view src/cpu/sparc/vm/templateTable_sparc.cpp @ 2346:e1162778c1c8

7009266: G1: assert(obj->is_oop_or_null(true )) failed: Error Summary: A referent object that is only weakly reachable at the start of concurrent marking but is re-attached to the strongly reachable object graph during marking may not be marked as live. This can cause the reference object to be processed prematurely and leave dangling pointers to the referent object. Implement a read barrier for the java.lang.ref.Reference::referent field by intrinsifying the Reference.get() method, and intercepting accesses though JNI, reflection, and Unsafe, so that when a non-null referent object is read it is also logged in an SATB buffer. Reviewed-by: kvn, iveresov, never, tonyp, dholmes
author johnc
date Thu, 07 Apr 2011 09:53:20 -0700
parents 8033953d67ff
children 92add02409c9
line wrap: on
line source
/*
 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateTable.hpp"
#include "memory/universe.inline.hpp"
#include "oops/methodDataOop.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"

#ifndef CC_INTERP
#define __ _masm->

// Misc helpers

// Do an oop store like *(base + index + offset) = val
// index can be noreg,
static void do_oop_store(InterpreterMacroAssembler* _masm,
                         Register base,
                         Register index,
                         int offset,
                         Register val,
                         Register tmp,
                         BarrierSet::Name barrier,
                         bool precise) {
  assert(tmp != val && tmp != base && tmp != index, "register collision");
  assert(index == noreg || offset == 0, "only one offset");
  switch (barrier) {
#ifndef SERIALGC
    case BarrierSet::G1SATBCT:
    case BarrierSet::G1SATBCTLogging:
      {
        // Load and record the previous value.
        __ g1_write_barrier_pre(base, index, offset,
                                noreg /* pre_val */,
                                tmp, true /*preserve_o_regs*/);

        if (index == noreg ) {
          assert(Assembler::is_simm13(offset), "fix this code");
          __ store_heap_oop(val, base, offset);
        } else {
          __ store_heap_oop(val, base, index);
        }

        // No need for post barrier if storing NULL
        if (val != G0) {
          if (precise) {
            if (index == noreg) {
              __ add(base, offset, base);
            } else {
              __ add(base, index, base);
            }
          }
          __ g1_write_barrier_post(base, val, tmp);
        }
      }
      break;
#endif // SERIALGC
    case BarrierSet::CardTableModRef:
    case BarrierSet::CardTableExtension:
      {
        if (index == noreg ) {
          assert(Assembler::is_simm13(offset), "fix this code");
          __ store_heap_oop(val, base, offset);
        } else {
          __ store_heap_oop(val, base, index);
        }
        // No need for post barrier if storing NULL
        if (val != G0) {
          if (precise) {
            if (index == noreg) {
              __ add(base, offset, base);
            } else {
              __ add(base, index, base);
            }
          }
          __ card_write_barrier_post(base, val, tmp);
        }
      }
      break;
    case BarrierSet::ModRef:
    case BarrierSet::Other:
      ShouldNotReachHere();
      break;
    default      :
      ShouldNotReachHere();

  }
}


//----------------------------------------------------------------------------------------------------
// Platform-dependent initialization

void TemplateTable::pd_initialize() {
  // (none)
}


//----------------------------------------------------------------------------------------------------
// Condition conversion
Assembler::Condition ccNot(TemplateTable::Condition cc) {
  switch (cc) {
    case TemplateTable::equal        : return Assembler::notEqual;
    case TemplateTable::not_equal    : return Assembler::equal;
    case TemplateTable::less         : return Assembler::greaterEqual;
    case TemplateTable::less_equal   : return Assembler::greater;
    case TemplateTable::greater      : return Assembler::lessEqual;
    case TemplateTable::greater_equal: return Assembler::less;
  }
  ShouldNotReachHere();
  return Assembler::zero;
}

//----------------------------------------------------------------------------------------------------
// Miscelaneous helper routines


Address TemplateTable::at_bcp(int offset) {
  assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
  return Address(Lbcp, offset);
}


void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register Rbyte_code,
                                   Register Rscratch,
                                   bool load_bc_into_scratch /*=true*/) {
  // With sharing on, may need to test methodOop flag.
  if (!RewriteBytecodes) return;
  if (load_bc_into_scratch) __ set(bc, Rbyte_code);
  Label patch_done;
  if (JvmtiExport::can_post_breakpoint()) {
    Label fast_patch;
    __ ldub(at_bcp(0), Rscratch);
    __ cmp(Rscratch, Bytecodes::_breakpoint);
    __ br(Assembler::notEqual, false, Assembler::pt, fast_patch);
    __ delayed()->nop();  // don't bother to hoist the stb here
    // perform the quickening, slowly, in the bowels of the breakpoint table
    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, Rbyte_code);
    __ ba(false, patch_done);
    __ delayed()->nop();
    __ bind(fast_patch);
  }
#ifdef ASSERT
  Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
  Label okay;
  __ ldub(at_bcp(0), Rscratch);
  __ cmp(Rscratch, orig_bytecode);
  __ br(Assembler::equal, false, Assembler::pt, okay);
  __ delayed() ->cmp(Rscratch, Rbyte_code);
  __ br(Assembler::equal, false, Assembler::pt, okay);
  __ delayed()->nop();
  __ stop("Rewriting wrong bytecode location");
  __ bind(okay);
#endif
  __ stb(Rbyte_code, at_bcp(0));
  __ bind(patch_done);
}

//----------------------------------------------------------------------------------------------------
// Individual instructions

void TemplateTable::nop() {
  transition(vtos, vtos);
  // nothing to do
}

void TemplateTable::shouldnotreachhere() {
  transition(vtos, vtos);
  __ stop("shouldnotreachhere bytecode");
}

void TemplateTable::aconst_null() {
  transition(vtos, atos);
  __ clr(Otos_i);
}


void TemplateTable::iconst(int value) {
  transition(vtos, itos);
  __ set(value, Otos_i);
}


void TemplateTable::lconst(int value) {
  transition(vtos, ltos);
  assert(value >= 0, "check this code");
#ifdef _LP64
  __ set(value, Otos_l);
#else
  __ set(value, Otos_l2);
  __ clr( Otos_l1);
#endif
}


void TemplateTable::fconst(int value) {
  transition(vtos, ftos);
  static float zero = 0.0, one = 1.0, two = 2.0;
  float* p;
  switch( value ) {
   default: ShouldNotReachHere();
   case 0:  p = &zero;  break;
   case 1:  p = &one;   break;
   case 2:  p = &two;   break;
  }
  AddressLiteral a(p);
  __ sethi(a, G3_scratch);
  __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
}


void TemplateTable::dconst(int value) {
  transition(vtos, dtos);
  static double zero = 0.0, one = 1.0;
  double* p;
  switch( value ) {
   default: ShouldNotReachHere();
   case 0:  p = &zero;  break;
   case 1:  p = &one;   break;
  }
  AddressLiteral a(p);
  __ sethi(a, G3_scratch);
  __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
}


// %%%%% Should factore most snippet templates across platforms

void TemplateTable::bipush() {
  transition(vtos, itos);
  __ ldsb( at_bcp(1), Otos_i );
}

void TemplateTable::sipush() {
  transition(vtos, itos);
  __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
}

void TemplateTable::ldc(bool wide) {
  transition(vtos, vtos);
  Label call_ldc, notInt, notString, notClass, exit;

  if (wide) {
    __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
  } else {
    __ ldub(Lbcp, 1, O1);
  }
  __ get_cpool_and_tags(O0, O2);

  const int base_offset = constantPoolOopDesc::header_size() * wordSize;
  const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;

  // get type from tags
  __ add(O2, tags_offset, O2);
  __ ldub(O2, O1, O2);
  __ cmp(O2, JVM_CONSTANT_UnresolvedString);    // unresolved string? If so, must resolve
  __ brx(Assembler::equal, true, Assembler::pt, call_ldc);
  __ delayed()->nop();

  __ cmp(O2, JVM_CONSTANT_UnresolvedClass);     // unresolved class? If so, must resolve
  __ brx(Assembler::equal, true, Assembler::pt, call_ldc);
  __ delayed()->nop();

  __ cmp(O2, JVM_CONSTANT_UnresolvedClassInError);     // unresolved class in error state
  __ brx(Assembler::equal, true, Assembler::pn, call_ldc);
  __ delayed()->nop();

  __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
  __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
  __ delayed()->add(O0, base_offset, O0);

  __ bind(call_ldc);
  __ set(wide, O1);
  call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
  __ push(atos);
  __ ba(false, exit);
  __ delayed()->nop();

  __ bind(notClass);
 // __ add(O0, base_offset, O0);
  __ sll(O1, LogBytesPerWord, O1);
  __ cmp(O2, JVM_CONSTANT_Integer);
  __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
  __ delayed()->cmp(O2, JVM_CONSTANT_String);
  __ ld(O0, O1, Otos_i);
  __ push(itos);
  __ ba(false, exit);
  __ delayed()->nop();

  __ bind(notInt);
 // __ cmp(O2, JVM_CONSTANT_String);
  __ brx(Assembler::notEqual, true, Assembler::pt, notString);
  __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
  __ ld_ptr(O0, O1, Otos_i);
  __ verify_oop(Otos_i);
  __ push(atos);
  __ ba(false, exit);
  __ delayed()->nop();

  __ bind(notString);
 // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
  __ push(ftos);

  __ bind(exit);
}

// Fast path for caching oop constants.
// %%% We should use this to handle Class and String constants also.
// %%% It will simplify the ldc/primitive path considerably.
void TemplateTable::fast_aldc(bool wide) {
  transition(vtos, atos);

  if (!EnableMethodHandles) {
    // We should not encounter this bytecode if !EnableMethodHandles.
    // The verifier will stop it.  However, if we get past the verifier,
    // this will stop the thread in a reasonable way, without crashing the JVM.
    __ call_VM(noreg, CAST_FROM_FN_PTR(address,
                     InterpreterRuntime::throw_IncompatibleClassChangeError));
    // the call_VM checks for exception, so we should never return here.
    __ should_not_reach_here();
    return;
  }

  Register Rcache = G3_scratch;
  Register Rscratch = G4_scratch;

  resolve_cache_and_index(f1_oop, Otos_i, Rcache, Rscratch, wide ? sizeof(u2) : sizeof(u1));

  __ verify_oop(Otos_i);

  Label L_done;
  const Register Rcon_klass = G3_scratch;  // same as Rcache
  const Register Rarray_klass = G4_scratch;  // same as Rscratch
  __ load_klass(Otos_i, Rcon_klass);
  AddressLiteral array_klass_addr((address)Universe::systemObjArrayKlassObj_addr());
  __ load_contents(array_klass_addr, Rarray_klass);
  __ cmp(Rarray_klass, Rcon_klass);
  __ brx(Assembler::notEqual, false, Assembler::pt, L_done);
  __ delayed()->nop();
  __ ld(Address(Otos_i, arrayOopDesc::length_offset_in_bytes()), Rcon_klass);
  __ tst(Rcon_klass);
  __ brx(Assembler::zero, true, Assembler::pt, L_done);
  __ delayed()->clr(Otos_i);    // executed only if branch is taken

  // Load the exception from the system-array which wraps it:
  __ load_heap_oop(Otos_i, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
  __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);

  __ bind(L_done);
}

void TemplateTable::ldc2_w() {
  transition(vtos, vtos);
  Label retry, resolved, Long, exit;

  __ bind(retry);
  __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
  __ get_cpool_and_tags(O0, O2);

  const int base_offset = constantPoolOopDesc::header_size() * wordSize;
  const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  // get type from tags
  __ add(O2, tags_offset, O2);
  __ ldub(O2, O1, O2);

  __ sll(O1, LogBytesPerWord, O1);
  __ add(O0, O1, G3_scratch);

  __ cmp(O2, JVM_CONSTANT_Double);
  __ brx(Assembler::notEqual, false, Assembler::pt, Long);
  __ delayed()->nop();
  // A double can be placed at word-aligned locations in the constant pool.
  // Check out Conversions.java for an example.
  // Also constantPoolOopDesc::header_size() is 20, which makes it very difficult
  // to double-align double on the constant pool.  SG, 11/7/97
#ifdef _LP64
  __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
#else
  FloatRegister f = Ftos_d;
  __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
  __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
         f->successor());
#endif
  __ push(dtos);
  __ ba(false, exit);
  __ delayed()->nop();

  __ bind(Long);
#ifdef _LP64
  __ ldx(G3_scratch, base_offset, Otos_l);
#else
  __ ld(G3_scratch, base_offset, Otos_l);
  __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
#endif
  __ push(ltos);

  __ bind(exit);
}


void TemplateTable::locals_index(Register reg, int offset) {
  __ ldub( at_bcp(offset), reg );
}


void TemplateTable::locals_index_wide(Register reg) {
  // offset is 2, not 1, because Lbcp points to wide prefix code
  __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
}

void TemplateTable::iload() {
  transition(vtos, itos);
  // Rewrite iload,iload  pair into fast_iload2
  //         iload,caload pair into fast_icaload
  if (RewriteFrequentPairs) {
    Label rewrite, done;

    // get next byte
    __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);

    // if _iload, wait to rewrite to iload2.  We only want to rewrite the
    // last two iloads in a pair.  Comparing against fast_iload means that
    // the next bytecode is neither an iload or a caload, and therefore
    // an iload pair.
    __ cmp(G3_scratch, (int)Bytecodes::_iload);
    __ br(Assembler::equal, false, Assembler::pn, done);
    __ delayed()->nop();

    __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
    __ br(Assembler::equal, false, Assembler::pn, rewrite);
    __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);

    __ cmp(G3_scratch, (int)Bytecodes::_caload);
    __ br(Assembler::equal, false, Assembler::pn, rewrite);
    __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);

    __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
    // rewrite
    // G4_scratch: fast bytecode
    __ bind(rewrite);
    patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
    __ bind(done);
  }

  // Get the local value into tos
  locals_index(G3_scratch);
  __ access_local_int( G3_scratch, Otos_i );
}

void TemplateTable::fast_iload2() {
  transition(vtos, itos);
  locals_index(G3_scratch);
  __ access_local_int( G3_scratch, Otos_i );
  __ push_i();
  locals_index(G3_scratch, 3);  // get next bytecode's local index.
  __ access_local_int( G3_scratch, Otos_i );
}

void TemplateTable::fast_iload() {
  transition(vtos, itos);
  locals_index(G3_scratch);
  __ access_local_int( G3_scratch, Otos_i );
}

void TemplateTable::lload() {
  transition(vtos, ltos);
  locals_index(G3_scratch);
  __ access_local_long( G3_scratch, Otos_l );
}


void TemplateTable::fload() {
  transition(vtos, ftos);
  locals_index(G3_scratch);
  __ access_local_float( G3_scratch, Ftos_f );
}


void TemplateTable::dload() {
  transition(vtos, dtos);
  locals_index(G3_scratch);
  __ access_local_double( G3_scratch, Ftos_d );
}


void TemplateTable::aload() {
  transition(vtos, atos);
  locals_index(G3_scratch);
  __ access_local_ptr( G3_scratch, Otos_i);
}


void TemplateTable::wide_iload() {
  transition(vtos, itos);
  locals_index_wide(G3_scratch);
  __ access_local_int( G3_scratch, Otos_i );
}


void TemplateTable::wide_lload() {
  transition(vtos, ltos);
  locals_index_wide(G3_scratch);
  __ access_local_long( G3_scratch, Otos_l );
}


void TemplateTable::wide_fload() {
  transition(vtos, ftos);
  locals_index_wide(G3_scratch);
  __ access_local_float( G3_scratch, Ftos_f );
}


void TemplateTable::wide_dload() {
  transition(vtos, dtos);
  locals_index_wide(G3_scratch);
  __ access_local_double( G3_scratch, Ftos_d );
}


void TemplateTable::wide_aload() {
  transition(vtos, atos);
  locals_index_wide(G3_scratch);
  __ access_local_ptr( G3_scratch, Otos_i );
  __ verify_oop(Otos_i);
}


void TemplateTable::iaload() {
  transition(itos, itos);
  // Otos_i: index
  // tos: array
  __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
  __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
}


void TemplateTable::laload() {
  transition(itos, ltos);
  // Otos_i: index
  // O2: array
  __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
  __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
}


void TemplateTable::faload() {
  transition(itos, ftos);
  // Otos_i: index
  // O2: array
  __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
  __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
}


void TemplateTable::daload() {
  transition(itos, dtos);
  // Otos_i: index
  // O2: array
  __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
  __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
}


void TemplateTable::aaload() {
  transition(itos, atos);
  // Otos_i: index
  // tos: array
  __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
  __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
  __ verify_oop(Otos_i);
}


void TemplateTable::baload() {
  transition(itos, itos);
  // Otos_i: index
  // tos: array
  __ index_check(O2, Otos_i, 0, G3_scratch, O3);
  __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
}


void TemplateTable::caload() {
  transition(itos, itos);
  // Otos_i: index
  // tos: array
  __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
  __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
}

void TemplateTable::fast_icaload() {
  transition(vtos, itos);
  // Otos_i: index
  // tos: array
  locals_index(G3_scratch);
  __ access_local_int( G3_scratch, Otos_i );
  __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
  __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
}


void TemplateTable::saload() {
  transition(itos, itos);
  // Otos_i: index
  // tos: array
  __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
  __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
}


void TemplateTable::iload(int n) {
  transition(vtos, itos);
  __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
}


void TemplateTable::lload(int n) {
  transition(vtos, ltos);
  assert(n+1 < Argument::n_register_parameters, "would need more code");
  __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
}


void TemplateTable::fload(int n) {
  transition(vtos, ftos);
  assert(n < Argument::n_register_parameters, "would need more code");
  __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
}


void TemplateTable::dload(int n) {
  transition(vtos, dtos);
  FloatRegister dst = Ftos_d;
  __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
}


void TemplateTable::aload(int n) {
  transition(vtos, atos);
  __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
}


void TemplateTable::aload_0() {
  transition(vtos, atos);

  // According to bytecode histograms, the pairs:
  //
  // _aload_0, _fast_igetfield (itos)
  // _aload_0, _fast_agetfield (atos)
  // _aload_0, _fast_fgetfield (ftos)
  //
  // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
  // bytecode checks the next bytecode and then rewrites the current
  // bytecode into a pair bytecode; otherwise it rewrites the current
  // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
  //
  if (RewriteFrequentPairs) {
    Label rewrite, done;

    // get next byte
    __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);

    // do actual aload_0
    aload(0);

    // if _getfield then wait with rewrite
    __ cmp(G3_scratch, (int)Bytecodes::_getfield);
    __ br(Assembler::equal, false, Assembler::pn, done);
    __ delayed()->nop();

    // if _igetfield then rewrite to _fast_iaccess_0
    assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
    __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
    __ br(Assembler::equal, false, Assembler::pn, rewrite);
    __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);

    // if _agetfield then rewrite to _fast_aaccess_0
    assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
    __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
    __ br(Assembler::equal, false, Assembler::pn, rewrite);
    __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);

    // if _fgetfield then rewrite to _fast_faccess_0
    assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
    __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
    __ br(Assembler::equal, false, Assembler::pn, rewrite);
    __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);

    // else rewrite to _fast_aload0
    assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
    __ set(Bytecodes::_fast_aload_0, G4_scratch);

    // rewrite
    // G4_scratch: fast bytecode
    __ bind(rewrite);
    patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
    __ bind(done);
  } else {
    aload(0);
  }
}


void TemplateTable::istore() {
  transition(itos, vtos);
  locals_index(G3_scratch);
  __ store_local_int( G3_scratch, Otos_i );
}


void TemplateTable::lstore() {
  transition(ltos, vtos);
  locals_index(G3_scratch);
  __ store_local_long( G3_scratch, Otos_l );
}


void TemplateTable::fstore() {
  transition(ftos, vtos);
  locals_index(G3_scratch);
  __ store_local_float( G3_scratch, Ftos_f );
}


void TemplateTable::dstore() {
  transition(dtos, vtos);
  locals_index(G3_scratch);
  __ store_local_double( G3_scratch, Ftos_d );
}


void TemplateTable::astore() {
  transition(vtos, vtos);
  __ load_ptr(0, Otos_i);
  __ inc(Lesp, Interpreter::stackElementSize);
  __ verify_oop_or_return_address(Otos_i, G3_scratch);
  locals_index(G3_scratch);
  __ store_local_ptr(G3_scratch, Otos_i);
}


void TemplateTable::wide_istore() {
  transition(vtos, vtos);
  __ pop_i();
  locals_index_wide(G3_scratch);
  __ store_local_int( G3_scratch, Otos_i );
}


void TemplateTable::wide_lstore() {
  transition(vtos, vtos);
  __ pop_l();
  locals_index_wide(G3_scratch);
  __ store_local_long( G3_scratch, Otos_l );
}


void TemplateTable::wide_fstore() {
  transition(vtos, vtos);
  __ pop_f();
  locals_index_wide(G3_scratch);
  __ store_local_float( G3_scratch, Ftos_f );
}


void TemplateTable::wide_dstore() {
  transition(vtos, vtos);
  __ pop_d();
  locals_index_wide(G3_scratch);
  __ store_local_double( G3_scratch, Ftos_d );
}


void TemplateTable::wide_astore() {
  transition(vtos, vtos);
  __ load_ptr(0, Otos_i);
  __ inc(Lesp, Interpreter::stackElementSize);
  __ verify_oop_or_return_address(Otos_i, G3_scratch);
  locals_index_wide(G3_scratch);
  __ store_local_ptr(G3_scratch, Otos_i);
}


void TemplateTable::iastore() {
  transition(itos, vtos);
  __ pop_i(O2); // index
  // Otos_i: val
  // O3: array
  __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
  __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
}


void TemplateTable::lastore() {
  transition(ltos, vtos);
  __ pop_i(O2); // index
  // Otos_l: val
  // O3: array
  __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
  __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
}


void TemplateTable::fastore() {
  transition(ftos, vtos);
  __ pop_i(O2); // index
  // Ftos_f: val
  // O3: array
  __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
  __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
}


void TemplateTable::dastore() {
  transition(dtos, vtos);
  __ pop_i(O2); // index
  // Fos_d: val
  // O3: array
  __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
  __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
}


void TemplateTable::aastore() {
  Label store_ok, is_null, done;
  transition(vtos, vtos);
  __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
  __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
  __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
  // Otos_i: val
  // O2: index
  // O3: array
  __ verify_oop(Otos_i);
  __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);

  // do array store check - check for NULL value first
  __ br_null( Otos_i, false, Assembler::pn, is_null );
  __ delayed()->nop();

  __ load_klass(O3, O4); // get array klass
  __ load_klass(Otos_i, O5); // get value klass

  // do fast instanceof cache test

  __ ld_ptr(O4,     sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes(),  O4);

  assert(Otos_i == O0, "just checking");

  // Otos_i:    value
  // O1:        addr - offset
  // O2:        index
  // O3:        array
  // O4:        array element klass
  // O5:        value klass

  // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));

  // Generate a fast subtype check.  Branch to store_ok if no
  // failure.  Throw if failure.
  __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );

  // Not a subtype; so must throw exception
  __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );

  // Store is OK.
  __ bind(store_ok);
  do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);

  __ ba(false,done);
  __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)

  __ bind(is_null);
  do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);

  __ profile_null_seen(G3_scratch);
  __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
  __ bind(done);
}


void TemplateTable::bastore() {
  transition(itos, vtos);
  __ pop_i(O2); // index
  // Otos_i: val
  // O3: array
  __ index_check(O3, O2, 0, G3_scratch, O2);
  __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
}


void TemplateTable::castore() {
  transition(itos, vtos);
  __ pop_i(O2); // index
  // Otos_i: val
  // O3: array
  __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
  __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
}


void TemplateTable::sastore() {
  // %%%%% Factor across platform
  castore();
}


void TemplateTable::istore(int n) {
  transition(itos, vtos);
  __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
}


void TemplateTable::lstore(int n) {
  transition(ltos, vtos);
  assert(n+1 < Argument::n_register_parameters, "only handle register cases");
  __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));

}


void TemplateTable::fstore(int n) {
  transition(ftos, vtos);
  assert(n < Argument::n_register_parameters, "only handle register cases");
  __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
}


void TemplateTable::dstore(int n) {
  transition(dtos, vtos);
  FloatRegister src = Ftos_d;
  __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
}


void TemplateTable::astore(int n) {
  transition(vtos, vtos);
  __ load_ptr(0, Otos_i);
  __ inc(Lesp, Interpreter::stackElementSize);
  __ verify_oop_or_return_address(Otos_i, G3_scratch);
  __ store_local_ptr(n, Otos_i);
}


void TemplateTable::pop() {
  transition(vtos, vtos);
  __ inc(Lesp, Interpreter::stackElementSize);
}


void TemplateTable::pop2() {
  transition(vtos, vtos);
  __ inc(Lesp, 2 * Interpreter::stackElementSize);
}


void TemplateTable::dup() {
  transition(vtos, vtos);
  // stack: ..., a
  // load a and tag
  __ load_ptr(0, Otos_i);
  __ push_ptr(Otos_i);
  // stack: ..., a, a
}


void TemplateTable::dup_x1() {
  transition(vtos, vtos);
  // stack: ..., a, b
  __ load_ptr( 1, G3_scratch);  // get a
  __ load_ptr( 0, Otos_l1);     // get b
  __ store_ptr(1, Otos_l1);     // put b
  __ store_ptr(0, G3_scratch);  // put a - like swap
  __ push_ptr(Otos_l1);         // push b
  // stack: ..., b, a, b
}


void TemplateTable::dup_x2() {
  transition(vtos, vtos);
  // stack: ..., a, b, c
  // get c and push on stack, reuse registers
  __ load_ptr( 0, G3_scratch);  // get c
  __ push_ptr(G3_scratch);      // push c with tag
  // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
  // (stack offsets n+1 now)
  __ load_ptr( 3, Otos_l1);     // get a
  __ store_ptr(3, G3_scratch);  // put c at 3
  // stack: ..., c, b, c, c  (a in reg)
  __ load_ptr( 2, G3_scratch);  // get b
  __ store_ptr(2, Otos_l1);     // put a at 2
  // stack: ..., c, a, c, c  (b in reg)
  __ store_ptr(1, G3_scratch);  // put b at 1
  // stack: ..., c, a, b, c
}


void TemplateTable::dup2() {
  transition(vtos, vtos);
  __ load_ptr(1, G3_scratch);  // get a
  __ load_ptr(0, Otos_l1);     // get b
  __ push_ptr(G3_scratch);     // push a
  __ push_ptr(Otos_l1);        // push b
  // stack: ..., a, b, a, b
}


void TemplateTable::dup2_x1() {
  transition(vtos, vtos);
  // stack: ..., a, b, c
  __ load_ptr( 1, Lscratch);    // get b
  __ load_ptr( 2, Otos_l1);     // get a
  __ store_ptr(2, Lscratch);    // put b at a
  // stack: ..., b, b, c
  __ load_ptr( 0, G3_scratch);  // get c
  __ store_ptr(1, G3_scratch);  // put c at b
  // stack: ..., b, c, c
  __ store_ptr(0, Otos_l1);     // put a at c
  // stack: ..., b, c, a
  __ push_ptr(Lscratch);        // push b
  __ push_ptr(G3_scratch);      // push c
  // stack: ..., b, c, a, b, c
}


// The spec says that these types can be a mixture of category 1 (1 word)
// types and/or category 2 types (long and doubles)
void TemplateTable::dup2_x2() {
  transition(vtos, vtos);
  // stack: ..., a, b, c, d
  __ load_ptr( 1, Lscratch);    // get c
  __ load_ptr( 3, Otos_l1);     // get a
  __ store_ptr(3, Lscratch);    // put c at 3
  __ store_ptr(1, Otos_l1);     // put a at 1
  // stack: ..., c, b, a, d
  __ load_ptr( 2, G3_scratch);  // get b
  __ load_ptr( 0, Otos_l1);     // get d
  __ store_ptr(0, G3_scratch);  // put b at 0
  __ store_ptr(2, Otos_l1);     // put d at 2
  // stack: ..., c, d, a, b
  __ push_ptr(Lscratch);        // push c
  __ push_ptr(Otos_l1);         // push d
  // stack: ..., c, d, a, b, c, d
}


void TemplateTable::swap() {
  transition(vtos, vtos);
  // stack: ..., a, b
  __ load_ptr( 1, G3_scratch);  // get a
  __ load_ptr( 0, Otos_l1);     // get b
  __ store_ptr(0, G3_scratch);  // put b
  __ store_ptr(1, Otos_l1);     // put a
  // stack: ..., b, a
}


void TemplateTable::iop2(Operation op) {
  transition(itos, itos);
  __ pop_i(O1);
  switch (op) {
   case  add:  __  add(O1, Otos_i, Otos_i);  break;
   case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
     // %%%%% Mul may not exist: better to call .mul?
   case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
   case _and:  __ and3(O1, Otos_i, Otos_i);  break;
   case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
   case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
   case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
   case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
   case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
   default: ShouldNotReachHere();
  }
}


void TemplateTable::lop2(Operation op) {
  transition(ltos, ltos);
  __ pop_l(O2);
  switch (op) {
#ifdef _LP64
   case  add:  __  add(O2, Otos_l, Otos_l);  break;
   case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
   case _and:  __ and3(O2, Otos_l, Otos_l);  break;
   case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
   case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
#else
   case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
   case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
   case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
   case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
   case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
#endif
   default: ShouldNotReachHere();
  }
}


void TemplateTable::idiv() {
  // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
  // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.

  transition(itos, itos);
  __ pop_i(O1); // get 1st op

  // Y contains upper 32 bits of result, set it to 0 or all ones
  __ wry(G0);
  __ mov(~0, G3_scratch);

  __ tst(O1);
     Label neg;
  __ br(Assembler::negative, true, Assembler::pn, neg);
  __ delayed()->wry(G3_scratch);
  __ bind(neg);

     Label ok;
  __ tst(Otos_i);
  __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );

  const int min_int = 0x80000000;
  Label regular;
  __ cmp(Otos_i, -1);
  __ br(Assembler::notEqual, false, Assembler::pt, regular);
#ifdef _LP64
  // Don't put set in delay slot
  // Set will turn into multiple instructions in 64 bit mode
  __ delayed()->nop();
  __ set(min_int, G4_scratch);
#else
  __ delayed()->set(min_int, G4_scratch);
#endif
  Label done;
  __ cmp(O1, G4_scratch);
  __ br(Assembler::equal, true, Assembler::pt, done);
  __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)

  __ bind(regular);
  __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
  __ bind(done);
}


void TemplateTable::irem() {
  transition(itos, itos);
  __ mov(Otos_i, O2); // save divisor
  idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
  __ smul(Otos_i, O2, Otos_i);
  __ sub(O1, Otos_i, Otos_i);
}


void TemplateTable::lmul() {
  transition(ltos, ltos);
  __ pop_l(O2);
#ifdef _LP64
  __ mulx(Otos_l, O2, Otos_l);
#else
  __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
#endif

}


void TemplateTable::ldiv() {
  transition(ltos, ltos);

  // check for zero
  __ pop_l(O2);
#ifdef _LP64
  __ tst(Otos_l);
  __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  __ sdivx(O2, Otos_l, Otos_l);
#else
  __ orcc(Otos_l1, Otos_l2, G0);
  __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
#endif
}


void TemplateTable::lrem() {
  transition(ltos, ltos);

  // check for zero
  __ pop_l(O2);
#ifdef _LP64
  __ tst(Otos_l);
  __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  __ sdivx(O2, Otos_l, Otos_l2);
  __ mulx (Otos_l2, Otos_l, Otos_l2);
  __ sub  (O2, Otos_l2, Otos_l);
#else
  __ orcc(Otos_l1, Otos_l2, G0);
  __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
#endif
}


void TemplateTable::lshl() {
  transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra

  __ pop_l(O2);                          // shift value in O2, O3
#ifdef _LP64
  __ sllx(O2, Otos_i, Otos_l);
#else
  __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
#endif
}


void TemplateTable::lshr() {
  transition(itos, ltos); // %%%% see lshl comment

  __ pop_l(O2);                          // shift value in O2, O3
#ifdef _LP64
  __ srax(O2, Otos_i, Otos_l);
#else
  __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
#endif
}



void TemplateTable::lushr() {
  transition(itos, ltos); // %%%% see lshl comment

  __ pop_l(O2);                          // shift value in O2, O3
#ifdef _LP64
  __ srlx(O2, Otos_i, Otos_l);
#else
  __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
#endif
}


void TemplateTable::fop2(Operation op) {
  transition(ftos, ftos);
  switch (op) {
   case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
   case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
   case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
   case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
   case  rem:
     assert(Ftos_f == F0, "just checking");
#ifdef _LP64
     // LP64 calling conventions use F1, F3 for passing 2 floats
     __ pop_f(F1);
     __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
#else
     __ pop_i(O0);
     __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
     __ ld( __ d_tmp, O1 );
#endif
     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
     assert( Ftos_f == F0, "fix this code" );
     break;

   default: ShouldNotReachHere();
  }
}


void TemplateTable::dop2(Operation op) {
  transition(dtos, dtos);
  switch (op) {
   case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
   case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
   case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
   case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
   case  rem:
#ifdef _LP64
     // Pass arguments in D0, D2
     __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
     __ pop_d( F0 );
#else
     // Pass arguments in O0O1, O2O3
     __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
     __ ldd( __ d_tmp, O2 );
     __ pop_d(Ftos_f);
     __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
     __ ldd( __ d_tmp, O0 );
#endif
     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
     assert( Ftos_d == F0, "fix this code" );
     break;

   default: ShouldNotReachHere();
  }
}


void TemplateTable::ineg() {
  transition(itos, itos);
  __ neg(Otos_i);
}


void TemplateTable::lneg() {
  transition(ltos, ltos);
#ifdef _LP64
  __ sub(G0, Otos_l, Otos_l);
#else
  __ lneg(Otos_l1, Otos_l2);
#endif
}


void TemplateTable::fneg() {
  transition(ftos, ftos);
  __ fneg(FloatRegisterImpl::S, Ftos_f);
}


void TemplateTable::dneg() {
  transition(dtos, dtos);
  // v8 has fnegd if source and dest are the same
  __ fneg(FloatRegisterImpl::D, Ftos_f);
}


void TemplateTable::iinc() {
  transition(vtos, vtos);
  locals_index(G3_scratch);
  __ ldsb(Lbcp, 2, O2);  // load constant
  __ access_local_int(G3_scratch, Otos_i);
  __ add(Otos_i, O2, Otos_i);
  __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
}


void TemplateTable::wide_iinc() {
  transition(vtos, vtos);
  locals_index_wide(G3_scratch);
  __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
  __ access_local_int(G3_scratch, Otos_i);
  __ add(Otos_i, O3, Otos_i);
  __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
}


void TemplateTable::convert() {
// %%%%% Factor this first part accross platforms
  #ifdef ASSERT
    TosState tos_in  = ilgl;
    TosState tos_out = ilgl;
    switch (bytecode()) {
      case Bytecodes::_i2l: // fall through
      case Bytecodes::_i2f: // fall through
      case Bytecodes::_i2d: // fall through
      case Bytecodes::_i2b: // fall through
      case Bytecodes::_i2c: // fall through
      case Bytecodes::_i2s: tos_in = itos; break;
      case Bytecodes::_l2i: // fall through
      case Bytecodes::_l2f: // fall through
      case Bytecodes::_l2d: tos_in = ltos; break;
      case Bytecodes::_f2i: // fall through
      case Bytecodes::_f2l: // fall through
      case Bytecodes::_f2d: tos_in = ftos; break;
      case Bytecodes::_d2i: // fall through
      case Bytecodes::_d2l: // fall through
      case Bytecodes::_d2f: tos_in = dtos; break;
      default             : ShouldNotReachHere();
    }
    switch (bytecode()) {
      case Bytecodes::_l2i: // fall through
      case Bytecodes::_f2i: // fall through
      case Bytecodes::_d2i: // fall through
      case Bytecodes::_i2b: // fall through
      case Bytecodes::_i2c: // fall through
      case Bytecodes::_i2s: tos_out = itos; break;
      case Bytecodes::_i2l: // fall through
      case Bytecodes::_f2l: // fall through
      case Bytecodes::_d2l: tos_out = ltos; break;
      case Bytecodes::_i2f: // fall through
      case Bytecodes::_l2f: // fall through
      case Bytecodes::_d2f: tos_out = ftos; break;
      case Bytecodes::_i2d: // fall through
      case Bytecodes::_l2d: // fall through
      case Bytecodes::_f2d: tos_out = dtos; break;
      default             : ShouldNotReachHere();
    }
    transition(tos_in, tos_out);
  #endif


  // Conversion
  Label done;
  switch (bytecode()) {
   case Bytecodes::_i2l:
#ifdef _LP64
    // Sign extend the 32 bits
    __ sra ( Otos_i, 0, Otos_l );
#else
    __ addcc(Otos_i, 0, Otos_l2);
    __ br(Assembler::greaterEqual, true, Assembler::pt, done);
    __ delayed()->clr(Otos_l1);
    __ set(~0, Otos_l1);
#endif
    break;

   case Bytecodes::_i2f:
    __ st(Otos_i, __ d_tmp );
    __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
    __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
    break;

   case Bytecodes::_i2d:
    __ st(Otos_i, __ d_tmp);
    __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
    __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
    break;

   case Bytecodes::_i2b:
    __ sll(Otos_i, 24, Otos_i);
    __ sra(Otos_i, 24, Otos_i);
    break;

   case Bytecodes::_i2c:
    __ sll(Otos_i, 16, Otos_i);
    __ srl(Otos_i, 16, Otos_i);
    break;

   case Bytecodes::_i2s:
    __ sll(Otos_i, 16, Otos_i);
    __ sra(Otos_i, 16, Otos_i);
    break;

   case Bytecodes::_l2i:
#ifndef _LP64
    __ mov(Otos_l2, Otos_i);
#else
    // Sign-extend into the high 32 bits
    __ sra(Otos_l, 0, Otos_i);
#endif
    break;

   case Bytecodes::_l2f:
   case Bytecodes::_l2d:
    __ st_long(Otos_l, __ d_tmp);
    __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);

    if (VM_Version::v9_instructions_work()) {
      if (bytecode() == Bytecodes::_l2f) {
        __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
      } else {
        __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
      }
    } else {
      __ call_VM_leaf(
        Lscratch,
        bytecode() == Bytecodes::_l2f
          ? CAST_FROM_FN_PTR(address, SharedRuntime::l2f)
          : CAST_FROM_FN_PTR(address, SharedRuntime::l2d)
      );
    }
    break;

  case Bytecodes::_f2i:  {
      Label isNaN;
      // result must be 0 if value is NaN; test by comparing value to itself
      __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
      // According to the v8 manual, you have to have a non-fp instruction
      // between fcmp and fb.
      if (!VM_Version::v9_instructions_work()) {
        __ nop();
      }
      __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
      __ delayed()->clr(Otos_i);                                     // NaN
      __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
      __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
      __ ld(__ d_tmp, Otos_i);
      __ bind(isNaN);
    }
    break;

   case Bytecodes::_f2l:
    // must uncache tos
    __ push_f();
#ifdef _LP64
    __ pop_f(F1);
#else
    __ pop_i(O0);
#endif
    __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
    break;

   case Bytecodes::_f2d:
    __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
    break;

   case Bytecodes::_d2i:
   case Bytecodes::_d2l:
    // must uncache tos
    __ push_d();
#ifdef _LP64
    // LP64 calling conventions pass first double arg in D0
    __ pop_d( Ftos_d );
#else
    __ pop_i( O0 );
    __ pop_i( O1 );
#endif
    __ call_VM_leaf(Lscratch,
        bytecode() == Bytecodes::_d2i
          ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
          : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
    break;

    case Bytecodes::_d2f:
    if (VM_Version::v9_instructions_work()) {
      __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
    }
    else {
      // must uncache tos
      __ push_d();
      __ pop_i(O0);
      __ pop_i(O1);
      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::d2f));
    }
    break;

    default: ShouldNotReachHere();
  }
  __ bind(done);
}


void TemplateTable::lcmp() {
  transition(ltos, itos);

#ifdef _LP64
  __ pop_l(O1); // pop off value 1, value 2 is in O0
  __ lcmp( O1, Otos_l, Otos_i );
#else
  __ pop_l(O2); // cmp O2,3 to O0,1
  __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
#endif
}


void TemplateTable::float_cmp(bool is_float, int unordered_result) {

  if (is_float) __ pop_f(F2);
  else          __ pop_d(F2);

  assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");

  __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
}

void TemplateTable::branch(bool is_jsr, bool is_wide) {
  // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
  __ verify_oop(Lmethod);
  __ verify_thread();

  const Register O2_bumped_count = O2;
  __ profile_taken_branch(G3_scratch, O2_bumped_count);

  // get (wide) offset to O1_disp
  const Register O1_disp = O1;
  if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
  else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);

  // Handle all the JSR stuff here, then exit.
  // It's much shorter and cleaner than intermingling with the
  // non-JSR normal-branch stuff occurring below.
  if( is_jsr ) {
    // compute return address as bci in Otos_i
    __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
    __ sub(Lbcp, G3_scratch, G3_scratch);
    __ sub(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()) - (is_wide ? 5 : 3), Otos_i);

    // Bump Lbcp to target of JSR
    __ add(Lbcp, O1_disp, Lbcp);
    // Push returnAddress for "ret" on stack
    __ push_ptr(Otos_i);
    // And away we go!
    __ dispatch_next(vtos);
    return;
  }

  // Normal (non-jsr) branch handling

  // Save the current Lbcp
  const Register O0_cur_bcp = O0;
  __ mov( Lbcp, O0_cur_bcp );


  bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
  if ( increment_invocation_counter_for_backward_branches ) {
    Label Lforward;
    // check branch direction
    __ br( Assembler::positive, false,  Assembler::pn, Lforward );
    // Bump bytecode pointer by displacement (take the branch)
    __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr

    if (TieredCompilation) {
      Label Lno_mdo, Loverflow;
      int increment = InvocationCounter::count_increment;
      int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
      if (ProfileInterpreter) {
        // If no method data exists, go to profile_continue.
        __ ld_ptr(Lmethod, methodOopDesc::method_data_offset(), G4_scratch);
        __ br_null(G4_scratch, false, Assembler::pn, Lno_mdo);
        __ delayed()->nop();

        // Increment backedge counter in the MDO
        Address mdo_backedge_counter(G4_scratch, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
                                                 in_bytes(InvocationCounter::counter_offset()));
        __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, Lscratch,
                                   Assembler::notZero, &Lforward);
        __ ba(false, Loverflow);
        __ delayed()->nop();
      }

      // If there's no MDO, increment counter in methodOop
      __ bind(Lno_mdo);
      Address backedge_counter(Lmethod, in_bytes(methodOopDesc::backedge_counter_offset()) +
                                        in_bytes(InvocationCounter::counter_offset()));
      __ increment_mask_and_jump(backedge_counter, increment, mask, G3_scratch, Lscratch,
                                 Assembler::notZero, &Lforward);
      __ bind(Loverflow);

      // notify point for loop, pass branch bytecode
      __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O0_cur_bcp);

      // Was an OSR adapter generated?
      // O0 = osr nmethod
      __ br_null(O0, false, Assembler::pn, Lforward);
      __ delayed()->nop();

      // Has the nmethod been invalidated already?
      __ ld(O0, nmethod::entry_bci_offset(), O2);
      __ cmp(O2, InvalidOSREntryBci);
      __ br(Assembler::equal, false, Assembler::pn, Lforward);
      __ delayed()->nop();

      // migrate the interpreter frame off of the stack

      __ mov(G2_thread, L7);
      // save nmethod
      __ mov(O0, L6);
      __ set_last_Java_frame(SP, noreg);
      __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
      __ reset_last_Java_frame();
      __ mov(L7, G2_thread);

      // move OSR nmethod to I1
      __ mov(L6, I1);

      // OSR buffer to I0
      __ mov(O0, I0);

      // remove the interpreter frame
      __ restore(I5_savedSP, 0, SP);

      // Jump to the osr code.
      __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
      __ jmp(O2, G0);
      __ delayed()->nop();

    } else {
      // Update Backedge branch separately from invocations
      const Register G4_invoke_ctr = G4;
      __ increment_backedge_counter(G4_invoke_ctr, G1_scratch);
      if (ProfileInterpreter) {
        __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_scratch, Lforward);
        if (UseOnStackReplacement) {
          __ test_backedge_count_for_osr(O2_bumped_count, O0_cur_bcp, G3_scratch);
        }
      } else {
        if (UseOnStackReplacement) {
          __ test_backedge_count_for_osr(G4_invoke_ctr, O0_cur_bcp, G3_scratch);
        }
      }
    }

    __ bind(Lforward);
  } else
    // Bump bytecode pointer by displacement (take the branch)
    __ add( O1_disp, Lbcp, Lbcp );// add to bc addr

  // continue with bytecode @ target
  // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
  // %%%%% and changing dispatch_next to dispatch_only
  __ dispatch_next(vtos);
}


// Note Condition in argument is TemplateTable::Condition
// arg scope is within class scope

void TemplateTable::if_0cmp(Condition cc) {
  // no pointers, integer only!
  transition(itos, vtos);
  // assume branch is more often taken than not (loops use backward branches)
  __ cmp( Otos_i, 0);
  __ if_cmp(ccNot(cc), false);
}


void TemplateTable::if_icmp(Condition cc) {
  transition(itos, vtos);
  __ pop_i(O1);
  __ cmp(O1, Otos_i);
  __ if_cmp(ccNot(cc), false);
}


void TemplateTable::if_nullcmp(Condition cc) {
  transition(atos, vtos);
  __ tst(Otos_i);
  __ if_cmp(ccNot(cc), true);
}


void TemplateTable::if_acmp(Condition cc) {
  transition(atos, vtos);
  __ pop_ptr(O1);
  __ verify_oop(O1);
  __ verify_oop(Otos_i);
  __ cmp(O1, Otos_i);
  __ if_cmp(ccNot(cc), true);
}



void TemplateTable::ret() {
  transition(vtos, vtos);
  locals_index(G3_scratch);
  __ access_local_returnAddress(G3_scratch, Otos_i);
  // Otos_i contains the bci, compute the bcp from that

#ifdef _LP64
#ifdef ASSERT
  // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
  // the result.  The return address (really a BCI) was stored with an
  // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
  // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
  // loaded value.
  { Label zzz ;
     __ set (65536, G3_scratch) ;
     __ cmp (Otos_i, G3_scratch) ;
     __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
     __ delayed()->nop();
     __ stop("BCI is in the wrong register half?");
     __ bind (zzz) ;
  }
#endif
#endif

  __ profile_ret(vtos, Otos_i, G4_scratch);

  __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
  __ add(G3_scratch, Otos_i, G3_scratch);
  __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
  __ dispatch_next(vtos);
}


void TemplateTable::wide_ret() {
  transition(vtos, vtos);
  locals_index_wide(G3_scratch);
  __ access_local_returnAddress(G3_scratch, Otos_i);
  // Otos_i contains the bci, compute the bcp from that

  __ profile_ret(vtos, Otos_i, G4_scratch);

  __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
  __ add(G3_scratch, Otos_i, G3_scratch);
  __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
  __ dispatch_next(vtos);
}


void TemplateTable::tableswitch() {
  transition(itos, vtos);
  Label default_case, continue_execution;

  // align bcp
  __ add(Lbcp, BytesPerInt, O1);
  __ and3(O1, -BytesPerInt, O1);
  // load lo, hi
  __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
  __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
#ifdef _LP64
  // Sign extend the 32 bits
  __ sra ( Otos_i, 0, Otos_i );
#endif /* _LP64 */

  // check against lo & hi
  __ cmp( Otos_i, O2);
  __ br( Assembler::less, false, Assembler::pn, default_case);
  __ delayed()->cmp( Otos_i, O3 );
  __ br( Assembler::greater, false, Assembler::pn, default_case);
  // lookup dispatch offset
  __ delayed()->sub(Otos_i, O2, O2);
  __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
  __ sll(O2, LogBytesPerInt, O2);
  __ add(O2, 3 * BytesPerInt, O2);
  __ ba(false, continue_execution);
  __ delayed()->ld(O1, O2, O2);
  // handle default
  __ bind(default_case);
  __ profile_switch_default(O3);
  __ ld(O1, 0, O2); // get default offset
  // continue execution
  __ bind(continue_execution);
  __ add(Lbcp, O2, Lbcp);
  __ dispatch_next(vtos);
}


void TemplateTable::lookupswitch() {
  transition(itos, itos);
  __ stop("lookupswitch bytecode should have been rewritten");
}

void TemplateTable::fast_linearswitch() {
  transition(itos, vtos);
    Label loop_entry, loop, found, continue_execution;
  // align bcp
  __ add(Lbcp, BytesPerInt, O1);
  __ and3(O1, -BytesPerInt, O1);
 // set counter
  __ ld(O1, BytesPerInt, O2);
  __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
  __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
  __ ba(false, loop_entry);
  __ delayed()->add(O3, O2, O2); // counter now points past last pair

  // table search
  __ bind(loop);
  __ cmp(O4, Otos_i);
  __ br(Assembler::equal, true, Assembler::pn, found);
  __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
  __ inc(O3, 2 * BytesPerInt);

  __ bind(loop_entry);
  __ cmp(O2, O3);
  __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
  __ delayed()->ld(O3, 0, O4);

  // default case
  __ ld(O1, 0, O4); // get default offset
  if (ProfileInterpreter) {
    __ profile_switch_default(O3);
    __ ba(false, continue_execution);
    __ delayed()->nop();
  }

  // entry found -> get offset
  __ bind(found);
  if (ProfileInterpreter) {
    __ sub(O3, O1, O3);
    __ sub(O3, 2*BytesPerInt, O3);
    __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
    __ profile_switch_case(O3, O1, O2, G3_scratch);

    __ bind(continue_execution);
  }
  __ add(Lbcp, O4, Lbcp);
  __ dispatch_next(vtos);
}


void TemplateTable::fast_binaryswitch() {
  transition(itos, vtos);
  // Implementation using the following core algorithm: (copied from Intel)
  //
  // int binary_search(int key, LookupswitchPair* array, int n) {
  //   // Binary search according to "Methodik des Programmierens" by
  //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  //   int i = 0;
  //   int j = n;
  //   while (i+1 < j) {
  //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  //     // with      Q: for all i: 0 <= i < n: key < a[i]
  //     // where a stands for the array and assuming that the (inexisting)
  //     // element a[n] is infinitely big.
  //     int h = (i + j) >> 1;
  //     // i < h < j
  //     if (key < array[h].fast_match()) {
  //       j = h;
  //     } else {
  //       i = h;
  //     }
  //   }
  //   // R: a[i] <= key < a[i+1] or Q
  //   // (i.e., if key is within array, i is the correct index)
  //   return i;
  // }

  // register allocation
  assert(Otos_i == O0, "alias checking");
  const Register Rkey     = Otos_i;                    // already set (tosca)
  const Register Rarray   = O1;
  const Register Ri       = O2;
  const Register Rj       = O3;
  const Register Rh       = O4;
  const Register Rscratch = O5;

  const int log_entry_size = 3;
  const int entry_size = 1 << log_entry_size;

  Label found;
  // Find Array start
  __ add(Lbcp, 3 * BytesPerInt, Rarray);
  __ and3(Rarray, -BytesPerInt, Rarray);
  // initialize i & j (in delay slot)
  __ clr( Ri );

  // and start
  Label entry;
  __ ba(false, entry);
  __ delayed()->ld( Rarray, -BytesPerInt, Rj);
  // (Rj is already in the native byte-ordering.)

  // binary search loop
  { Label loop;
    __ bind( loop );
    // int h = (i + j) >> 1;
    __ sra( Rh, 1, Rh );
    // if (key < array[h].fast_match()) {
    //   j = h;
    // } else {
    //   i = h;
    // }
    __ sll( Rh, log_entry_size, Rscratch );
    __ ld( Rarray, Rscratch, Rscratch );
    // (Rscratch is already in the native byte-ordering.)
    __ cmp( Rkey, Rscratch );
    if ( VM_Version::v9_instructions_work() ) {
      __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
      __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
    }
    else {
      Label end_of_if;
      __ br( Assembler::less, true, Assembler::pt, end_of_if );
      __ delayed()->mov( Rh, Rj ); // if (<) Rj = Rh
      __ mov( Rh, Ri );            // else i = h
      __ bind(end_of_if);          // }
    }

    // while (i+1 < j)
    __ bind( entry );
    __ add( Ri, 1, Rscratch );
    __ cmp(Rscratch, Rj);
    __ br( Assembler::less, true, Assembler::pt, loop );
    __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
  }

  // end of binary search, result index is i (must check again!)
  Label default_case;
  Label continue_execution;
  if (ProfileInterpreter) {
    __ mov( Ri, Rh );              // Save index in i for profiling
  }
  __ sll( Ri, log_entry_size, Ri );
  __ ld( Rarray, Ri, Rscratch );
  // (Rscratch is already in the native byte-ordering.)
  __ cmp( Rkey, Rscratch );
  __ br( Assembler::notEqual, true, Assembler::pn, default_case );
  __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j

  // entry found -> j = offset
  __ inc( Ri, BytesPerInt );
  __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
  __ ld( Rarray, Ri, Rj );
  // (Rj is already in the native byte-ordering.)

  if (ProfileInterpreter) {
    __ ba(false, continue_execution);
    __ delayed()->nop();
  }

  __ bind(default_case); // fall through (if not profiling)
  __ profile_switch_default(Ri);

  __ bind(continue_execution);
  __ add( Lbcp, Rj, Lbcp );
  __ dispatch_next( vtos );
}


void TemplateTable::_return(TosState state) {
  transition(state, state);
  assert(_desc->calls_vm(), "inconsistent calls_vm information");

  if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
    assert(state == vtos, "only valid state");
    __ mov(G0, G3_scratch);
    __ access_local_ptr(G3_scratch, Otos_i);
    __ load_klass(Otos_i, O2);
    __ set(JVM_ACC_HAS_FINALIZER, G3);
    __ ld(O2, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc), O2);
    __ andcc(G3, O2, G0);
    Label skip_register_finalizer;
    __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
    __ delayed()->nop();

    // Call out to do finalizer registration
    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);

    __ bind(skip_register_finalizer);
  }

  __ remove_activation(state, /* throw_monitor_exception */ true);

  // The caller's SP was adjusted upon method entry to accomodate
  // the callee's non-argument locals. Undo that adjustment.
  __ ret();                             // return to caller
  __ delayed()->restore(I5_savedSP, G0, SP);
}


// ----------------------------------------------------------------------------
// Volatile variables demand their effects be made known to all CPU's in
// order.  Store buffers on most chips allow reads & writes to reorder; the
// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
// memory barrier (i.e., it's not sufficient that the interpreter does not
// reorder volatile references, the hardware also must not reorder them).
//
// According to the new Java Memory Model (JMM):
// (1) All volatiles are serialized wrt to each other.
// ALSO reads & writes act as aquire & release, so:
// (2) A read cannot let unrelated NON-volatile memory refs that happen after
// the read float up to before the read.  It's OK for non-volatile memory refs
// that happen before the volatile read to float down below it.
// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
// that happen BEFORE the write float down to after the write.  It's OK for
// non-volatile memory refs that happen after the volatile write to float up
// before it.
//
// We only put in barriers around volatile refs (they are expensive), not
// _between_ memory refs (that would require us to track the flavor of the
// previous memory refs).  Requirements (2) and (3) require some barriers
// before volatile stores and after volatile loads.  These nearly cover
// requirement (1) but miss the volatile-store-volatile-load case.  This final
// case is placed after volatile-stores although it could just as well go
// before volatile-loads.
void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
  // Helper function to insert a is-volatile test and memory barrier
  // All current sparc implementations run in TSO, needing only StoreLoad
  if ((order_constraint & Assembler::StoreLoad) == 0) return;
  __ membar( order_constraint );
}

// ----------------------------------------------------------------------------
void TemplateTable::resolve_cache_and_index(int byte_no,
                                            Register result,
                                            Register Rcache,
                                            Register index,
                                            size_t index_size) {
  // Depends on cpCacheOop layout!
  Label resolved;

  __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  if (byte_no == f1_oop) {
    // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
    // This kind of CP cache entry does not need to match the flags byte, because
    // there is a 1-1 relation between bytecode type and CP entry type.
    assert_different_registers(result, Rcache);
    __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
              ConstantPoolCacheEntry::f1_offset(), result);
    __ tst(result);
    __ br(Assembler::notEqual, false, Assembler::pt, resolved);
    __ delayed()->set((int)bytecode(), O1);
  } else {
    assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
    assert(result == noreg, "");  //else change code for setting result
    const int shift_count = (1 + byte_no)*BitsPerByte;

    __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
              ConstantPoolCacheEntry::indices_offset(), Lbyte_code);

    __ srl(  Lbyte_code, shift_count, Lbyte_code );
    __ and3( Lbyte_code,        0xFF, Lbyte_code );
    __ cmp(  Lbyte_code, (int)bytecode());
    __ br(   Assembler::equal, false, Assembler::pt, resolved);
    __ delayed()->set((int)bytecode(), O1);
  }

  address entry;
  switch (bytecode()) {
    case Bytecodes::_getstatic      : // fall through
    case Bytecodes::_putstatic      : // fall through
    case Bytecodes::_getfield       : // fall through
    case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
    case Bytecodes::_invokevirtual  : // fall through
    case Bytecodes::_invokespecial  : // fall through
    case Bytecodes::_invokestatic   : // fall through
    case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
    case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
    case Bytecodes::_fast_aldc      : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
    case Bytecodes::_fast_aldc_w    : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
    default                         : ShouldNotReachHere();                                 break;
  }
  // first time invocation - must resolve first
  __ call_VM(noreg, entry, O1);
  // Update registers with resolved info
  __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  if (result != noreg)
    __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
              ConstantPoolCacheEntry::f1_offset(), result);
  __ bind(resolved);
}

void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
                                               Register Rmethod,
                                               Register Ritable_index,
                                               Register Rflags,
                                               bool is_invokevirtual,
                                               bool is_invokevfinal,
                                               bool is_invokedynamic) {
  // Uses both G3_scratch and G4_scratch
  Register Rcache = G3_scratch;
  Register Rscratch = G4_scratch;
  assert_different_registers(Rcache, Rmethod, Ritable_index);

  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();

  // determine constant pool cache field offsets
  const int method_offset = in_bytes(
    cp_base_offset +
      (is_invokevirtual
       ? ConstantPoolCacheEntry::f2_offset()
       : ConstantPoolCacheEntry::f1_offset()
      )
    );
  const int flags_offset = in_bytes(cp_base_offset +
                                    ConstantPoolCacheEntry::flags_offset());
  // access constant pool cache fields
  const int index_offset = in_bytes(cp_base_offset +
                                    ConstantPoolCacheEntry::f2_offset());

  if (is_invokevfinal) {
    __ get_cache_and_index_at_bcp(Rcache, Rscratch, 1);
    __ ld_ptr(Rcache, method_offset, Rmethod);
  } else if (byte_no == f1_oop) {
    // Resolved f1_oop goes directly into 'method' register.
    resolve_cache_and_index(byte_no, Rmethod, Rcache, Rscratch, sizeof(u4));
  } else {
    resolve_cache_and_index(byte_no, noreg, Rcache, Rscratch, sizeof(u2));
    __ ld_ptr(Rcache, method_offset, Rmethod);
  }

  if (Ritable_index != noreg) {
    __ ld_ptr(Rcache, index_offset, Ritable_index);
  }
  __ ld_ptr(Rcache, flags_offset, Rflags);
}

// The Rcache register must be set before call
void TemplateTable::load_field_cp_cache_entry(Register Robj,
                                              Register Rcache,
                                              Register index,
                                              Register Roffset,
                                              Register Rflags,
                                              bool is_static) {
  assert_different_registers(Rcache, Rflags, Roffset);

  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();

  __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  if (is_static) {
    __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
  }
}

// The registers Rcache and index expected to be set before call.
// Correct values of the Rcache and index registers are preserved.
void TemplateTable::jvmti_post_field_access(Register Rcache,
                                            Register index,
                                            bool is_static,
                                            bool has_tos) {
  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();

  if (JvmtiExport::can_post_field_access()) {
    // Check to see if a field access watch has been set before we take
    // the time to call into the VM.
    Label Label1;
    assert_different_registers(Rcache, index, G1_scratch);
    AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
    __ load_contents(get_field_access_count_addr, G1_scratch);
    __ tst(G1_scratch);
    __ br(Assembler::zero, false, Assembler::pt, Label1);
    __ delayed()->nop();

    __ add(Rcache, in_bytes(cp_base_offset), Rcache);

    if (is_static) {
      __ clr(Otos_i);
    } else {
      if (has_tos) {
      // save object pointer before call_VM() clobbers it
        __ push_ptr(Otos_i);  // put object on tos where GC wants it.
      } else {
        // Load top of stack (do not pop the value off the stack);
        __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
      }
      __ verify_oop(Otos_i);
    }
    // Otos_i: object pointer or NULL if static
    // Rcache: cache entry pointer
    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
               Otos_i, Rcache);
    if (!is_static && has_tos) {
      __ pop_ptr(Otos_i);  // restore object pointer
      __ verify_oop(Otos_i);
    }
    __ get_cache_and_index_at_bcp(Rcache, index, 1);
    __ bind(Label1);
  }
}

void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  transition(vtos, vtos);

  Register Rcache = G3_scratch;
  Register index  = G4_scratch;
  Register Rclass = Rcache;
  Register Roffset= G4_scratch;
  Register Rflags = G1_scratch;
  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();

  resolve_cache_and_index(byte_no, noreg, Rcache, index, sizeof(u2));
  jvmti_post_field_access(Rcache, index, is_static, false);
  load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);

  if (!is_static) {
    pop_and_check_object(Rclass);
  } else {
    __ verify_oop(Rclass);
  }

  Label exit;

  Assembler::Membar_mask_bits membar_bits =
    Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);

  if (__ membar_has_effect(membar_bits)) {
    // Get volatile flag
    __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
    __ and3(Rflags, Lscratch, Lscratch);
  }

  Label checkVolatile;

  // compute field type
  Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
  __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
  // Make sure we don't need to mask Rflags for tosBits after the above shift
  ConstantPoolCacheEntry::verify_tosBits();

  // Check atos before itos for getstatic, more likely (in Queens at least)
  __ cmp(Rflags, atos);
  __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  __ delayed() ->cmp(Rflags, itos);

  // atos
  __ load_heap_oop(Rclass, Roffset, Otos_i);
  __ verify_oop(Otos_i);
  __ push(atos);
  if (!is_static) {
    patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
  }
  __ ba(false, checkVolatile);
  __ delayed()->tst(Lscratch);

  __ bind(notObj);

  // cmp(Rflags, itos);
  __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  __ delayed() ->cmp(Rflags, ltos);

  // itos
  __ ld(Rclass, Roffset, Otos_i);
  __ push(itos);
  if (!is_static) {
    patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
  }
  __ ba(false, checkVolatile);
  __ delayed()->tst(Lscratch);

  __ bind(notInt);

  // cmp(Rflags, ltos);
  __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  __ delayed() ->cmp(Rflags, btos);

  // ltos
  // load must be atomic
  __ ld_long(Rclass, Roffset, Otos_l);
  __ push(ltos);
  if (!is_static) {
    patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
  }
  __ ba(false, checkVolatile);
  __ delayed()->tst(Lscratch);

  __ bind(notLong);

  // cmp(Rflags, btos);
  __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  __ delayed() ->cmp(Rflags, ctos);

  // btos
  __ ldsb(Rclass, Roffset, Otos_i);
  __ push(itos);
  if (!is_static) {
    patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
  }
  __ ba(false, checkVolatile);
  __ delayed()->tst(Lscratch);

  __ bind(notByte);

  // cmp(Rflags, ctos);
  __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  __ delayed() ->cmp(Rflags, stos);

  // ctos
  __ lduh(Rclass, Roffset, Otos_i);
  __ push(itos);
  if (!is_static) {
    patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
  }
  __ ba(false, checkVolatile);
  __ delayed()->tst(Lscratch);

  __ bind(notChar);

  // cmp(Rflags, stos);
  __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  __ delayed() ->cmp(Rflags, ftos);

  // stos
  __ ldsh(Rclass, Roffset, Otos_i);
  __ push(itos);
  if (!is_static) {
    patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
  }
  __ ba(false, checkVolatile);
  __ delayed()->tst(Lscratch);

  __ bind(notShort);


  // cmp(Rflags, ftos);
  __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
  __ delayed() ->tst(Lscratch);

  // ftos
  __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
  __ push(ftos);
  if (!is_static) {
    patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
  }
  __ ba(false, checkVolatile);
  __ delayed()->tst(Lscratch);

  __ bind(notFloat);


  // dtos
  __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
  __ push(dtos);
  if (!is_static) {
    patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
  }

  __ bind(checkVolatile);
  if (__ membar_has_effect(membar_bits)) {
    // __ tst(Lscratch); executed in delay slot
    __ br(Assembler::zero, false, Assembler::pt, exit);
    __ delayed()->nop();
    volatile_barrier(membar_bits);
  }

  __ bind(exit);
}


void TemplateTable::getfield(int byte_no) {
  getfield_or_static(byte_no, false);
}

void TemplateTable::getstatic(int byte_no) {
  getfield_or_static(byte_no, true);
}


void TemplateTable::fast_accessfield(TosState state) {
  transition(atos, state);
  Register Rcache  = G3_scratch;
  Register index   = G4_scratch;
  Register Roffset = G4_scratch;
  Register Rflags  = Rcache;
  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();

  __ get_cache_and_index_at_bcp(Rcache, index, 1);
  jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);

  __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);

  __ null_check(Otos_i);
  __ verify_oop(Otos_i);

  Label exit;

  Assembler::Membar_mask_bits membar_bits =
    Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  if (__ membar_has_effect(membar_bits)) {
    // Get volatile flag
    __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
    __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  }

  switch (bytecode()) {
    case Bytecodes::_fast_bgetfield:
      __ ldsb(Otos_i, Roffset, Otos_i);
      break;
    case Bytecodes::_fast_cgetfield:
      __ lduh(Otos_i, Roffset, Otos_i);
      break;
    case Bytecodes::_fast_sgetfield:
      __ ldsh(Otos_i, Roffset, Otos_i);
      break;
    case Bytecodes::_fast_igetfield:
      __ ld(Otos_i, Roffset, Otos_i);
      break;
    case Bytecodes::_fast_lgetfield:
      __ ld_long(Otos_i, Roffset, Otos_l);
      break;
    case Bytecodes::_fast_fgetfield:
      __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
      break;
    case Bytecodes::_fast_dgetfield:
      __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
      break;
    case Bytecodes::_fast_agetfield:
      __ load_heap_oop(Otos_i, Roffset, Otos_i);
      break;
    default:
      ShouldNotReachHere();
  }

  if (__ membar_has_effect(membar_bits)) {
    __ btst(Lscratch, Rflags);
    __ br(Assembler::zero, false, Assembler::pt, exit);
    __ delayed()->nop();
    volatile_barrier(membar_bits);
    __ bind(exit);
  }

  if (state == atos) {
    __ verify_oop(Otos_i);    // does not blow flags!
  }
}

void TemplateTable::jvmti_post_fast_field_mod() {
  if (JvmtiExport::can_post_field_modification()) {
    // Check to see if a field modification watch has been set before we take
    // the time to call into the VM.
    Label done;
    AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
    __ load_contents(get_field_modification_count_addr, G4_scratch);
    __ tst(G4_scratch);
    __ br(Assembler::zero, false, Assembler::pt, done);
    __ delayed()->nop();
    __ pop_ptr(G4_scratch);     // copy the object pointer from tos
    __ verify_oop(G4_scratch);
    __ push_ptr(G4_scratch);    // put the object pointer back on tos
    __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
    // Save tos values before call_VM() clobbers them. Since we have
    // to do it for every data type, we use the saved values as the
    // jvalue object.
    switch (bytecode()) {  // save tos values before call_VM() clobbers them
    case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
    case Bytecodes::_fast_bputfield: // fall through
    case Bytecodes::_fast_sputfield: // fall through
    case Bytecodes::_fast_cputfield: // fall through
    case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
    case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
    case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
    // get words in right order for use as jvalue object
    case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
    }
    // setup pointer to jvalue object
    __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
    // G4_scratch:  object pointer
    // G1_scratch: cache entry pointer
    // G3_scratch: jvalue object on the stack
    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
    switch (bytecode()) {             // restore tos values
    case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
    case Bytecodes::_fast_bputfield: // fall through
    case Bytecodes::_fast_sputfield: // fall through
    case Bytecodes::_fast_cputfield: // fall through
    case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
    case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
    case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
    case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
    }
    __ bind(done);
  }
}

// The registers Rcache and index expected to be set before call.
// The function may destroy various registers, just not the Rcache and index registers.
void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();

  if (JvmtiExport::can_post_field_modification()) {
    // Check to see if a field modification watch has been set before we take
    // the time to call into the VM.
    Label Label1;
    assert_different_registers(Rcache, index, G1_scratch);
    AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
    __ load_contents(get_field_modification_count_addr, G1_scratch);
    __ tst(G1_scratch);
    __ br(Assembler::zero, false, Assembler::pt, Label1);
    __ delayed()->nop();

    // The Rcache and index registers have been already set.
    // This allows to eliminate this call but the Rcache and index
    // registers must be correspondingly used after this line.
    __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);

    __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
    if (is_static) {
      // Life is simple.  Null out the object pointer.
      __ clr(G4_scratch);
    } else {
      Register Rflags = G1_scratch;
      // Life is harder. The stack holds the value on top, followed by the
      // object.  We don't know the size of the value, though; it could be
      // one or two words depending on its type. As a result, we must find
      // the type to determine where the object is.

      Label two_word, valsizeknown;
      __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
      __ mov(Lesp, G4_scratch);
      __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
      // Make sure we don't need to mask Rflags for tosBits after the above shift
      ConstantPoolCacheEntry::verify_tosBits();
      __ cmp(Rflags, ltos);
      __ br(Assembler::equal, false, Assembler::pt, two_word);
      __ delayed()->cmp(Rflags, dtos);
      __ br(Assembler::equal, false, Assembler::pt, two_word);
      __ delayed()->nop();
      __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
      __ br(Assembler::always, false, Assembler::pt, valsizeknown);
      __ delayed()->nop();
      __ bind(two_word);

      __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));

      __ bind(valsizeknown);
      // setup object pointer
      __ ld_ptr(G4_scratch, 0, G4_scratch);
      __ verify_oop(G4_scratch);
    }
    // setup pointer to jvalue object
    __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
    // G4_scratch:  object pointer or NULL if static
    // G3_scratch: cache entry pointer
    // G1_scratch: jvalue object on the stack
    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
               G4_scratch, G3_scratch, G1_scratch);
    __ get_cache_and_index_at_bcp(Rcache, index, 1);
    __ bind(Label1);
  }
}

void TemplateTable::pop_and_check_object(Register r) {
  __ pop_ptr(r);
  __ null_check(r);  // for field access must check obj.
  __ verify_oop(r);
}

void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  transition(vtos, vtos);
  Register Rcache = G3_scratch;
  Register index  = G4_scratch;
  Register Rclass = Rcache;
  Register Roffset= G4_scratch;
  Register Rflags = G1_scratch;
  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();

  resolve_cache_and_index(byte_no, noreg, Rcache, index, sizeof(u2));
  jvmti_post_field_mod(Rcache, index, is_static);
  load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);

  Assembler::Membar_mask_bits read_bits =
    Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;

  Label notVolatile, checkVolatile, exit;
  if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
    __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
    __ and3(Rflags, Lscratch, Lscratch);

    if (__ membar_has_effect(read_bits)) {
      __ tst(Lscratch);
      __ br(Assembler::zero, false, Assembler::pt, notVolatile);
      __ delayed()->nop();
      volatile_barrier(read_bits);
      __ bind(notVolatile);
    }
  }

  __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
  // Make sure we don't need to mask Rflags for tosBits after the above shift
  ConstantPoolCacheEntry::verify_tosBits();

  // compute field type
  Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;

  if (is_static) {
    // putstatic with object type most likely, check that first
    __ cmp(Rflags, atos );
    __ br(Assembler::notEqual, false, Assembler::pt, notObj);
    __ delayed() ->cmp(Rflags, itos );

    // atos
    __ pop_ptr();
    __ verify_oop(Otos_i);

    do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);

    __ ba(false, checkVolatile);
    __ delayed()->tst(Lscratch);

    __ bind(notObj);

    // cmp(Rflags, itos );
    __ br(Assembler::notEqual, false, Assembler::pt, notInt);
    __ delayed() ->cmp(Rflags, btos );

    // itos
    __ pop_i();
    __ st(Otos_i, Rclass, Roffset);
    __ ba(false, checkVolatile);
    __ delayed()->tst(Lscratch);

    __ bind(notInt);

  } else {
    // putfield with int type most likely, check that first
    __ cmp(Rflags, itos );
    __ br(Assembler::notEqual, false, Assembler::pt, notInt);
    __ delayed() ->cmp(Rflags, atos );

    // itos
    __ pop_i();
    pop_and_check_object(Rclass);
    __ st(Otos_i, Rclass, Roffset);
    patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch);
    __ ba(false, checkVolatile);
    __ delayed()->tst(Lscratch);

    __ bind(notInt);
    // cmp(Rflags, atos );
    __ br(Assembler::notEqual, false, Assembler::pt, notObj);
    __ delayed() ->cmp(Rflags, btos );

    // atos
    __ pop_ptr();
    pop_and_check_object(Rclass);
    __ verify_oop(Otos_i);

    do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);

    patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch);
    __ ba(false, checkVolatile);
    __ delayed()->tst(Lscratch);

    __ bind(notObj);
  }

  // cmp(Rflags, btos );
  __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  __ delayed() ->cmp(Rflags, ltos );

  // btos
  __ pop_i();
  if (!is_static) pop_and_check_object(Rclass);
  __ stb(Otos_i, Rclass, Roffset);
  if (!is_static) {
    patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch);
  }
  __ ba(false, checkVolatile);
  __ delayed()->tst(Lscratch);

  __ bind(notByte);

  // cmp(Rflags, ltos );
  __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  __ delayed() ->cmp(Rflags, ctos );

  // ltos
  __ pop_l();
  if (!is_static) pop_and_check_object(Rclass);
  __ st_long(Otos_l, Rclass, Roffset);
  if (!is_static) {
    patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch);
  }
  __ ba(false, checkVolatile);
  __ delayed()->tst(Lscratch);

  __ bind(notLong);

  // cmp(Rflags, ctos );
  __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  __ delayed() ->cmp(Rflags, stos );

  // ctos (char)
  __ pop_i();
  if (!is_static) pop_and_check_object(Rclass);
  __ sth(Otos_i, Rclass, Roffset);
  if (!is_static) {
    patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch);
  }
  __ ba(false, checkVolatile);
  __ delayed()->tst(Lscratch);

  __ bind(notChar);
  // cmp(Rflags, stos );
  __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  __ delayed() ->cmp(Rflags, ftos );

  // stos (char)
  __ pop_i();
  if (!is_static) pop_and_check_object(Rclass);
  __ sth(Otos_i, Rclass, Roffset);
  if (!is_static) {
    patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch);
  }
  __ ba(false, checkVolatile);
  __ delayed()->tst(Lscratch);

  __ bind(notShort);
  // cmp(Rflags, ftos );
  __ br(Assembler::notZero, false, Assembler::pt, notFloat);
  __ delayed()->nop();

  // ftos
  __ pop_f();
  if (!is_static) pop_and_check_object(Rclass);
  __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  if (!is_static) {
    patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch);
  }
  __ ba(false, checkVolatile);
  __ delayed()->tst(Lscratch);

  __ bind(notFloat);

  // dtos
  __ pop_d();
  if (!is_static) pop_and_check_object(Rclass);
  __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  if (!is_static) {
    patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch);
  }

  __ bind(checkVolatile);
  __ tst(Lscratch);

  if (__ membar_has_effect(write_bits)) {
    // __ tst(Lscratch); in delay slot
    __ br(Assembler::zero, false, Assembler::pt, exit);
    __ delayed()->nop();
    volatile_barrier(Assembler::StoreLoad);
    __ bind(exit);
  }
}

void TemplateTable::fast_storefield(TosState state) {
  transition(state, vtos);
  Register Rcache = G3_scratch;
  Register Rclass = Rcache;
  Register Roffset= G4_scratch;
  Register Rflags = G1_scratch;
  ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();

  jvmti_post_fast_field_mod();

  __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);

  Assembler::Membar_mask_bits read_bits =
    Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;

  Label notVolatile, checkVolatile, exit;
  if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
    __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
    __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
    __ and3(Rflags, Lscratch, Lscratch);
    if (__ membar_has_effect(read_bits)) {
      __ tst(Lscratch);
      __ br(Assembler::zero, false, Assembler::pt, notVolatile);
      __ delayed()->nop();
      volatile_barrier(read_bits);
      __ bind(notVolatile);
    }
  }

  __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  pop_and_check_object(Rclass);

  switch (bytecode()) {
    case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
    case Bytecodes::_fast_cputfield: /* fall through */
    case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
    case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
    case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
    case Bytecodes::_fast_fputfield:
      __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
      break;
    case Bytecodes::_fast_dputfield:
      __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
      break;
    case Bytecodes::_fast_aputfield:
      do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
      break;
    default:
      ShouldNotReachHere();
  }

  if (__ membar_has_effect(write_bits)) {
    __ tst(Lscratch);
    __ br(Assembler::zero, false, Assembler::pt, exit);
    __ delayed()->nop();
    volatile_barrier(Assembler::StoreLoad);
    __ bind(exit);
  }
}


void TemplateTable::putfield(int byte_no) {
  putfield_or_static(byte_no, false);
}

void TemplateTable::putstatic(int byte_no) {
  putfield_or_static(byte_no, true);
}


void TemplateTable::fast_xaccess(TosState state) {
  transition(vtos, state);
  Register Rcache = G3_scratch;
  Register Roffset = G4_scratch;
  Register Rflags  = G4_scratch;
  Register Rreceiver = Lscratch;

  __ ld_ptr(Llocals, 0, Rreceiver);

  // access constant pool cache  (is resolved)
  __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
  __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
  __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp

  __ verify_oop(Rreceiver);
  __ null_check(Rreceiver);
  if (state == atos) {
    __ load_heap_oop(Rreceiver, Roffset, Otos_i);
  } else if (state == itos) {
    __ ld (Rreceiver, Roffset, Otos_i) ;
  } else if (state == ftos) {
    __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
  } else {
    ShouldNotReachHere();
  }

  Assembler::Membar_mask_bits membar_bits =
    Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  if (__ membar_has_effect(membar_bits)) {

    // Get is_volatile value in Rflags and check if membar is needed
    __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);

    // Test volatile
    Label notVolatile;
    __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
    __ btst(Rflags, Lscratch);
    __ br(Assembler::zero, false, Assembler::pt, notVolatile);
    __ delayed()->nop();
    volatile_barrier(membar_bits);
    __ bind(notVolatile);
  }

  __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  __ sub(Lbcp, 1, Lbcp);
}

//----------------------------------------------------------------------------------------------------
// Calls

void TemplateTable::count_calls(Register method, Register temp) {
  // implemented elsewhere
  ShouldNotReachHere();
}

void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
  Register Rtemp = G4_scratch;
  Register Rcall = Rindex;
  assert_different_registers(Rcall, G5_method, Gargs, Rret);

  // get target methodOop & entry point
  const int base = instanceKlass::vtable_start_offset() * wordSize;
  if (vtableEntry::size() % 3 == 0) {
    // scale the vtable index by 12:
    int one_third = vtableEntry::size() / 3;
    __ sll(Rindex, exact_log2(one_third * 1 * wordSize), Rtemp);
    __ sll(Rindex, exact_log2(one_third * 2 * wordSize), Rindex);
    __ add(Rindex, Rtemp, Rindex);
  } else {
    // scale the vtable index by 8:
    __ sll(Rindex, exact_log2(vtableEntry::size() * wordSize), Rindex);
  }

  __ add(Rrecv, Rindex, Rrecv);
  __ ld_ptr(Rrecv, base + vtableEntry::method_offset_in_bytes(), G5_method);

  __ call_from_interpreter(Rcall, Gargs, Rret);
}

void TemplateTable::invokevirtual(int byte_no) {
  transition(vtos, vtos);
  assert(byte_no == f2_byte, "use this argument");

  Register Rscratch = G3_scratch;
  Register Rtemp = G4_scratch;
  Register Rret = Lscratch;
  Register Rrecv = G5_method;
  Label notFinal;

  load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
  __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore

  // Check for vfinal
  __ set((1 << ConstantPoolCacheEntry::vfinalMethod), G4_scratch);
  __ btst(Rret, G4_scratch);
  __ br(Assembler::zero, false, Assembler::pt, notFinal);
  __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters

  patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);

  invokevfinal_helper(Rscratch, Rret);

  __ bind(notFinal);

  __ mov(G5_method, Rscratch);  // better scratch register
  __ load_receiver(G4_scratch, O0);  // gets receiverOop
  // receiver is in O0
  __ verify_oop(O0);

  // get return address
  AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  __ set(table, Rtemp);
  __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  // Make sure we don't need to mask Rret for tosBits after the above shift
  ConstantPoolCacheEntry::verify_tosBits();
  __ sll(Rret,  LogBytesPerWord, Rret);
  __ ld_ptr(Rtemp, Rret, Rret);         // get return address

  // get receiver klass
  __ null_check(O0, oopDesc::klass_offset_in_bytes());
  __ load_klass(O0, Rrecv);
  __ verify_oop(Rrecv);

  __ profile_virtual_call(Rrecv, O4);

  generate_vtable_call(Rrecv, Rscratch, Rret);
}

void TemplateTable::fast_invokevfinal(int byte_no) {
  transition(vtos, vtos);
  assert(byte_no == f2_byte, "use this argument");

  load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
                             /*is_invokevfinal*/true, false);
  __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  invokevfinal_helper(G3_scratch, Lscratch);
}

void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
  Register Rtemp = G4_scratch;

  __ verify_oop(G5_method);

  // Load receiver from stack slot
  __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
  __ load_receiver(G4_scratch, O0);

  // receiver NULL check
  __ null_check(O0);

  __ profile_final_call(O4);

  // get return address
  AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  __ set(table, Rtemp);
  __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  // Make sure we don't need to mask Rret for tosBits after the above shift
  ConstantPoolCacheEntry::verify_tosBits();
  __ sll(Rret,  LogBytesPerWord, Rret);
  __ ld_ptr(Rtemp, Rret, Rret);         // get return address


  // do the call
  __ call_from_interpreter(Rscratch, Gargs, Rret);
}

void TemplateTable::invokespecial(int byte_no) {
  transition(vtos, vtos);
  assert(byte_no == f1_byte, "use this argument");

  Register Rscratch = G3_scratch;
  Register Rtemp = G4_scratch;
  Register Rret = Lscratch;

  load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, /*virtual*/ false, false, false);
  __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore

  __ verify_oop(G5_method);

  __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
  __ load_receiver(G4_scratch, O0);

  // receiver NULL check
  __ null_check(O0);

  __ profile_call(O4);

  // get return address
  AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  __ set(table, Rtemp);
  __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  // Make sure we don't need to mask Rret for tosBits after the above shift
  ConstantPoolCacheEntry::verify_tosBits();
  __ sll(Rret,  LogBytesPerWord, Rret);
  __ ld_ptr(Rtemp, Rret, Rret);         // get return address

  // do the call
  __ call_from_interpreter(Rscratch, Gargs, Rret);
}

void TemplateTable::invokestatic(int byte_no) {
  transition(vtos, vtos);
  assert(byte_no == f1_byte, "use this argument");

  Register Rscratch = G3_scratch;
  Register Rtemp = G4_scratch;
  Register Rret = Lscratch;

  load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, /*virtual*/ false, false, false);
  __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore

  __ verify_oop(G5_method);

  __ profile_call(O4);

  // get return address
  AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  __ set(table, Rtemp);
  __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  // Make sure we don't need to mask Rret for tosBits after the above shift
  ConstantPoolCacheEntry::verify_tosBits();
  __ sll(Rret,  LogBytesPerWord, Rret);
  __ ld_ptr(Rtemp, Rret, Rret);         // get return address

  // do the call
  __ call_from_interpreter(Rscratch, Gargs, Rret);
}


void TemplateTable::invokeinterface_object_method(Register RklassOop,
                                                  Register Rcall,
                                                  Register Rret,
                                                  Register Rflags) {
  Register Rscratch = G4_scratch;
  Register Rindex = Lscratch;

  assert_different_registers(Rscratch, Rindex, Rret);

  Label notFinal;

  // Check for vfinal
  __ set((1 << ConstantPoolCacheEntry::vfinalMethod), Rscratch);
  __ btst(Rflags, Rscratch);
  __ br(Assembler::zero, false, Assembler::pt, notFinal);
  __ delayed()->nop();

  __ profile_final_call(O4);

  // do the call - the index (f2) contains the methodOop
  assert_different_registers(G5_method, Gargs, Rcall);
  __ mov(Rindex, G5_method);
  __ call_from_interpreter(Rcall, Gargs, Rret);
  __ bind(notFinal);

  __ profile_virtual_call(RklassOop, O4);
  generate_vtable_call(RklassOop, Rindex, Rret);
}


void TemplateTable::invokeinterface(int byte_no) {
  transition(vtos, vtos);
  assert(byte_no == f1_byte, "use this argument");

  Register Rscratch = G4_scratch;
  Register Rret = G3_scratch;
  Register Rindex = Lscratch;
  Register Rinterface = G1_scratch;
  Register RklassOop = G5_method;
  Register Rflags = O1;
  assert_different_registers(Rscratch, G5_method);

  load_invoke_cp_cache_entry(byte_no, Rinterface, Rindex, Rflags, /*virtual*/ false, false, false);
  __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore

  // get receiver
  __ and3(Rflags, 0xFF, Rscratch);       // gets number of parameters
  __ load_receiver(Rscratch, O0);
  __ verify_oop(O0);

  __ mov(Rflags, Rret);

  // get return address
  AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
  __ set(table, Rscratch);
  __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  // Make sure we don't need to mask Rret for tosBits after the above shift
  ConstantPoolCacheEntry::verify_tosBits();
  __ sll(Rret,  LogBytesPerWord, Rret);
  __ ld_ptr(Rscratch, Rret, Rret);      // get return address

  // get receiver klass
  __ null_check(O0, oopDesc::klass_offset_in_bytes());
  __ load_klass(O0, RklassOop);
  __ verify_oop(RklassOop);

  // Special case of invokeinterface called for virtual method of
  // java.lang.Object.  See cpCacheOop.cpp for details.
  // This code isn't produced by javac, but could be produced by
  // another compliant java compiler.
  Label notMethod;
  __ set((1 << ConstantPoolCacheEntry::methodInterface), Rscratch);
  __ btst(Rflags, Rscratch);
  __ br(Assembler::zero, false, Assembler::pt, notMethod);
  __ delayed()->nop();

  invokeinterface_object_method(RklassOop, Rinterface, Rret, Rflags);

  __ bind(notMethod);

  __ profile_virtual_call(RklassOop, O4);

  //
  // find entry point to call
  //

  // compute start of first itableOffsetEntry (which is at end of vtable)
  const int base = instanceKlass::vtable_start_offset() * wordSize;
  Label search;
  Register Rtemp = Rflags;

  __ ld(RklassOop, instanceKlass::vtable_length_offset() * wordSize, Rtemp);
  if (align_object_offset(1) > 1) {
    __ round_to(Rtemp, align_object_offset(1));
  }
  __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
  if (Assembler::is_simm13(base)) {
    __ add(Rtemp, base, Rtemp);
  } else {
    __ set(base, Rscratch);
    __ add(Rscratch, Rtemp, Rtemp);
  }
  __ add(RklassOop, Rtemp, Rscratch);

  __ bind(search);

  __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
  {
    Label ok;

    // Check that entry is non-null.  Null entries are probably a bytecode
    // problem.  If the interface isn't implemented by the receiver class,
    // the VM should throw IncompatibleClassChangeError.  linkResolver checks
    // this too but that's only if the entry isn't already resolved, so we
    // need to check again.
    __ br_notnull( Rtemp, false, Assembler::pt, ok);
    __ delayed()->nop();
    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
    __ should_not_reach_here();
    __ bind(ok);
    __ verify_oop(Rtemp);
  }

  __ verify_oop(Rinterface);

  __ cmp(Rinterface, Rtemp);
  __ brx(Assembler::notEqual, true, Assembler::pn, search);
  __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);

  // entry found and Rscratch points to it
  __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);

  assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
  __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
  __ add(Rscratch, Rindex, Rscratch);
  __ ld_ptr(RklassOop, Rscratch, G5_method);

  // Check for abstract method error.
  {
    Label ok;
    __ tst(G5_method);
    __ brx(Assembler::notZero, false, Assembler::pt, ok);
    __ delayed()->nop();
    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
    __ should_not_reach_here();
    __ bind(ok);
  }

  Register Rcall = Rinterface;
  assert_different_registers(Rcall, G5_method, Gargs, Rret);

  __ verify_oop(G5_method);
  __ call_from_interpreter(Rcall, Gargs, Rret);

}


void TemplateTable::invokedynamic(int byte_no) {
  transition(vtos, vtos);
  assert(byte_no == f1_oop, "use this argument");

  if (!EnableInvokeDynamic) {
    // We should not encounter this bytecode if !EnableInvokeDynamic.
    // The verifier will stop it.  However, if we get past the verifier,
    // this will stop the thread in a reasonable way, without crashing the JVM.
    __ call_VM(noreg, CAST_FROM_FN_PTR(address,
                     InterpreterRuntime::throw_IncompatibleClassChangeError));
    // the call_VM checks for exception, so we should never return here.
    __ should_not_reach_here();
    return;
  }

  // G5: CallSite object (f1)
  // XX: unused (f2)
  // XX: flags (unused)

  Register G5_callsite = G5_method;
  Register Rscratch    = G3_scratch;
  Register Rtemp       = G1_scratch;
  Register Rret        = Lscratch;

  load_invoke_cp_cache_entry(byte_no, G5_callsite, noreg, Rret,
                             /*virtual*/ false, /*vfinal*/ false, /*indy*/ true);
  __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore

  __ verify_oop(G5_callsite);

  // profile this call
  __ profile_call(O4);

  // get return address
  AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
  __ set(table, Rtemp);
  __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);  // get return type
  // Make sure we don't need to mask Rret for tosBits after the above shift
  ConstantPoolCacheEntry::verify_tosBits();
  __ sll(Rret, LogBytesPerWord, Rret);
  __ ld_ptr(Rtemp, Rret, Rret);  // get return address

  __ load_heap_oop(G5_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, Rscratch), G3_method_handle);
  __ null_check(G3_method_handle);

  // Adjust Rret first so Llast_SP can be same as Rret
  __ add(Rret, -frame::pc_return_offset, O7);
  __ add(Lesp, BytesPerWord, Gargs);  // setup parameter pointer
  __ jump_to_method_handle_entry(G3_method_handle, Rtemp, /* emit_delayed_nop */ false);
  // Record SP so we can remove any stack space allocated by adapter transition
  __ delayed()->mov(SP, Llast_SP);
}


//----------------------------------------------------------------------------------------------------
// Allocation

void TemplateTable::_new() {
  transition(vtos, atos);

  Label slow_case;
  Label done;
  Label initialize_header;
  Label initialize_object;  // including clearing the fields

  Register RallocatedObject = Otos_i;
  Register RinstanceKlass = O1;
  Register Roffset = O3;
  Register Rscratch = O4;

  __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  __ get_cpool_and_tags(Rscratch, G3_scratch);
  // make sure the class we're about to instantiate has been resolved
  // This is done before loading instanceKlass to be consistent with the order
  // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
  __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  __ ldub(G3_scratch, Roffset, G3_scratch);
  __ cmp(G3_scratch, JVM_CONSTANT_Class);
  __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  // get instanceKlass
  //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
  __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  __ ld_ptr(Rscratch, Roffset, RinstanceKlass);

  // make sure klass is fully initialized:
  __ ld(RinstanceKlass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc), G3_scratch);
  __ cmp(G3_scratch, instanceKlass::fully_initialized);
  __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  __ delayed()->ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);

  // get instance_size in instanceKlass (already aligned)
  //__ ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);

  // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
  __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
  __ br(Assembler::notZero, false, Assembler::pn, slow_case);
  __ delayed()->nop();

  // allocate the instance
  // 1) Try to allocate in the TLAB
  // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
  // 3) if the above fails (or is not applicable), go to a slow case
  // (creates a new TLAB, etc.)

  const bool allow_shared_alloc =
    Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;

  if(UseTLAB) {
    Register RoldTopValue = RallocatedObject;
    Register RtopAddr = G3_scratch, RtlabWasteLimitValue = G3_scratch;
    Register RnewTopValue = G1_scratch;
    Register RendValue = Rscratch;
    Register RfreeValue = RnewTopValue;

    // check if we can allocate in the TLAB
    __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
    __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
    __ add(RoldTopValue, Roffset, RnewTopValue);

    // if there is enough space, we do not CAS and do not clear
    __ cmp(RnewTopValue, RendValue);
    if(ZeroTLAB) {
      // the fields have already been cleared
      __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
    } else {
      // initialize both the header and fields
      __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
    }
    __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));

    if (allow_shared_alloc) {
      // Check if tlab should be discarded (refill_waste_limit >= free)
      __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
      __ sub(RendValue, RoldTopValue, RfreeValue);
#ifdef _LP64
      __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
#else
      __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
#endif
      __ cmp(RtlabWasteLimitValue, RfreeValue);
      __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, slow_case); // tlab waste is small
      __ delayed()->nop();

      // increment waste limit to prevent getting stuck on this slow path
      __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
      __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
    } else {
      // No allocation in the shared eden.
      __ br(Assembler::always, false, Assembler::pt, slow_case);
      __ delayed()->nop();
    }
  }

  // Allocation in the shared Eden
  if (allow_shared_alloc) {
    Register RoldTopValue = G1_scratch;
    Register RtopAddr = G3_scratch;
    Register RnewTopValue = RallocatedObject;
    Register RendValue = Rscratch;

    __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);

    Label retry;
    __ bind(retry);
    __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
    __ ld_ptr(RendValue, 0, RendValue);
    __ ld_ptr(RtopAddr, 0, RoldTopValue);
    __ add(RoldTopValue, Roffset, RnewTopValue);

    // RnewTopValue contains the top address after the new object
    // has been allocated.
    __ cmp(RnewTopValue, RendValue);
    __ brx(Assembler::greaterUnsigned, false, Assembler::pn, slow_case);
    __ delayed()->nop();

    __ casx_under_lock(RtopAddr, RoldTopValue, RnewTopValue,
      VM_Version::v9_instructions_work() ? NULL :
      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());

    // if someone beat us on the allocation, try again, otherwise continue
    __ cmp(RoldTopValue, RnewTopValue);
    __ brx(Assembler::notEqual, false, Assembler::pn, retry);
    __ delayed()->nop();

    // bump total bytes allocated by this thread
    // RoldTopValue and RtopAddr are dead, so can use G1 and G3
    __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
  }

  if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
    // clear object fields
    __ bind(initialize_object);
    __ deccc(Roffset, sizeof(oopDesc));
    __ br(Assembler::zero, false, Assembler::pt, initialize_header);
    __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);

    // initialize remaining object fields
    { Label loop;
      __ subcc(Roffset, wordSize, Roffset);
      __ bind(loop);
      //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
      __ st_ptr(G0, G3_scratch, Roffset);
      __ br(Assembler::notEqual, false, Assembler::pt, loop);
      __ delayed()->subcc(Roffset, wordSize, Roffset);
    }
    __ br(Assembler::always, false, Assembler::pt, initialize_header);
    __ delayed()->nop();
  }

  // slow case
  __ bind(slow_case);
  __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
  __ get_constant_pool(O1);

  call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);

  __ ba(false, done);
  __ delayed()->nop();

  // Initialize the header: mark, klass
  __ bind(initialize_header);

  if (UseBiasedLocking) {
    __ ld_ptr(RinstanceKlass, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), G4_scratch);
  } else {
    __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
  }
  __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
  __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
  __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)

  {
    SkipIfEqual skip_if(
      _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
    // Trigger dtrace event
    __ push(atos);
    __ call_VM_leaf(noreg,
       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
    __ pop(atos);
  }

  // continue
  __ bind(done);
}



void TemplateTable::newarray() {
  transition(itos, atos);
  __ ldub(Lbcp, 1, O1);
     call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
}


void TemplateTable::anewarray() {
  transition(itos, atos);
  __ get_constant_pool(O1);
  __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
     call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
}


void TemplateTable::arraylength() {
  transition(atos, itos);
  Label ok;
  __ verify_oop(Otos_i);
  __ tst(Otos_i);
  __ throw_if_not_1_x( Assembler::notZero, ok );
  __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
  __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
}


void TemplateTable::checkcast() {
  transition(atos, atos);
  Label done, is_null, quicked, cast_ok, resolved;
  Register Roffset = G1_scratch;
  Register RobjKlass = O5;
  Register RspecifiedKlass = O4;

  // Check for casting a NULL
  __ br_null(Otos_i, false, Assembler::pn, is_null);
  __ delayed()->nop();

  // Get value klass in RobjKlass
  __ load_klass(Otos_i, RobjKlass); // get value klass

  // Get constant pool tag
  __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);

  // See if the checkcast has been quickened
  __ get_cpool_and_tags(Lscratch, G3_scratch);
  __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  __ ldub(G3_scratch, Roffset, G3_scratch);
  __ cmp(G3_scratch, JVM_CONSTANT_Class);
  __ br(Assembler::equal, true, Assembler::pt, quicked);
  __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);

  __ push_ptr(); // save receiver for result, and for GC
  call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  __ pop_ptr(Otos_i, G3_scratch); // restore receiver

  __ br(Assembler::always, false, Assembler::pt, resolved);
  __ delayed()->nop();

  // Extract target class from constant pool
  __ bind(quicked);
  __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  __ bind(resolved);
  __ load_klass(Otos_i, RobjKlass); // get value klass

  // Generate a fast subtype check.  Branch to cast_ok if no
  // failure.  Throw exception if failure.
  __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );

  // Not a subtype; so must throw exception
  __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );

  __ bind(cast_ok);

  if (ProfileInterpreter) {
    __ ba(false, done);
    __ delayed()->nop();
  }
  __ bind(is_null);
  __ profile_null_seen(G3_scratch);
  __ bind(done);
}


void TemplateTable::instanceof() {
  Label done, is_null, quicked, resolved;
  transition(atos, itos);
  Register Roffset = G1_scratch;
  Register RobjKlass = O5;
  Register RspecifiedKlass = O4;

  // Check for casting a NULL
  __ br_null(Otos_i, false, Assembler::pt, is_null);
  __ delayed()->nop();

  // Get value klass in RobjKlass
  __ load_klass(Otos_i, RobjKlass); // get value klass

  // Get constant pool tag
  __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);

  // See if the checkcast has been quickened
  __ get_cpool_and_tags(Lscratch, G3_scratch);
  __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  __ ldub(G3_scratch, Roffset, G3_scratch);
  __ cmp(G3_scratch, JVM_CONSTANT_Class);
  __ br(Assembler::equal, true, Assembler::pt, quicked);
  __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);

  __ push_ptr(); // save receiver for result, and for GC
  call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  __ pop_ptr(Otos_i, G3_scratch); // restore receiver

  __ br(Assembler::always, false, Assembler::pt, resolved);
  __ delayed()->nop();


  // Extract target class from constant pool
  __ bind(quicked);
  __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  __ get_constant_pool(Lscratch);
  __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  __ bind(resolved);
  __ load_klass(Otos_i, RobjKlass); // get value klass

  // Generate a fast subtype check.  Branch to cast_ok if no
  // failure.  Return 0 if failure.
  __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
  __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
  // Not a subtype; return 0;
  __ clr( Otos_i );

  if (ProfileInterpreter) {
    __ ba(false, done);
    __ delayed()->nop();
  }
  __ bind(is_null);
  __ profile_null_seen(G3_scratch);
  __ bind(done);
}

void TemplateTable::_breakpoint() {

   // Note: We get here even if we are single stepping..
   // jbug inists on setting breakpoints at every bytecode
   // even if we are in single step mode.

   transition(vtos, vtos);
   // get the unpatched byte code
   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
   __ mov(O0, Lbyte_code);

   // post the breakpoint event
   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);

   // complete the execution of original bytecode
   __ dispatch_normal(vtos);
}


//----------------------------------------------------------------------------------------------------
// Exceptions

void TemplateTable::athrow() {
  transition(atos, vtos);

  // This works because exception is cached in Otos_i which is same as O0,
  // which is same as what throw_exception_entry_expects
  assert(Otos_i == Oexception, "see explanation above");

  __ verify_oop(Otos_i);
  __ null_check(Otos_i);
  __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
}


//----------------------------------------------------------------------------------------------------
// Synchronization


// See frame_sparc.hpp for monitor block layout.
// Monitor elements are dynamically allocated by growing stack as needed.

void TemplateTable::monitorenter() {
  transition(atos, vtos);
  __ verify_oop(Otos_i);
  // Try to acquire a lock on the object
  // Repeat until succeeded (i.e., until
  // monitorenter returns true).

  {   Label ok;
    __ tst(Otos_i);
    __ throw_if_not_1_x( Assembler::notZero,  ok);
    __ delayed()->mov(Otos_i, Lscratch); // save obj
    __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  }

  assert(O0 == Otos_i, "Be sure where the object to lock is");

  // find a free slot in the monitor block


  // initialize entry pointer
  __ clr(O1); // points to free slot or NULL

  {
    Label entry, loop, exit;
    __ add( __ top_most_monitor(), O2 ); // last one to check
    __ ba( false, entry );
    __ delayed()->mov( Lmonitors, O3 ); // first one to check


    __ bind( loop );

    __ verify_oop(O4);          // verify each monitor's oop
    __ tst(O4); // is this entry unused?
    if (VM_Version::v9_instructions_work())
      __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
    else {
      Label L;
      __ br( Assembler::zero, true, Assembler::pn, L );
      __ delayed()->mov(O3, O1); // rememeber this one if match
      __ bind(L);
    }

    __ cmp(O4, O0); // check if current entry is for same object
    __ brx( Assembler::equal, false, Assembler::pn, exit );
    __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one

    __ bind( entry );

    __ cmp( O3, O2 );
    __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
    __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);

    __ bind( exit );
  }

  { Label allocated;

    // found free slot?
    __ br_notnull(O1, false, Assembler::pn, allocated);
    __ delayed()->nop();

    __ add_monitor_to_stack( false, O2, O3 );
    __ mov(Lmonitors, O1);

    __ bind(allocated);
  }

  // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  // The object has already been poped from the stack, so the expression stack looks correct.
  __ inc(Lbcp);

  __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
  __ lock_object(O1, O0);

  // check if there's enough space on the stack for the monitors after locking
  __ generate_stack_overflow_check(0);

  // The bcp has already been incremented. Just need to dispatch to next instruction.
  __ dispatch_next(vtos);
}


void TemplateTable::monitorexit() {
  transition(atos, vtos);
  __ verify_oop(Otos_i);
  __ tst(Otos_i);
  __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );

  assert(O0 == Otos_i, "just checking");

  { Label entry, loop, found;
    __ add( __ top_most_monitor(), O2 ); // last one to check
    __ ba(false, entry );
    // use Lscratch to hold monitor elem to check, start with most recent monitor,
    // By using a local it survives the call to the C routine.
    __ delayed()->mov( Lmonitors, Lscratch );

    __ bind( loop );

    __ verify_oop(O4);          // verify each monitor's oop
    __ cmp(O4, O0); // check if current entry is for desired object
    __ brx( Assembler::equal, true, Assembler::pt, found );
    __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit

    __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next

    __ bind( entry );

    __ cmp( Lscratch, O2 );
    __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
    __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);

    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
    __ should_not_reach_here();

    __ bind(found);
  }
  __ unlock_object(O1);
}


//----------------------------------------------------------------------------------------------------
// Wide instructions

void TemplateTable::wide() {
  transition(vtos, vtos);
  __ ldub(Lbcp, 1, G3_scratch);// get next bc
  __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
  AddressLiteral ep(Interpreter::_wentry_point);
  __ set(ep, G4_scratch);
  __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
  __ jmp(G3_scratch, G0);
  __ delayed()->nop();
  // Note: the Lbcp increment step is part of the individual wide bytecode implementations
}


//----------------------------------------------------------------------------------------------------
// Multi arrays

void TemplateTable::multianewarray() {
  transition(vtos, atos);
     // put ndims * wordSize into Lscratch
  __ ldub( Lbcp,     3,               Lscratch);
  __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
     // Lesp points past last_dim, so set to O1 to first_dim address
  __ add(  Lesp,     Lscratch,        O1);
     call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
  __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
}
#endif /* !CC_INTERP */