view src/os_cpu/solaris_x86/vm/solaris_x86_64.ad @ 2614:95134e034042

7063629: use cbcond in C2 generated code on T4 Summary: Use new short branch instruction in C2 generated code. Reviewed-by: never
author kvn
date Thu, 11 Aug 2011 12:08:11 -0700
parents c18cbe5936b8
children 9b8ce46870df
line wrap: on
line source
//
// Copyright (c) 2004, 2006, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//

// AMD64 Solaris Architecture Description File

//----------OS-DEPENDENT ENCODING BLOCK----------------------------------------
// This block specifies the encoding classes used by the compiler to
// output byte streams.  Encoding classes generate functions which are
// called by Machine Instruction Nodes in order to generate the bit
// encoding of the instruction.  Operands specify their base encoding
// interface with the interface keyword.  There are currently
// supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
// COND_INTER.  REG_INTER causes an operand to generate a function
// which returns its register number when queried.  CONST_INTER causes
// an operand to generate a function which returns the value of the
// constant when queried.  MEMORY_INTER causes an operand to generate
// four functions which return the Base Register, the Index Register,
// the Scale Value, and the Offset Value of the operand when queried.
// COND_INTER causes an operand to generate six functions which return
// the encoding code (ie - encoding bits for the instruction)
// associated with each basic boolean condition for a conditional
// instruction.  Instructions specify two basic values for encoding.
// They use the ins_encode keyword to specify their encoding class
// (which must be one of the class names specified in the encoding
// block), and they use the opcode keyword to specify, in order, their
// primary, secondary, and tertiary opcode.  Only the opcode sections
// which a particular instruction needs for encoding need to be
// specified.
encode %{
  // Build emit functions for each basic byte or larger field in the intel
  // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  // code in the enc_class source block.  Emit functions will live in the
  // main source block for now.  In future, we can generalize this by
  // adding a syntax that specifies the sizes of fields in an order,
  // so that the adlc can build the emit functions automagically

  enc_class Java_To_Runtime(method meth)
  %{
    // No relocation needed

    // movq r10, <meth>
    emit_opcode(cbuf, Assembler::REX_WB);
    emit_opcode(cbuf, 0xB8 | (R10_enc - 8));
    emit_d64(cbuf, (int64_t) $meth$$method);

    // call (r10)
    emit_opcode(cbuf, Assembler::REX_B);
    emit_opcode(cbuf, 0xFF);
    emit_opcode(cbuf, 0xD0 | (R10_enc - 8));
  %}

  enc_class solaris_breakpoint
  %{
    MacroAssembler* masm = new MacroAssembler(&cbuf);
    masm->call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  %}

  enc_class call_epilog
  %{
    if (VerifyStackAtCalls) {
      // Check that stack depth is unchanged: find majik cookie on stack
      int framesize =
        ra_->reg2offset_unchecked(OptoReg::add(ra_->_matcher._old_SP, -3*VMRegImpl::slots_per_word));
      if (framesize) {
        if (framesize < 0x80) {
          emit_opcode(cbuf, Assembler::REX_W);
          emit_opcode(cbuf, 0x81); // cmpq [rsp+0],0xbadb1ood
          emit_d8(cbuf, 0x7C);
          emit_d8(cbuf, 0x24);
          emit_d8(cbuf, framesize); // Find majik cookie from ESP
          emit_d32(cbuf, 0xbadb100d);
        } else {
          emit_opcode(cbuf, Assembler::REX_W);
          emit_opcode(cbuf, 0x81); // cmpq [rsp+0],0xbadb1ood
          emit_d8(cbuf, 0xBC);
          emit_d8(cbuf, 0x24);
          emit_d32(cbuf, framesize); // Find majik cookie from ESP
          emit_d32(cbuf, 0xbadb100d);
        }
      }
      // jmp EQ around INT3
      // QQQ TODO
      const int jump_around = 5; // size of call to breakpoint, 1 for CC
      emit_opcode(cbuf, 0x74);
      emit_d8(cbuf, jump_around);
      // QQQ temporary
      emit_break(cbuf);
      // Die if stack mismatch
      // emit_opcode(cbuf,0xCC);
    }
  %}

  enc_class post_call_verify_mxcsr %{
    MacroAssembler masm(&cbuf);
    if (RestoreMXCSROnJNICalls) {
      masm.ldmxcsr(ExternalAddress(StubRoutines::amd64::mxcsr_std()));
    }
    else if (CheckJNICalls) {
      masm.call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::amd64::verify_mxcsr_entry())));
    }
  %}
%}

// INSTRUCTIONS -- Platform dependent

//----------OS and Locking Instructions----------------------------------------

// This name is KNOWN by the ADLC and cannot be changed.
// The ADLC forces a 'TypeRawPtr::BOTTOM' output type
// for this guy.
instruct tlsLoadP(r15_RegP dst)
%{
  match(Set dst (ThreadLocal));
  effect(DEF dst);

  size(0);
  format %{ "# TLS is in R15" %}
  ins_encode( /*empty encoding*/ );
  ins_pipe(ialu_reg_reg);
%}

// Die now
instruct ShouldNotReachHere()
%{
  match(Halt);

  // Use the following format syntax
  format %{ "int3\t# ShouldNotReachHere" %}
  // QQQ TODO for now call breakpoint
  // opcode(0xCC);
  // ins_encode(Opc);
  ins_encode(solaris_breakpoint);
  ins_pipe(pipe_slow);
%}


// Platform dependent source

source
%{

int MachCallRuntimeNode::ret_addr_offset()
{
  return 13; // movq r10,#addr; callq (r10)
}

// emit an interrupt that is caught by the debugger
void emit_break(CodeBuffer& cbuf)
{
  // Debugger doesn't really catch this but best we can do so far QQQ
  MacroAssembler* masm = new MacroAssembler(&cbuf);
  masm->call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
}

void MachBreakpointNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
{
  emit_break(cbuf);
}

uint MachBreakpointNode::size(PhaseRegAlloc* ra_) const
{
  // distance could be far and requires load and call through register
  return MachNode::size(ra_);
}

%}