreeCensusClosure<Chunk> ptc;
+  FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
+  PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
   ptc.do_tree(root());
 
-  FreeList<Chunk>* total = ptc.total();
-  FreeList<Chunk>::print_labels_on(gclog_or_tty, " ");
+  FreeList_t<Chunk_t>* total = ptc.total();
+  FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, " ");
+}
+
+#ifndef SERIALGC
+template <>
+void BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::print_dict_census(void) const {
+
+  gclog_or_tty->print("\nBinaryTree\n");
+  AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
+  PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList> ptc;
+  ptc.do_tree(root());
+
+  AdaptiveFreeList<FreeChunk>* total = ptc.total();
+  AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
   total->print_on(gclog_or_tty, "TOTAL\t");
   gclog_or_tty->print(
               "total_free(words): " SIZE_FORMAT_W(16)
@@ -1242,9 +1307,10 @@
              (double)(total->desired() - total->count())
              /(total->desired() != 0 ? (double)total->desired() : 1.0));
 }
+#endif  // SERIALGC
 
-template <class Chunk>
-class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk> {
+template <class Chunk_t, template <class> class FreeList_t>
+class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
   outputStream* _st;
   int _print_line;
 
@@ -1253,14 +1319,14 @@
     _st = st;
     _print_line = 0;
   }
-  void do_list(FreeList<Chunk>* fl) {
+  void do_list(FreeList_t<Chunk_t>* fl) {
     if (++_print_line >= 40) {
-      FreeList<Chunk>::print_labels_on(_st, "size");
+      FreeList_t<Chunk_t>::print_labels_on(_st, "size");
       _print_line = 0;
     }
     fl->print_on(gclog_or_tty);
     size_t sz = fl->size();
-    for (Chunk* fc = fl->head(); fc != NULL;
+    for (Chunk_t* fc = fl->head(); fc != NULL;
          fc = fc->next()) {
       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
                     fc, (HeapWord*)fc + sz,
@@ -1269,11 +1335,11 @@
   }
 };
 
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::print_free_lists(outputStream* st) const {
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
 
-  FreeList<Chunk>::print_labels_on(st, "size");
-  PrintFreeListsClosure<Chunk> pflc(st);
+  FreeList_t<Chunk_t>::print_labels_on(st, "size");
+  PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
   pflc.do_tree(root());
 }
 
@@ -1281,18 +1347,18 @@
 // . _root has no parent
 // . parent and child point to each other
 // . each node's key correctly related to that of its child(ren)
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::verify_tree() const {
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
   guarantee(root() == NULL || total_free_blocks() == 0 ||
     total_size() != 0, "_total_size should't be 0?");
   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
   verify_tree_helper(root());
 }
 
-template <class Chunk>
-size_t BinaryTreeDictionary<Chunk>::verify_prev_free_ptrs(TreeList<Chunk>* tl) {
+template <class Chunk_t, template <class> class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
   size_t ct = 0;
-  for (Chunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
+  for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
     ct++;
     assert(curFC->prev() == NULL || curFC->prev()->is_free(),
       "Chunk should be free");
@@ -1303,8 +1369,8 @@
 // Note: this helper is recursive rather than iterative, so use with
 // caution on very deep trees; and watch out for stack overflow errors;
 // In general, to be used only for debugging.
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::verify_tree_helper(TreeList<Chunk>* tl) const {
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
   if (tl == NULL)
     return;
   guarantee(tl->size() != 0, "A list must has a size");
@@ -1332,15 +1398,25 @@
   verify_tree_helper(tl->right());
 }
 
-template <class Chunk>
-void BinaryTreeDictionary<Chunk>::verify() const {
+template <class Chunk_t, template <class> class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
   verify_tree();
   guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
 }
 
+template class TreeList<Metablock, FreeList>;
+template class BinaryTreeDictionary<Metablock, FreeList>;
+template class TreeChunk<Metablock, FreeList>;
+
+template class TreeList<Metachunk, FreeList>;
+template class BinaryTreeDictionary<Metachunk, FreeList>;
+template class TreeChunk<Metachunk, FreeList>;
+
+
 #ifndef SERIALGC
 // Explicitly instantiate these types for FreeChunk.
-template class BinaryTreeDictionary<FreeChunk>;
-template class TreeChunk<FreeChunk>;
-template class TreeList<FreeChunk>;
+template class TreeList<FreeChunk, AdaptiveFreeList>;
+template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>;
+template class TreeChunk<FreeChunk, AdaptiveFreeList>;
+
 #endif // SERIALGC