view src/share/vm/opto/idealKit.cpp @ 2346:e1162778c1c8

7009266: G1: assert(obj->is_oop_or_null(true )) failed: Error Summary: A referent object that is only weakly reachable at the start of concurrent marking but is re-attached to the strongly reachable object graph during marking may not be marked as live. This can cause the reference object to be processed prematurely and leave dangling pointers to the referent object. Implement a read barrier for the java.lang.ref.Reference::referent field by intrinsifying the Reference.get() method, and intercepting accesses though JNI, reflection, and Unsafe, so that when a non-null referent object is read it is also logged in an SATB buffer. Reviewed-by: kvn, iveresov, never, tonyp, dholmes
author johnc
date Thu, 07 Apr 2011 09:53:20 -0700
parents f95d63e2154a
children 1d1603768966 07acc51c1d2a
line wrap: on
line source
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "opto/addnode.hpp"
#include "opto/callnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/idealKit.hpp"
#include "opto/runtime.hpp"

// Static initialization

// This declares the position where vars are kept in the cvstate
// For some degree of consistency we use the TypeFunc enum to
// soak up spots in the inputs even though we only use early Control
// and Memory slots. (So far.)
const uint IdealKit::first_var = TypeFunc::Parms + 1;

//----------------------------IdealKit-----------------------------------------
IdealKit::IdealKit(PhaseGVN &gvn, Node* control, Node* mem, bool delay_all_transforms, bool has_declarations) :
  _gvn(gvn), C(gvn.C) {
  _initial_ctrl = control;
  _initial_memory = mem;
  _delay_all_transforms = delay_all_transforms;
  _var_ct = 0;
  _cvstate = NULL;
  // We can go memory state free or else we need the entire memory state
  assert(mem == NULL || mem->Opcode() == Op_MergeMem, "memory must be pre-split");
  int init_size = 5;
  _pending_cvstates = new (C->node_arena()) GrowableArray<Node*>(C->node_arena(), init_size, 0, 0);
  _delay_transform  = new (C->node_arena()) GrowableArray<Node*>(C->node_arena(), init_size, 0, 0);
  DEBUG_ONLY(_state = new (C->node_arena()) GrowableArray<int>(C->node_arena(), init_size, 0, 0));
  if (!has_declarations) {
     declarations_done();
  }
}

//-------------------------------if_then-------------------------------------
// Create:  if(left relop right)
//          /  \
//   iffalse    iftrue
// Push the iffalse cvstate onto the stack. The iftrue becomes the current cvstate.
void IdealKit::if_then(Node* left, BoolTest::mask relop,
                       Node* right, float prob, float cnt, bool push_new_state) {
  assert((state() & (BlockS|LoopS|IfThenS|ElseS)), "bad state for new If");
  Node* bol;
  if (left->bottom_type()->isa_ptr() == NULL) {
    if (left->bottom_type()->isa_int() != NULL) {
      bol = Bool(CmpI(left, right), relop);
    } else {
      assert(left->bottom_type()->isa_long() != NULL, "what else?");
      bol = Bool(CmpL(left, right), relop);
    }

  } else {
    bol = Bool(CmpP(left, right), relop);
  }
  // Delay gvn.tranform on if-nodes until construction is finished
  // to prevent a constant bool input from discarding a control output.
  IfNode* iff = delay_transform(new (C, 2) IfNode(ctrl(), bol, prob, cnt))->as_If();
  Node* then  = IfTrue(iff);
  Node* elsen = IfFalse(iff);
  Node* else_cvstate = copy_cvstate();
  else_cvstate->set_req(TypeFunc::Control, elsen);
  _pending_cvstates->push(else_cvstate);
  DEBUG_ONLY(if (push_new_state) _state->push(IfThenS));
  set_ctrl(then);
}

//-------------------------------else_-------------------------------------
// Pop the else cvstate off the stack, and push the (current) then cvstate.
// The else cvstate becomes the current cvstate.
void IdealKit::else_() {
  assert(state() == IfThenS, "bad state for new Else");
  Node* else_cvstate = _pending_cvstates->pop();
  DEBUG_ONLY(_state->pop());
  // save current (then) cvstate for later use at endif
  _pending_cvstates->push(_cvstate);
  DEBUG_ONLY(_state->push(ElseS));
  _cvstate = else_cvstate;
}

//-------------------------------end_if-------------------------------------
// Merge the "then" and "else" cvstates.
//
// The if_then() pushed a copy of the current state for later use
// as the initial state for a future "else" clause.  The
// current state then became the initial state for the
// then clause.  If an "else" clause was encountered, it will
// pop the top state and use it for it's initial state.
// It will also push the current state (the state at the end of
// the "then" clause) for latter use at the end_if.
//
// At the endif, the states are:
// 1) else exists a) current state is end of "else" clause
//                b) top stack state is end of "then" clause
//
// 2) no else:    a) current state is end of "then" clause
//                b) top stack state is from the "if_then" which
//                   would have been the initial state of the else.
//
// Merging the states is accomplished by:
//   1) make a label for the merge
//   2) terminate the current state with a goto to the label
//   3) pop the top state from the stack and make it the
//        current state
//   4) bind the label at the current state.  Binding a label
//        terminates the current state with a goto to the
//        label and makes the label's state the current state.
//
void IdealKit::end_if() {
  assert(state() & (IfThenS|ElseS), "bad state for new Endif");
  Node* lab = make_label(1);

  // Node* join_state = _pending_cvstates->pop();
                  /* merging, join */
  goto_(lab);
  _cvstate = _pending_cvstates->pop();

  bind(lab);
  DEBUG_ONLY(_state->pop());
}

//-------------------------------loop-------------------------------------
// Create the loop head portion (*) of:
//  *     iv = init
//  *  top: (region node)
//  *     if (iv relop limit) {
//           loop body
//           i = i + 1
//           goto top
//  *     } else // exits loop
//
// Pushes the loop top cvstate first, then the else (loop exit) cvstate
// onto the stack.
void IdealKit::loop(GraphKit* gkit, int nargs, IdealVariable& iv, Node* init, BoolTest::mask relop, Node* limit, float prob, float cnt) {
  assert((state() & (BlockS|LoopS|IfThenS|ElseS)), "bad state for new loop");

  // Sync IdealKit and graphKit.
  gkit->set_all_memory(this->merged_memory());
  gkit->set_control(this->ctrl());
  // Add loop predicate.
  gkit->add_predicate(nargs);
  // Update IdealKit memory.
  this->set_all_memory(gkit->merged_memory());
  this->set_ctrl(gkit->control());

  set(iv, init);
  Node* head = make_label(1);
  bind(head);
  _pending_cvstates->push(head); // push for use at end_loop
  _cvstate = copy_cvstate();
  if_then(value(iv), relop, limit, prob, cnt, false /* no new state */);
  DEBUG_ONLY(_state->push(LoopS));
  assert(ctrl()->is_IfTrue(), "true branch stays in loop");
  assert(_pending_cvstates->top()->in(TypeFunc::Control)->is_IfFalse(), "false branch exits loop");
}

//-------------------------------end_loop-------------------------------------
// Creates the goto top label.
// Expects the else (loop exit) cvstate to be on top of the
// stack, and the loop top cvstate to be 2nd.
void IdealKit::end_loop() {
  assert((state() == LoopS), "bad state for new end_loop");
  Node* exit = _pending_cvstates->pop();
  Node* head = _pending_cvstates->pop();
  goto_(head);
  clear(head);
  DEBUG_ONLY(_state->pop());
  _cvstate = exit;
}

//-------------------------------make_label-------------------------------------
// Creates a label.  The number of goto's
// must be specified (which should be 1 less than
// the number of precedessors.)
Node* IdealKit::make_label(int goto_ct) {
  assert(_cvstate != NULL, "must declare variables before labels");
  Node* lab = new_cvstate();
  int sz = 1 + goto_ct + 1 /* fall thru */;
  Node* reg = delay_transform(new (C, sz) RegionNode(sz));
  lab->init_req(TypeFunc::Control, reg);
  return lab;
}

//-------------------------------bind-------------------------------------
// Bind a label at the current cvstate by simulating
// a goto to the label.
void IdealKit::bind(Node* lab) {
  goto_(lab, true /* bind */);
  _cvstate = lab;
}

//-------------------------------goto_-------------------------------------
// Make the current cvstate a predecessor of the label,
// creating phi's to merge values.  If bind is true and
// this is not the last control edge, then ensure that
// all live values have phis created. Used to create phis
// at loop-top regions.
void IdealKit::goto_(Node* lab, bool bind) {
  Node* reg = lab->in(TypeFunc::Control);
  // find next empty slot in region
  uint slot = 1;
  while (slot < reg->req() && reg->in(slot) != NULL) slot++;
  assert(slot < reg->req(), "too many gotos");
  // If this is last predecessor, then don't force phi creation
  if (slot == reg->req() - 1) bind = false;
  reg->init_req(slot, ctrl());
  assert(first_var + _var_ct == _cvstate->req(), "bad _cvstate size");
  for (uint i = first_var; i < _cvstate->req(); i++) {

    // l is the value of var reaching the label. Could be a single value
    // reaching the label, or a phi that merges multiples values reaching
    // the label.  The latter is true if the label's input: in(..) is
    // a phi whose control input is the region node for the label.

    Node* l = lab->in(i);
    // Get the current value of the var
    Node* m = _cvstate->in(i);
    // If the var went unused no need for a phi
    if (m == NULL) {
      continue;
    } else if (l == NULL || m == l) {
      // Only one unique value "m" is known to reach this label so a phi
      // is not yet necessary unless:
      //    the label is being bound and all predecessors have not been seen,
      //    in which case "bind" will be true.
      if (bind) {
        m = promote_to_phi(m, reg);
      }
      // Record the phi/value used for this var in the label's cvstate
      lab->set_req(i, m);
    } else {
      // More than one value for the variable reaches this label so
      // a create a phi if one does not already exist.
      if (!was_promoted_to_phi(l, reg)) {
        l = promote_to_phi(l, reg);
        lab->set_req(i, l);
      }
      // Record in the phi, the var's value from the current state
      l->set_req(slot, m);
    }
  }
  do_memory_merge(_cvstate, lab);
  stop();
}

//-----------------------------promote_to_phi-----------------------------------
Node* IdealKit::promote_to_phi(Node* n, Node* reg) {
  assert(!was_promoted_to_phi(n, reg), "n already promoted to phi on this region");
  // Get a conservative type for the phi
  const BasicType bt = n->bottom_type()->basic_type();
  const Type* ct = Type::get_const_basic_type(bt);
  return delay_transform(PhiNode::make(reg, n, ct));
}

//-----------------------------declarations_done-------------------------------
void IdealKit::declarations_done() {
  _cvstate = new_cvstate();   // initialize current cvstate
  set_ctrl(_initial_ctrl);    // initialize control in current cvstate
  set_all_memory(_initial_memory);// initialize memory in current cvstate
  DEBUG_ONLY(_state->push(BlockS));
}

//-----------------------------transform-----------------------------------
Node* IdealKit::transform(Node* n) {
  if (_delay_all_transforms) {
    return delay_transform(n);
  } else {
    return gvn().transform(n);
  }
}

//-----------------------------delay_transform-----------------------------------
Node* IdealKit::delay_transform(Node* n) {
  if (!gvn().is_IterGVN() || !gvn().is_IterGVN()->delay_transform()) {
    gvn().set_type(n, n->bottom_type());
  }
  _delay_transform->push(n);
  return n;
}

//-----------------------------new_cvstate-----------------------------------
Node* IdealKit::new_cvstate() {
  uint sz = _var_ct + first_var;
  return new (C, sz) Node(sz);
}

//-----------------------------copy_cvstate-----------------------------------
Node* IdealKit::copy_cvstate() {
  Node* ns = new_cvstate();
  for (uint i = 0; i < ns->req(); i++) ns->init_req(i, _cvstate->in(i));
  // We must clone memory since it will be updated as we do stores.
  ns->set_req(TypeFunc::Memory, MergeMemNode::make(C, ns->in(TypeFunc::Memory)));
  return ns;
}

//-----------------------------clear-----------------------------------
void IdealKit::clear(Node* m) {
  for (uint i = 0; i < m->req(); i++) m->set_req(i, NULL);
}

//-----------------------------drain_delay_transform----------------------------
void IdealKit::drain_delay_transform() {
  while (_delay_transform->length() > 0) {
    Node* n = _delay_transform->pop();
    gvn().transform(n);
    if (!gvn().is_IterGVN()) {
      C->record_for_igvn(n);
    }
  }
}

//-----------------------------IdealVariable----------------------------
IdealVariable::IdealVariable(IdealKit &k) {
  k.declare(this);
}

Node* IdealKit::memory(uint alias_idx) {
  MergeMemNode* mem = merged_memory();
  Node* p = mem->memory_at(alias_idx);
  if (!gvn().is_IterGVN() || !gvn().is_IterGVN()->delay_transform()) {
    _gvn.set_type(p, Type::MEMORY);  // must be mapped
  }
  return p;
}

void IdealKit::set_memory(Node* mem, uint alias_idx) {
  merged_memory()->set_memory_at(alias_idx, mem);
}

//----------------------------- make_load ----------------------------
Node* IdealKit::load(Node* ctl,
                     Node* adr,
                     const Type* t,
                     BasicType bt,
                     int adr_idx,
                     bool require_atomic_access) {

  assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
  const TypePtr* adr_type = NULL; // debug-mode-only argument
  debug_only(adr_type = C->get_adr_type(adr_idx));
  Node* mem = memory(adr_idx);
  Node* ld;
  if (require_atomic_access && bt == T_LONG) {
    ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t);
  } else {
    ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt);
  }
  return transform(ld);
}

Node* IdealKit::store(Node* ctl, Node* adr, Node *val, BasicType bt,
                                int adr_idx,
                                bool require_atomic_access) {
  assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  const TypePtr* adr_type = NULL;
  debug_only(adr_type = C->get_adr_type(adr_idx));
  Node *mem = memory(adr_idx);
  Node* st;
  if (require_atomic_access && bt == T_LONG) {
    st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val);
  } else {
    st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt);
  }
  st = transform(st);
  set_memory(st, adr_idx);

  return st;
}

// Card mark store. Must be ordered so that it will come after the store of
// the oop.
Node* IdealKit::storeCM(Node* ctl, Node* adr, Node *val, Node* oop_store, int oop_adr_idx,
                        BasicType bt,
                        int adr_idx) {
  assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  const TypePtr* adr_type = NULL;
  debug_only(adr_type = C->get_adr_type(adr_idx));
  Node *mem = memory(adr_idx);

  // Add required edge to oop_store, optimizer does not support precedence edges.
  // Convert required edge to precedence edge before allocation.
  Node* st = new (C, 5) StoreCMNode(ctl, mem, adr, adr_type, val, oop_store, oop_adr_idx);

  st = transform(st);
  set_memory(st, adr_idx);

  return st;
}

//---------------------------- do_memory_merge --------------------------------
// The memory from one merging cvstate needs to be merged with the memory for another
// join cvstate. If the join cvstate doesn't have a merged memory yet then we
// can just copy the state from the merging cvstate

// Merge one slow path into the rest of memory.
void IdealKit::do_memory_merge(Node* merging, Node* join) {

  // Get the region for the join state
  Node* join_region = join->in(TypeFunc::Control);
  assert(join_region != NULL, "join region must exist");
  if (join->in(TypeFunc::Memory) == NULL ) {
    join->set_req(TypeFunc::Memory,  merging->in(TypeFunc::Memory));
    return;
  }

  // The control flow for merging must have already been attached to the join region
  // we need its index for the phis.
  uint slot;
  for (slot = 1; slot < join_region->req() ; slot ++ ) {
    if (join_region->in(slot) == merging->in(TypeFunc::Control)) break;
  }
  assert(slot !=  join_region->req(), "edge must already exist");

  MergeMemNode* join_m    = join->in(TypeFunc::Memory)->as_MergeMem();
  MergeMemNode* merging_m = merging->in(TypeFunc::Memory)->as_MergeMem();

  // join_m should be an ancestor mergemem of merging
  // Slow path memory comes from the current map (which is from a slow call)
  // Fast path/null path memory comes from the call's input

  // Merge the other fast-memory inputs with the new slow-default memory.
  // for (MergeMemStream mms(merged_memory(), fast_mem->as_MergeMem()); mms.next_non_empty2(); ) {
  for (MergeMemStream mms(join_m, merging_m); mms.next_non_empty2(); ) {
    Node* join_slice = mms.force_memory();
    Node* merging_slice = mms.memory2();
    if (join_slice != merging_slice) {
      PhiNode* phi;
      // bool new_phi = false;
      // Is the phi for this slice one that we created for this join region or simply
      // one we copied? If it is ours then add
      if (join_slice->is_Phi() && join_slice->as_Phi()->region() == join_region) {
        phi = join_slice->as_Phi();
      } else {
        // create the phi with join_slice filling supplying memory for all of the
        // control edges to the join region
        phi = PhiNode::make(join_region, join_slice, Type::MEMORY, mms.adr_type(C));
        phi = (PhiNode*) delay_transform(phi);
        // gvn().set_type(phi, Type::MEMORY);
        // new_phi = true;
      }
      // Now update the phi with the slice for the merging slice
      phi->set_req(slot, merging_slice/* slow_path, slow_slice */);
      // this updates join_m with the phi
      mms.set_memory(phi);
    }
  }
}


//----------------------------- make_call  ----------------------------
// Trivial runtime call
void IdealKit::make_leaf_call(const TypeFunc *slow_call_type,
                              address slow_call,
                              const char *leaf_name,
                              Node* parm0,
                              Node* parm1,
                              Node* parm2) {

  // We only handle taking in RawMem and modifying RawMem
  const TypePtr* adr_type = TypeRawPtr::BOTTOM;
  uint adr_idx = C->get_alias_index(adr_type);

  // Slow-path leaf call
  int size = slow_call_type->domain()->cnt();
  CallNode *call =  (CallNode*)new (C, size) CallLeafNode( slow_call_type, slow_call, leaf_name, adr_type);

  // Set fixed predefined input arguments
  call->init_req( TypeFunc::Control, ctrl() );
  call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  // Narrow memory as only memory input
  call->init_req( TypeFunc::Memory , memory(adr_idx));
  call->init_req( TypeFunc::FramePtr, top() /* frameptr() */ );
  call->init_req( TypeFunc::ReturnAdr, top() );

  if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
  if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
  if (parm2 != NULL)  call->init_req(TypeFunc::Parms+2, parm2);

  // Node *c = _gvn.transform(call);
  call = (CallNode *) _gvn.transform(call);
  Node *c = call; // dbx gets confused with call call->dump()

  // Slow leaf call has no side-effects, sets few values

  set_ctrl(transform( new (C, 1) ProjNode(call,TypeFunc::Control) ));

  // Make memory for the call
  Node* mem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) );

  // Set the RawPtr memory state only.
  set_memory(mem, adr_idx);

  assert(C->alias_type(call->adr_type()) == C->alias_type(adr_type),
         "call node must be constructed correctly");
}