view src/share/vm/gc_implementation/g1/heapRegion.hpp @ 2034:7e37af9d69ef

7011379: G1: overly long concurrent marking cycles Summary: This changeset introduces filtering of SATB buffers at the point when they are about to be enqueued. If this filtering clears enough entries on each buffer, the buffer can then be re-used and not enqueued. This cuts down the number of SATB buffers that need to be processed by the concurrent marking threads. Reviewed-by: johnc, ysr
author tonyp
date Wed, 19 Jan 2011 09:35:17 -0500
parents 2250ee17e258
children 0fa27f37d4d4
line wrap: on
line source
/*
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

#include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
#include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
#include "gc_implementation/g1/survRateGroup.hpp"
#include "gc_implementation/shared/ageTable.hpp"
#include "gc_implementation/shared/spaceDecorator.hpp"
#include "memory/space.inline.hpp"
#include "memory/watermark.hpp"

#ifndef SERIALGC

// A HeapRegion is the smallest piece of a G1CollectedHeap that
// can be collected independently.

// NOTE: Although a HeapRegion is a Space, its
// Space::initDirtyCardClosure method must not be called.
// The problem is that the existence of this method breaks
// the independence of barrier sets from remembered sets.
// The solution is to remove this method from the definition
// of a Space.

class CompactibleSpace;
class ContiguousSpace;
class HeapRegionRemSet;
class HeapRegionRemSetIterator;
class HeapRegion;

// A dirty card to oop closure for heap regions. It
// knows how to get the G1 heap and how to use the bitmap
// in the concurrent marker used by G1 to filter remembered
// sets.

class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
public:
  // Specification of possible DirtyCardToOopClosure filtering.
  enum FilterKind {
    NoFilterKind,
    IntoCSFilterKind,
    OutOfRegionFilterKind
  };

protected:
  HeapRegion* _hr;
  FilterKind _fk;
  G1CollectedHeap* _g1;

  void walk_mem_region_with_cl(MemRegion mr,
                               HeapWord* bottom, HeapWord* top,
                               OopClosure* cl);

  // We don't specialize this for FilteringClosure; filtering is handled by
  // the "FilterKind" mechanism.  But we provide this to avoid a compiler
  // warning.
  void walk_mem_region_with_cl(MemRegion mr,
                               HeapWord* bottom, HeapWord* top,
                               FilteringClosure* cl) {
    HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
                                                       (OopClosure*)cl);
  }

  // Get the actual top of the area on which the closure will
  // operate, given where the top is assumed to be (the end of the
  // memory region passed to do_MemRegion) and where the object
  // at the top is assumed to start. For example, an object may
  // start at the top but actually extend past the assumed top,
  // in which case the top becomes the end of the object.
  HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
    return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
  }

  // Walk the given memory region from bottom to (actual) top
  // looking for objects and applying the oop closure (_cl) to
  // them. The base implementation of this treats the area as
  // blocks, where a block may or may not be an object. Sub-
  // classes should override this to provide more accurate
  // or possibly more efficient walking.
  void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
    Filtering_DCTOC::walk_mem_region(mr, bottom, top);
  }

public:
  HeapRegionDCTOC(G1CollectedHeap* g1,
                  HeapRegion* hr, OopClosure* cl,
                  CardTableModRefBS::PrecisionStyle precision,
                  FilterKind fk);
};


// The complicating factor is that BlockOffsetTable diverged
// significantly, and we need functionality that is only in the G1 version.
// So I copied that code, which led to an alternate G1 version of
// OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
// be reconciled, then G1OffsetTableContigSpace could go away.

// The idea behind time stamps is the following. Doing a save_marks on
// all regions at every GC pause is time consuming (if I remember
// well, 10ms or so). So, we would like to do that only for regions
// that are GC alloc regions. To achieve this, we use time
// stamps. For every evacuation pause, G1CollectedHeap generates a
// unique time stamp (essentially a counter that gets
// incremented). Every time we want to call save_marks on a region,
// we set the saved_mark_word to top and also copy the current GC
// time stamp to the time stamp field of the space. Reading the
// saved_mark_word involves checking the time stamp of the
// region. If it is the same as the current GC time stamp, then we
// can safely read the saved_mark_word field, as it is valid. If the
// time stamp of the region is not the same as the current GC time
// stamp, then we instead read top, as the saved_mark_word field is
// invalid. Time stamps (on the regions and also on the
// G1CollectedHeap) are reset at every cleanup (we iterate over
// the regions anyway) and at the end of a Full GC. The current scheme
// that uses sequential unsigned ints will fail only if we have 4b
// evacuation pauses between two cleanups, which is _highly_ unlikely.

class G1OffsetTableContigSpace: public ContiguousSpace {
  friend class VMStructs;
 protected:
  G1BlockOffsetArrayContigSpace _offsets;
  Mutex _par_alloc_lock;
  volatile unsigned _gc_time_stamp;

 public:
  // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
  // assumed to contain zeros.
  G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
                           MemRegion mr, bool is_zeroed = false);

  void set_bottom(HeapWord* value);
  void set_end(HeapWord* value);

  virtual HeapWord* saved_mark_word() const;
  virtual void set_saved_mark();
  void reset_gc_time_stamp() { _gc_time_stamp = 0; }

  virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
  virtual void clear(bool mangle_space);

  HeapWord* block_start(const void* p);
  HeapWord* block_start_const(const void* p) const;

  // Add offset table update.
  virtual HeapWord* allocate(size_t word_size);
  HeapWord* par_allocate(size_t word_size);

  // MarkSweep support phase3
  virtual HeapWord* initialize_threshold();
  virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);

  virtual void print() const;

  void reset_bot() {
    _offsets.zero_bottom_entry();
    _offsets.initialize_threshold();
  }

  void update_bot_for_object(HeapWord* start, size_t word_size) {
    _offsets.alloc_block(start, word_size);
  }

  void print_bot_on(outputStream* out) {
    _offsets.print_on(out);
  }
};

class HeapRegion: public G1OffsetTableContigSpace {
  friend class VMStructs;
 private:

  enum HumongousType {
    NotHumongous = 0,
    StartsHumongous,
    ContinuesHumongous
  };

  // The next filter kind that should be used for a "new_dcto_cl" call with
  // the "traditional" signature.
  HeapRegionDCTOC::FilterKind _next_fk;

  // Requires that the region "mr" be dense with objects, and begin and end
  // with an object.
  void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);

  // The remembered set for this region.
  // (Might want to make this "inline" later, to avoid some alloc failure
  // issues.)
  HeapRegionRemSet* _rem_set;

  G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }

 protected:
  // If this region is a member of a HeapRegionSeq, the index in that
  // sequence, otherwise -1.
  int  _hrs_index;

  HumongousType _humongous_type;
  // For a humongous region, region in which it starts.
  HeapRegion* _humongous_start_region;
  // For the start region of a humongous sequence, it's original end().
  HeapWord* _orig_end;

  // True iff the region is in current collection_set.
  bool _in_collection_set;

    // True iff the region is on the unclean list, waiting to be zero filled.
  bool _is_on_unclean_list;

  // True iff the region is on the free list, ready for allocation.
  bool _is_on_free_list;

  // Is this or has it been an allocation region in the current collection
  // pause.
  bool _is_gc_alloc_region;

  // True iff an attempt to evacuate an object in the region failed.
  bool _evacuation_failed;

  // A heap region may be a member one of a number of special subsets, each
  // represented as linked lists through the field below.  Currently, these
  // sets include:
  //   The collection set.
  //   The set of allocation regions used in a collection pause.
  //   Spaces that may contain gray objects.
  HeapRegion* _next_in_special_set;

  // next region in the young "generation" region set
  HeapRegion* _next_young_region;

  // Next region whose cards need cleaning
  HeapRegion* _next_dirty_cards_region;

  // For parallel heapRegion traversal.
  jint _claimed;

  // We use concurrent marking to determine the amount of live data
  // in each heap region.
  size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
  size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.

  // See "sort_index" method.  -1 means is not in the array.
  int _sort_index;

  // <PREDICTION>
  double _gc_efficiency;
  // </PREDICTION>

  enum YoungType {
    NotYoung,                   // a region is not young
    Young,                      // a region is young
    Survivor                    // a region is young and it contains
                                // survivor
  };

  volatile YoungType _young_type;
  int  _young_index_in_cset;
  SurvRateGroup* _surv_rate_group;
  int  _age_index;

  // The start of the unmarked area. The unmarked area extends from this
  // word until the top and/or end of the region, and is the part
  // of the region for which no marking was done, i.e. objects may
  // have been allocated in this part since the last mark phase.
  // "prev" is the top at the start of the last completed marking.
  // "next" is the top at the start of the in-progress marking (if any.)
  HeapWord* _prev_top_at_mark_start;
  HeapWord* _next_top_at_mark_start;
  // If a collection pause is in progress, this is the top at the start
  // of that pause.

  // We've counted the marked bytes of objects below here.
  HeapWord* _top_at_conc_mark_count;

  void init_top_at_mark_start() {
    assert(_prev_marked_bytes == 0 &&
           _next_marked_bytes == 0,
           "Must be called after zero_marked_bytes.");
    HeapWord* bot = bottom();
    _prev_top_at_mark_start = bot;
    _next_top_at_mark_start = bot;
    _top_at_conc_mark_count = bot;
  }

  jint _zfs;  // A member of ZeroFillState.  Protected by ZF_lock.
  Thread* _zero_filler; // If _zfs is ZeroFilling, the thread that (last)
                        // made it so.

  void set_young_type(YoungType new_type) {
    //assert(_young_type != new_type, "setting the same type" );
    // TODO: add more assertions here
    _young_type = new_type;
  }

  // Cached attributes used in the collection set policy information

  // The RSet length that was added to the total value
  // for the collection set.
  size_t _recorded_rs_length;

  // The predicted elapsed time that was added to total value
  // for the collection set.
  double _predicted_elapsed_time_ms;

  // The predicted number of bytes to copy that was added to
  // the total value for the collection set.
  size_t _predicted_bytes_to_copy;

 public:
  // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
  HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
             MemRegion mr, bool is_zeroed);

  static int LogOfHRGrainBytes;
  static int LogOfHRGrainWords;
  // The normal type of these should be size_t. However, they used to
  // be members of an enum before and they are assumed by the
  // compilers to be ints. To avoid going and fixing all their uses,
  // I'm declaring them as ints. I'm not anticipating heap region
  // sizes to reach anywhere near 2g, so using an int here is safe.
  static int GrainBytes;
  static int GrainWords;
  static int CardsPerRegion;

  // It sets up the heap region size (GrainBytes / GrainWords), as
  // well as other related fields that are based on the heap region
  // size (LogOfHRGrainBytes / LogOfHRGrainWords /
  // CardsPerRegion). All those fields are considered constant
  // throughout the JVM's execution, therefore they should only be set
  // up once during initialization time.
  static void setup_heap_region_size(uintx min_heap_size);

  enum ClaimValues {
    InitialClaimValue     = 0,
    FinalCountClaimValue  = 1,
    NoteEndClaimValue     = 2,
    ScrubRemSetClaimValue = 3,
    ParVerifyClaimValue   = 4,
    RebuildRSClaimValue   = 5
  };

  // Concurrent refinement requires contiguous heap regions (in which TLABs
  // might be allocated) to be zero-filled.  Each region therefore has a
  // zero-fill-state.
  enum ZeroFillState {
    NotZeroFilled,
    ZeroFilling,
    ZeroFilled,
    Allocated
  };

  inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
    assert(is_young(), "we can only skip BOT updates on young regions");
    return ContiguousSpace::par_allocate(word_size);
  }
  inline HeapWord* allocate_no_bot_updates(size_t word_size) {
    assert(is_young(), "we can only skip BOT updates on young regions");
    return ContiguousSpace::allocate(word_size);
  }

  // If this region is a member of a HeapRegionSeq, the index in that
  // sequence, otherwise -1.
  int hrs_index() const { return _hrs_index; }
  void set_hrs_index(int index) { _hrs_index = index; }

  // The number of bytes marked live in the region in the last marking phase.
  size_t marked_bytes()    { return _prev_marked_bytes; }
  // The number of bytes counted in the next marking.
  size_t next_marked_bytes() { return _next_marked_bytes; }
  // The number of bytes live wrt the next marking.
  size_t next_live_bytes() {
    return (top() - next_top_at_mark_start())
      * HeapWordSize
      + next_marked_bytes();
  }

  // A lower bound on the amount of garbage bytes in the region.
  size_t garbage_bytes() {
    size_t used_at_mark_start_bytes =
      (prev_top_at_mark_start() - bottom()) * HeapWordSize;
    assert(used_at_mark_start_bytes >= marked_bytes(),
           "Can't mark more than we have.");
    return used_at_mark_start_bytes - marked_bytes();
  }

  // An upper bound on the number of live bytes in the region.
  size_t max_live_bytes() { return used() - garbage_bytes(); }

  void add_to_marked_bytes(size_t incr_bytes) {
    _next_marked_bytes = _next_marked_bytes + incr_bytes;
    guarantee( _next_marked_bytes <= used(), "invariant" );
  }

  void zero_marked_bytes()      {
    _prev_marked_bytes = _next_marked_bytes = 0;
  }

  bool isHumongous() const { return _humongous_type != NotHumongous; }
  bool startsHumongous() const { return _humongous_type == StartsHumongous; }
  bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
  // For a humongous region, region in which it starts.
  HeapRegion* humongous_start_region() const {
    return _humongous_start_region;
  }

  // Makes the current region be a "starts humongous" region, i.e.,
  // the first region in a series of one or more contiguous regions
  // that will contain a single "humongous" object. The two parameters
  // are as follows:
  //
  // new_top : The new value of the top field of this region which
  // points to the end of the humongous object that's being
  // allocated. If there is more than one region in the series, top
  // will lie beyond this region's original end field and on the last
  // region in the series.
  //
  // new_end : The new value of the end field of this region which
  // points to the end of the last region in the series. If there is
  // one region in the series (namely: this one) end will be the same
  // as the original end of this region.
  //
  // Updating top and end as described above makes this region look as
  // if it spans the entire space taken up by all the regions in the
  // series and an single allocation moved its top to new_top. This
  // ensures that the space (capacity / allocated) taken up by all
  // humongous regions can be calculated by just looking at the
  // "starts humongous" regions and by ignoring the "continues
  // humongous" regions.
  void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);

  // Makes the current region be a "continues humongous'
  // region. first_hr is the "start humongous" region of the series
  // which this region will be part of.
  void set_continuesHumongous(HeapRegion* first_hr);

  // If the region has a remembered set, return a pointer to it.
  HeapRegionRemSet* rem_set() const {
    return _rem_set;
  }

  // True iff the region is in current collection_set.
  bool in_collection_set() const {
    return _in_collection_set;
  }
  void set_in_collection_set(bool b) {
    _in_collection_set = b;
  }
  HeapRegion* next_in_collection_set() {
    assert(in_collection_set(), "should only invoke on member of CS.");
    assert(_next_in_special_set == NULL ||
           _next_in_special_set->in_collection_set(),
           "Malformed CS.");
    return _next_in_special_set;
  }
  void set_next_in_collection_set(HeapRegion* r) {
    assert(in_collection_set(), "should only invoke on member of CS.");
    assert(r == NULL || r->in_collection_set(), "Malformed CS.");
    _next_in_special_set = r;
  }

  // True iff it is or has been an allocation region in the current
  // collection pause.
  bool is_gc_alloc_region() const {
    return _is_gc_alloc_region;
  }
  void set_is_gc_alloc_region(bool b) {
    _is_gc_alloc_region = b;
  }
  HeapRegion* next_gc_alloc_region() {
    assert(is_gc_alloc_region(), "should only invoke on member of CS.");
    assert(_next_in_special_set == NULL ||
           _next_in_special_set->is_gc_alloc_region(),
           "Malformed CS.");
    return _next_in_special_set;
  }
  void set_next_gc_alloc_region(HeapRegion* r) {
    assert(is_gc_alloc_region(), "should only invoke on member of CS.");
    assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
    _next_in_special_set = r;
  }

  bool is_on_free_list() {
    return _is_on_free_list;
  }

  void set_on_free_list(bool b) {
    _is_on_free_list = b;
  }

  HeapRegion* next_from_free_list() {
    assert(is_on_free_list(),
           "Should only invoke on free space.");
    assert(_next_in_special_set == NULL ||
           _next_in_special_set->is_on_free_list(),
           "Malformed Free List.");
    return _next_in_special_set;
  }

  void set_next_on_free_list(HeapRegion* r) {
    assert(r == NULL || r->is_on_free_list(), "Malformed free list.");
    _next_in_special_set = r;
  }

  bool is_on_unclean_list() {
    return _is_on_unclean_list;
  }

  void set_on_unclean_list(bool b);

  HeapRegion* next_from_unclean_list() {
    assert(is_on_unclean_list(),
           "Should only invoke on unclean space.");
    assert(_next_in_special_set == NULL ||
           _next_in_special_set->is_on_unclean_list(),
           "Malformed unclean List.");
    return _next_in_special_set;
  }

  void set_next_on_unclean_list(HeapRegion* r);

  HeapRegion* get_next_young_region() { return _next_young_region; }
  void set_next_young_region(HeapRegion* hr) {
    _next_young_region = hr;
  }

  HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
  HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
  void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
  bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }

  // Allows logical separation between objects allocated before and after.
  void save_marks();

  // Reset HR stuff to default values.
  void hr_clear(bool par, bool clear_space);

  void initialize(MemRegion mr, bool clear_space, bool mangle_space);

  // Ensure that "this" is zero-filled.
  void ensure_zero_filled();
  // This one requires that the calling thread holds ZF_mon.
  void ensure_zero_filled_locked();

  // Get the start of the unmarked area in this region.
  HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
  HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }

  // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
  // allocated in the current region before the last call to "save_mark".
  void oop_before_save_marks_iterate(OopClosure* cl);

  // This call determines the "filter kind" argument that will be used for
  // the next call to "new_dcto_cl" on this region with the "traditional"
  // signature (i.e., the call below.)  The default, in the absence of a
  // preceding call to this method, is "NoFilterKind", and a call to this
  // method is necessary for each such call, or else it reverts to the
  // default.
  // (This is really ugly, but all other methods I could think of changed a
  // lot of main-line code for G1.)
  void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
    _next_fk = nfk;
  }

  DirtyCardToOopClosure*
  new_dcto_closure(OopClosure* cl,
                   CardTableModRefBS::PrecisionStyle precision,
                   HeapRegionDCTOC::FilterKind fk);

#if WHASSUP
  DirtyCardToOopClosure*
  new_dcto_closure(OopClosure* cl,
                   CardTableModRefBS::PrecisionStyle precision,
                   HeapWord* boundary) {
    assert(boundary == NULL, "This arg doesn't make sense here.");
    DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
    _next_fk = HeapRegionDCTOC::NoFilterKind;
    return res;
  }
#endif

  //
  // Note the start or end of marking. This tells the heap region
  // that the collector is about to start or has finished (concurrently)
  // marking the heap.
  //

  // Note the start of a marking phase. Record the
  // start of the unmarked area of the region here.
  void note_start_of_marking(bool during_initial_mark) {
    init_top_at_conc_mark_count();
    _next_marked_bytes = 0;
    if (during_initial_mark && is_young() && !is_survivor())
      _next_top_at_mark_start = bottom();
    else
      _next_top_at_mark_start = top();
  }

  // Note the end of a marking phase. Install the start of
  // the unmarked area that was captured at start of marking.
  void note_end_of_marking() {
    _prev_top_at_mark_start = _next_top_at_mark_start;
    _prev_marked_bytes = _next_marked_bytes;
    _next_marked_bytes = 0;

    guarantee(_prev_marked_bytes <=
              (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
              "invariant");
  }

  // After an evacuation, we need to update _next_top_at_mark_start
  // to be the current top.  Note this is only valid if we have only
  // ever evacuated into this region.  If we evacuate, allocate, and
  // then evacuate we are in deep doodoo.
  void note_end_of_copying() {
    assert(top() >= _next_top_at_mark_start, "Increase only");
    _next_top_at_mark_start = top();
  }

  // Returns "false" iff no object in the region was allocated when the
  // last mark phase ended.
  bool is_marked() { return _prev_top_at_mark_start != bottom(); }

  // If "is_marked()" is true, then this is the index of the region in
  // an array constructed at the end of marking of the regions in a
  // "desirability" order.
  int sort_index() {
    return _sort_index;
  }
  void set_sort_index(int i) {
    _sort_index = i;
  }

  void init_top_at_conc_mark_count() {
    _top_at_conc_mark_count = bottom();
  }

  void set_top_at_conc_mark_count(HeapWord *cur) {
    assert(bottom() <= cur && cur <= end(), "Sanity.");
    _top_at_conc_mark_count = cur;
  }

  HeapWord* top_at_conc_mark_count() {
    return _top_at_conc_mark_count;
  }

  void reset_during_compaction() {
    guarantee( isHumongous() && startsHumongous(),
               "should only be called for humongous regions");

    zero_marked_bytes();
    init_top_at_mark_start();
  }

  // <PREDICTION>
  void calc_gc_efficiency(void);
  double gc_efficiency() { return _gc_efficiency;}
  // </PREDICTION>

  bool is_young() const     { return _young_type != NotYoung; }
  bool is_survivor() const  { return _young_type == Survivor; }

  int  young_index_in_cset() const { return _young_index_in_cset; }
  void set_young_index_in_cset(int index) {
    assert( (index == -1) || is_young(), "pre-condition" );
    _young_index_in_cset = index;
  }

  int age_in_surv_rate_group() {
    assert( _surv_rate_group != NULL, "pre-condition" );
    assert( _age_index > -1, "pre-condition" );
    return _surv_rate_group->age_in_group(_age_index);
  }

  void record_surv_words_in_group(size_t words_survived) {
    assert( _surv_rate_group != NULL, "pre-condition" );
    assert( _age_index > -1, "pre-condition" );
    int age_in_group = age_in_surv_rate_group();
    _surv_rate_group->record_surviving_words(age_in_group, words_survived);
  }

  int age_in_surv_rate_group_cond() {
    if (_surv_rate_group != NULL)
      return age_in_surv_rate_group();
    else
      return -1;
  }

  SurvRateGroup* surv_rate_group() {
    return _surv_rate_group;
  }

  void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
    assert( surv_rate_group != NULL, "pre-condition" );
    assert( _surv_rate_group == NULL, "pre-condition" );
    assert( is_young(), "pre-condition" );

    _surv_rate_group = surv_rate_group;
    _age_index = surv_rate_group->next_age_index();
  }

  void uninstall_surv_rate_group() {
    if (_surv_rate_group != NULL) {
      assert( _age_index > -1, "pre-condition" );
      assert( is_young(), "pre-condition" );

      _surv_rate_group = NULL;
      _age_index = -1;
    } else {
      assert( _age_index == -1, "pre-condition" );
    }
  }

  void set_young() { set_young_type(Young); }

  void set_survivor() { set_young_type(Survivor); }

  void set_not_young() { set_young_type(NotYoung); }

  // Determine if an object has been allocated since the last
  // mark performed by the collector. This returns true iff the object
  // is within the unmarked area of the region.
  bool obj_allocated_since_prev_marking(oop obj) const {
    return (HeapWord *) obj >= prev_top_at_mark_start();
  }
  bool obj_allocated_since_next_marking(oop obj) const {
    return (HeapWord *) obj >= next_top_at_mark_start();
  }

  // For parallel heapRegion traversal.
  bool claimHeapRegion(int claimValue);
  jint claim_value() { return _claimed; }
  // Use this carefully: only when you're sure no one is claiming...
  void set_claim_value(int claimValue) { _claimed = claimValue; }

  // Returns the "evacuation_failed" property of the region.
  bool evacuation_failed() { return _evacuation_failed; }

  // Sets the "evacuation_failed" property of the region.
  void set_evacuation_failed(bool b) {
    _evacuation_failed = b;

    if (b) {
      init_top_at_conc_mark_count();
      _next_marked_bytes = 0;
    }
  }

  // Requires that "mr" be entirely within the region.
  // Apply "cl->do_object" to all objects that intersect with "mr".
  // If the iteration encounters an unparseable portion of the region,
  // or if "cl->abort()" is true after a closure application,
  // terminate the iteration and return the address of the start of the
  // subregion that isn't done.  (The two can be distinguished by querying
  // "cl->abort()".)  Return of "NULL" indicates that the iteration
  // completed.
  HeapWord*
  object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);

  // In this version - if filter_young is true and the region
  // is a young region then we skip the iteration.
  HeapWord*
  oops_on_card_seq_iterate_careful(MemRegion mr,
                                   FilterOutOfRegionClosure* cl,
                                   bool filter_young);

  // A version of block start that is guaranteed to find *some* block
  // boundary at or before "p", but does not object iteration, and may
  // therefore be used safely when the heap is unparseable.
  HeapWord* block_start_careful(const void* p) const {
    return _offsets.block_start_careful(p);
  }

  // Requires that "addr" is within the region.  Returns the start of the
  // first ("careful") block that starts at or after "addr", or else the
  // "end" of the region if there is no such block.
  HeapWord* next_block_start_careful(HeapWord* addr);

  // Returns the zero-fill-state of the current region.
  ZeroFillState zero_fill_state() { return (ZeroFillState)_zfs; }
  bool zero_fill_is_allocated() { return _zfs == Allocated; }
  Thread* zero_filler() { return _zero_filler; }

  // Indicate that the contents of the region are unknown, and therefore
  // might require zero-filling.
  void set_zero_fill_needed() {
    set_zero_fill_state_work(NotZeroFilled);
  }
  void set_zero_fill_in_progress(Thread* t) {
    set_zero_fill_state_work(ZeroFilling);
    _zero_filler = t;
  }
  void set_zero_fill_complete();
  void set_zero_fill_allocated() {
    set_zero_fill_state_work(Allocated);
  }

  void set_zero_fill_state_work(ZeroFillState zfs);

  // This is called when a full collection shrinks the heap.
  // We want to set the heap region to a value which says
  // it is no longer part of the heap.  For now, we'll let "NotZF" fill
  // that role.
  void reset_zero_fill() {
    set_zero_fill_state_work(NotZeroFilled);
    _zero_filler = NULL;
  }

  size_t recorded_rs_length() const        { return _recorded_rs_length; }
  double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
  size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }

  void set_recorded_rs_length(size_t rs_length) {
    _recorded_rs_length = rs_length;
  }

  void set_predicted_elapsed_time_ms(double ms) {
    _predicted_elapsed_time_ms = ms;
  }

  void set_predicted_bytes_to_copy(size_t bytes) {
    _predicted_bytes_to_copy = bytes;
  }

#define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
  virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
  SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)

  CompactibleSpace* next_compaction_space() const;

  virtual void reset_after_compaction();

  void print() const;
  void print_on(outputStream* st) const;

  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  // NOTE: Only the "prev" marking information is guaranteed to be
  // consistent most of the time, so most calls to this should use
  // use_prev_marking == true. Currently, there is only one case where
  // this is called with use_prev_marking == false, which is to verify
  // the "next" marking information at the end of remark.
  void verify(bool allow_dirty, bool use_prev_marking, bool *failures) const;

  // Override; it uses the "prev" marking information
  virtual void verify(bool allow_dirty) const;

#ifdef DEBUG
  HeapWord* allocate(size_t size);
#endif
};

// HeapRegionClosure is used for iterating over regions.
// Terminates the iteration when the "doHeapRegion" method returns "true".
class HeapRegionClosure : public StackObj {
  friend class HeapRegionSeq;
  friend class G1CollectedHeap;

  bool _complete;
  void incomplete() { _complete = false; }

 public:
  HeapRegionClosure(): _complete(true) {}

  // Typically called on each region until it returns true.
  virtual bool doHeapRegion(HeapRegion* r) = 0;

  // True after iteration if the closure was applied to all heap regions
  // and returned "false" in all cases.
  bool complete() { return _complete; }
};

// A linked lists of heap regions.  It leaves the "next" field
// unspecified; that's up to subtypes.
class RegionList VALUE_OBJ_CLASS_SPEC {
protected:
  virtual HeapRegion* get_next(HeapRegion* chr) = 0;
  virtual void set_next(HeapRegion* chr,
                        HeapRegion* new_next) = 0;

  HeapRegion* _hd;
  HeapRegion* _tl;
  size_t _sz;

  // Protected constructor because this type is only meaningful
  // when the _get/_set next functions are defined.
  RegionList() : _hd(NULL), _tl(NULL), _sz(0) {}
public:
  void reset() {
    _hd = NULL;
    _tl = NULL;
    _sz = 0;
  }
  HeapRegion* hd() { return _hd; }
  HeapRegion* tl() { return _tl; }
  size_t sz() { return _sz; }
  size_t length();

  bool well_formed() {
    return
      ((hd() == NULL && tl() == NULL && sz() == 0)
       || (hd() != NULL && tl() != NULL && sz() > 0))
      && (sz() == length());
  }
  virtual void insert_before_head(HeapRegion* r);
  void prepend_list(RegionList* new_list);
  virtual HeapRegion* pop();
  void dec_sz() { _sz--; }
  // Requires that "r" is an element of the list, and is not the tail.
  void delete_after(HeapRegion* r);
};

class EmptyNonHRegionList: public RegionList {
protected:
  // Protected constructor because this type is only meaningful
  // when the _get/_set next functions are defined.
  EmptyNonHRegionList() : RegionList() {}

public:
  void insert_before_head(HeapRegion* r) {
    //    assert(r->is_empty(), "Better be empty");
    assert(!r->isHumongous(), "Better not be humongous.");
    RegionList::insert_before_head(r);
  }
  void prepend_list(EmptyNonHRegionList* new_list) {
    //    assert(new_list->hd() == NULL || new_list->hd()->is_empty(),
    //     "Better be empty");
    assert(new_list->hd() == NULL || !new_list->hd()->isHumongous(),
           "Better not be humongous.");
    //    assert(new_list->tl() == NULL || new_list->tl()->is_empty(),
    //     "Better be empty");
    assert(new_list->tl() == NULL || !new_list->tl()->isHumongous(),
           "Better not be humongous.");
    RegionList::prepend_list(new_list);
  }
};

class UncleanRegionList: public EmptyNonHRegionList {
public:
  HeapRegion* get_next(HeapRegion* hr) {
    return hr->next_from_unclean_list();
  }
  void set_next(HeapRegion* hr, HeapRegion* new_next) {
    hr->set_next_on_unclean_list(new_next);
  }

  UncleanRegionList() : EmptyNonHRegionList() {}

  void insert_before_head(HeapRegion* r) {
    assert(!r->is_on_free_list(),
           "Better not already be on free list");
    assert(!r->is_on_unclean_list(),
           "Better not already be on unclean list");
    r->set_zero_fill_needed();
    r->set_on_unclean_list(true);
    EmptyNonHRegionList::insert_before_head(r);
  }
  void prepend_list(UncleanRegionList* new_list) {
    assert(new_list->tl() == NULL || !new_list->tl()->is_on_free_list(),
           "Better not already be on free list");
    assert(new_list->tl() == NULL || new_list->tl()->is_on_unclean_list(),
           "Better already be marked as on unclean list");
    assert(new_list->hd() == NULL || !new_list->hd()->is_on_free_list(),
           "Better not already be on free list");
    assert(new_list->hd() == NULL || new_list->hd()->is_on_unclean_list(),
           "Better already be marked as on unclean list");
    EmptyNonHRegionList::prepend_list(new_list);
  }
  HeapRegion* pop() {
    HeapRegion* res = RegionList::pop();
    if (res != NULL) res->set_on_unclean_list(false);
    return res;
  }
};

// Local Variables: ***
// c-indentation-style: gnu ***
// End: ***

#endif // SERIALGC

#endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP