annotate src/share/vm/oops/methodDataOop.hpp @ 189:0b27f3512f9e

6629727: assertion in set_trap_state() in methodDataOop.hpp is too strong. Summary: The assertion can failure due to race conditions. Reviewed-by: never
author jmasa
date Wed, 04 Jun 2008 13:51:09 -0700
parents e1e86702e43e
children d1605aabd0a1
rev   line source
duke@0 1 /*
duke@0 2 * Copyright 2000-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
duke@0 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@0 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@0 21 * have any questions.
duke@0 22 *
duke@0 23 */
duke@0 24
duke@0 25 class BytecodeStream;
duke@0 26
duke@0 27 // The MethodData object collects counts and other profile information
duke@0 28 // during zeroth-tier (interpretive) and first-tier execution.
duke@0 29 // The profile is used later by compilation heuristics. Some heuristics
duke@0 30 // enable use of aggressive (or "heroic") optimizations. An aggressive
duke@0 31 // optimization often has a down-side, a corner case that it handles
duke@0 32 // poorly, but which is thought to be rare. The profile provides
duke@0 33 // evidence of this rarity for a given method or even BCI. It allows
duke@0 34 // the compiler to back out of the optimization at places where it
duke@0 35 // has historically been a poor choice. Other heuristics try to use
duke@0 36 // specific information gathered about types observed at a given site.
duke@0 37 //
duke@0 38 // All data in the profile is approximate. It is expected to be accurate
duke@0 39 // on the whole, but the system expects occasional inaccuraces, due to
duke@0 40 // counter overflow, multiprocessor races during data collection, space
duke@0 41 // limitations, missing MDO blocks, etc. Bad or missing data will degrade
duke@0 42 // optimization quality but will not affect correctness. Also, each MDO
duke@0 43 // is marked with its birth-date ("creation_mileage") which can be used
duke@0 44 // to assess the quality ("maturity") of its data.
duke@0 45 //
duke@0 46 // Short (<32-bit) counters are designed to overflow to a known "saturated"
duke@0 47 // state. Also, certain recorded per-BCI events are given one-bit counters
duke@0 48 // which overflow to a saturated state which applied to all counters at
duke@0 49 // that BCI. In other words, there is a small lattice which approximates
duke@0 50 // the ideal of an infinite-precision counter for each event at each BCI,
duke@0 51 // and the lattice quickly "bottoms out" in a state where all counters
duke@0 52 // are taken to be indefinitely large.
duke@0 53 //
duke@0 54 // The reader will find many data races in profile gathering code, starting
duke@0 55 // with invocation counter incrementation. None of these races harm correct
duke@0 56 // execution of the compiled code.
duke@0 57
duke@0 58 // DataLayout
duke@0 59 //
duke@0 60 // Overlay for generic profiling data.
duke@0 61 class DataLayout VALUE_OBJ_CLASS_SPEC {
duke@0 62 private:
duke@0 63 // Every data layout begins with a header. This header
duke@0 64 // contains a tag, which is used to indicate the size/layout
duke@0 65 // of the data, 4 bits of flags, which can be used in any way,
duke@0 66 // 4 bits of trap history (none/one reason/many reasons),
duke@0 67 // and a bci, which is used to tie this piece of data to a
duke@0 68 // specific bci in the bytecodes.
duke@0 69 union {
duke@0 70 intptr_t _bits;
duke@0 71 struct {
duke@0 72 u1 _tag;
duke@0 73 u1 _flags;
duke@0 74 u2 _bci;
duke@0 75 } _struct;
duke@0 76 } _header;
duke@0 77
duke@0 78 // The data layout has an arbitrary number of cells, each sized
duke@0 79 // to accomodate a pointer or an integer.
duke@0 80 intptr_t _cells[1];
duke@0 81
duke@0 82 // Some types of data layouts need a length field.
duke@0 83 static bool needs_array_len(u1 tag);
duke@0 84
duke@0 85 public:
duke@0 86 enum {
duke@0 87 counter_increment = 1
duke@0 88 };
duke@0 89
duke@0 90 enum {
duke@0 91 cell_size = sizeof(intptr_t)
duke@0 92 };
duke@0 93
duke@0 94 // Tag values
duke@0 95 enum {
duke@0 96 no_tag,
duke@0 97 bit_data_tag,
duke@0 98 counter_data_tag,
duke@0 99 jump_data_tag,
duke@0 100 receiver_type_data_tag,
duke@0 101 virtual_call_data_tag,
duke@0 102 ret_data_tag,
duke@0 103 branch_data_tag,
kvn@45 104 multi_branch_data_tag,
kvn@45 105 arg_info_data_tag
duke@0 106 };
duke@0 107
duke@0 108 enum {
duke@0 109 // The _struct._flags word is formatted as [trap_state:4 | flags:4].
duke@0 110 // The trap state breaks down further as [recompile:1 | reason:3].
duke@0 111 // This further breakdown is defined in deoptimization.cpp.
duke@0 112 // See Deoptimization::trap_state_reason for an assert that
duke@0 113 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
duke@0 114 //
duke@0 115 // The trap_state is collected only if ProfileTraps is true.
duke@0 116 trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
duke@0 117 trap_shift = BitsPerByte - trap_bits,
duke@0 118 trap_mask = right_n_bits(trap_bits),
duke@0 119 trap_mask_in_place = (trap_mask << trap_shift),
duke@0 120 flag_limit = trap_shift,
duke@0 121 flag_mask = right_n_bits(flag_limit),
duke@0 122 first_flag = 0
duke@0 123 };
duke@0 124
duke@0 125 // Size computation
duke@0 126 static int header_size_in_bytes() {
duke@0 127 return cell_size;
duke@0 128 }
duke@0 129 static int header_size_in_cells() {
duke@0 130 return 1;
duke@0 131 }
duke@0 132
duke@0 133 static int compute_size_in_bytes(int cell_count) {
duke@0 134 return header_size_in_bytes() + cell_count * cell_size;
duke@0 135 }
duke@0 136
duke@0 137 // Initialization
duke@0 138 void initialize(u1 tag, u2 bci, int cell_count);
duke@0 139
duke@0 140 // Accessors
duke@0 141 u1 tag() {
duke@0 142 return _header._struct._tag;
duke@0 143 }
duke@0 144
duke@0 145 // Return a few bits of trap state. Range is [0..trap_mask].
duke@0 146 // The state tells if traps with zero, one, or many reasons have occurred.
duke@0 147 // It also tells whether zero or many recompilations have occurred.
duke@0 148 // The associated trap histogram in the MDO itself tells whether
duke@0 149 // traps are common or not. If a BCI shows that a trap X has
duke@0 150 // occurred, and the MDO shows N occurrences of X, we make the
duke@0 151 // simplifying assumption that all N occurrences can be blamed
duke@0 152 // on that BCI.
duke@0 153 int trap_state() {
duke@0 154 return ((_header._struct._flags >> trap_shift) & trap_mask);
duke@0 155 }
duke@0 156
duke@0 157 void set_trap_state(int new_state) {
duke@0 158 assert(ProfileTraps, "used only under +ProfileTraps");
duke@0 159 uint old_flags = (_header._struct._flags & flag_mask);
duke@0 160 _header._struct._flags = (new_state << trap_shift) | old_flags;
duke@0 161 }
duke@0 162
duke@0 163 u1 flags() {
duke@0 164 return _header._struct._flags;
duke@0 165 }
duke@0 166
duke@0 167 u2 bci() {
duke@0 168 return _header._struct._bci;
duke@0 169 }
duke@0 170
duke@0 171 void set_header(intptr_t value) {
duke@0 172 _header._bits = value;
duke@0 173 }
duke@0 174 void release_set_header(intptr_t value) {
duke@0 175 OrderAccess::release_store_ptr(&_header._bits, value);
duke@0 176 }
duke@0 177 intptr_t header() {
duke@0 178 return _header._bits;
duke@0 179 }
duke@0 180 void set_cell_at(int index, intptr_t value) {
duke@0 181 _cells[index] = value;
duke@0 182 }
duke@0 183 void release_set_cell_at(int index, intptr_t value) {
duke@0 184 OrderAccess::release_store_ptr(&_cells[index], value);
duke@0 185 }
duke@0 186 intptr_t cell_at(int index) {
duke@0 187 return _cells[index];
duke@0 188 }
duke@0 189 intptr_t* adr_cell_at(int index) {
duke@0 190 return &_cells[index];
duke@0 191 }
duke@0 192 oop* adr_oop_at(int index) {
duke@0 193 return (oop*)&(_cells[index]);
duke@0 194 }
duke@0 195
duke@0 196 void set_flag_at(int flag_number) {
duke@0 197 assert(flag_number < flag_limit, "oob");
duke@0 198 _header._struct._flags |= (0x1 << flag_number);
duke@0 199 }
duke@0 200 bool flag_at(int flag_number) {
duke@0 201 assert(flag_number < flag_limit, "oob");
duke@0 202 return (_header._struct._flags & (0x1 << flag_number)) != 0;
duke@0 203 }
duke@0 204
duke@0 205 // Low-level support for code generation.
duke@0 206 static ByteSize header_offset() {
duke@0 207 return byte_offset_of(DataLayout, _header);
duke@0 208 }
duke@0 209 static ByteSize tag_offset() {
duke@0 210 return byte_offset_of(DataLayout, _header._struct._tag);
duke@0 211 }
duke@0 212 static ByteSize flags_offset() {
duke@0 213 return byte_offset_of(DataLayout, _header._struct._flags);
duke@0 214 }
duke@0 215 static ByteSize bci_offset() {
duke@0 216 return byte_offset_of(DataLayout, _header._struct._bci);
duke@0 217 }
duke@0 218 static ByteSize cell_offset(int index) {
duke@0 219 return byte_offset_of(DataLayout, _cells[index]);
duke@0 220 }
duke@0 221 // Return a value which, when or-ed as a byte into _flags, sets the flag.
duke@0 222 static int flag_number_to_byte_constant(int flag_number) {
duke@0 223 assert(0 <= flag_number && flag_number < flag_limit, "oob");
duke@0 224 DataLayout temp; temp.set_header(0);
duke@0 225 temp.set_flag_at(flag_number);
duke@0 226 return temp._header._struct._flags;
duke@0 227 }
duke@0 228 // Return a value which, when or-ed as a word into _header, sets the flag.
duke@0 229 static intptr_t flag_mask_to_header_mask(int byte_constant) {
duke@0 230 DataLayout temp; temp.set_header(0);
duke@0 231 temp._header._struct._flags = byte_constant;
duke@0 232 return temp._header._bits;
duke@0 233 }
duke@0 234 };
duke@0 235
duke@0 236
duke@0 237 // ProfileData class hierarchy
duke@0 238 class ProfileData;
duke@0 239 class BitData;
duke@0 240 class CounterData;
duke@0 241 class ReceiverTypeData;
duke@0 242 class VirtualCallData;
duke@0 243 class RetData;
duke@0 244 class JumpData;
duke@0 245 class BranchData;
duke@0 246 class ArrayData;
duke@0 247 class MultiBranchData;
kvn@45 248 class ArgInfoData;
duke@0 249
duke@0 250
duke@0 251 // ProfileData
duke@0 252 //
duke@0 253 // A ProfileData object is created to refer to a section of profiling
duke@0 254 // data in a structured way.
duke@0 255 class ProfileData : public ResourceObj {
duke@0 256 private:
duke@0 257 #ifndef PRODUCT
duke@0 258 enum {
duke@0 259 tab_width_one = 16,
duke@0 260 tab_width_two = 36
duke@0 261 };
duke@0 262 #endif // !PRODUCT
duke@0 263
duke@0 264 // This is a pointer to a section of profiling data.
duke@0 265 DataLayout* _data;
duke@0 266
duke@0 267 protected:
duke@0 268 DataLayout* data() { return _data; }
duke@0 269
duke@0 270 enum {
duke@0 271 cell_size = DataLayout::cell_size
duke@0 272 };
duke@0 273
duke@0 274 public:
duke@0 275 // How many cells are in this?
duke@0 276 virtual int cell_count() {
duke@0 277 ShouldNotReachHere();
duke@0 278 return -1;
duke@0 279 }
duke@0 280
duke@0 281 // Return the size of this data.
duke@0 282 int size_in_bytes() {
duke@0 283 return DataLayout::compute_size_in_bytes(cell_count());
duke@0 284 }
duke@0 285
duke@0 286 protected:
duke@0 287 // Low-level accessors for underlying data
duke@0 288 void set_intptr_at(int index, intptr_t value) {
duke@0 289 assert(0 <= index && index < cell_count(), "oob");
duke@0 290 data()->set_cell_at(index, value);
duke@0 291 }
duke@0 292 void release_set_intptr_at(int index, intptr_t value) {
duke@0 293 assert(0 <= index && index < cell_count(), "oob");
duke@0 294 data()->release_set_cell_at(index, value);
duke@0 295 }
duke@0 296 intptr_t intptr_at(int index) {
duke@0 297 assert(0 <= index && index < cell_count(), "oob");
duke@0 298 return data()->cell_at(index);
duke@0 299 }
duke@0 300 void set_uint_at(int index, uint value) {
duke@0 301 set_intptr_at(index, (intptr_t) value);
duke@0 302 }
duke@0 303 void release_set_uint_at(int index, uint value) {
duke@0 304 release_set_intptr_at(index, (intptr_t) value);
duke@0 305 }
duke@0 306 uint uint_at(int index) {
duke@0 307 return (uint)intptr_at(index);
duke@0 308 }
duke@0 309 void set_int_at(int index, int value) {
duke@0 310 set_intptr_at(index, (intptr_t) value);
duke@0 311 }
duke@0 312 void release_set_int_at(int index, int value) {
duke@0 313 release_set_intptr_at(index, (intptr_t) value);
duke@0 314 }
duke@0 315 int int_at(int index) {
duke@0 316 return (int)intptr_at(index);
duke@0 317 }
duke@0 318 int int_at_unchecked(int index) {
duke@0 319 return (int)data()->cell_at(index);
duke@0 320 }
duke@0 321 void set_oop_at(int index, oop value) {
duke@0 322 set_intptr_at(index, (intptr_t) value);
duke@0 323 }
duke@0 324 oop oop_at(int index) {
duke@0 325 return (oop)intptr_at(index);
duke@0 326 }
duke@0 327 oop* adr_oop_at(int index) {
duke@0 328 assert(0 <= index && index < cell_count(), "oob");
duke@0 329 return data()->adr_oop_at(index);
duke@0 330 }
duke@0 331
duke@0 332 void set_flag_at(int flag_number) {
duke@0 333 data()->set_flag_at(flag_number);
duke@0 334 }
duke@0 335 bool flag_at(int flag_number) {
duke@0 336 return data()->flag_at(flag_number);
duke@0 337 }
duke@0 338
duke@0 339 // two convenient imports for use by subclasses:
duke@0 340 static ByteSize cell_offset(int index) {
duke@0 341 return DataLayout::cell_offset(index);
duke@0 342 }
duke@0 343 static int flag_number_to_byte_constant(int flag_number) {
duke@0 344 return DataLayout::flag_number_to_byte_constant(flag_number);
duke@0 345 }
duke@0 346
duke@0 347 ProfileData(DataLayout* data) {
duke@0 348 _data = data;
duke@0 349 }
duke@0 350
duke@0 351 public:
duke@0 352 // Constructor for invalid ProfileData.
duke@0 353 ProfileData();
duke@0 354
duke@0 355 u2 bci() {
duke@0 356 return data()->bci();
duke@0 357 }
duke@0 358
duke@0 359 address dp() {
duke@0 360 return (address)_data;
duke@0 361 }
duke@0 362
duke@0 363 int trap_state() {
duke@0 364 return data()->trap_state();
duke@0 365 }
duke@0 366 void set_trap_state(int new_state) {
duke@0 367 data()->set_trap_state(new_state);
duke@0 368 }
duke@0 369
duke@0 370 // Type checking
duke@0 371 virtual bool is_BitData() { return false; }
duke@0 372 virtual bool is_CounterData() { return false; }
duke@0 373 virtual bool is_JumpData() { return false; }
duke@0 374 virtual bool is_ReceiverTypeData(){ return false; }
duke@0 375 virtual bool is_VirtualCallData() { return false; }
duke@0 376 virtual bool is_RetData() { return false; }
duke@0 377 virtual bool is_BranchData() { return false; }
duke@0 378 virtual bool is_ArrayData() { return false; }
duke@0 379 virtual bool is_MultiBranchData() { return false; }
kvn@45 380 virtual bool is_ArgInfoData() { return false; }
kvn@45 381
duke@0 382
duke@0 383 BitData* as_BitData() {
duke@0 384 assert(is_BitData(), "wrong type");
duke@0 385 return is_BitData() ? (BitData*) this : NULL;
duke@0 386 }
duke@0 387 CounterData* as_CounterData() {
duke@0 388 assert(is_CounterData(), "wrong type");
duke@0 389 return is_CounterData() ? (CounterData*) this : NULL;
duke@0 390 }
duke@0 391 JumpData* as_JumpData() {
duke@0 392 assert(is_JumpData(), "wrong type");
duke@0 393 return is_JumpData() ? (JumpData*) this : NULL;
duke@0 394 }
duke@0 395 ReceiverTypeData* as_ReceiverTypeData() {
duke@0 396 assert(is_ReceiverTypeData(), "wrong type");
duke@0 397 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
duke@0 398 }
duke@0 399 VirtualCallData* as_VirtualCallData() {
duke@0 400 assert(is_VirtualCallData(), "wrong type");
duke@0 401 return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
duke@0 402 }
duke@0 403 RetData* as_RetData() {
duke@0 404 assert(is_RetData(), "wrong type");
duke@0 405 return is_RetData() ? (RetData*) this : NULL;
duke@0 406 }
duke@0 407 BranchData* as_BranchData() {
duke@0 408 assert(is_BranchData(), "wrong type");
duke@0 409 return is_BranchData() ? (BranchData*) this : NULL;
duke@0 410 }
duke@0 411 ArrayData* as_ArrayData() {
duke@0 412 assert(is_ArrayData(), "wrong type");
duke@0 413 return is_ArrayData() ? (ArrayData*) this : NULL;
duke@0 414 }
duke@0 415 MultiBranchData* as_MultiBranchData() {
duke@0 416 assert(is_MultiBranchData(), "wrong type");
duke@0 417 return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
duke@0 418 }
kvn@45 419 ArgInfoData* as_ArgInfoData() {
kvn@45 420 assert(is_ArgInfoData(), "wrong type");
kvn@45 421 return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
kvn@45 422 }
duke@0 423
duke@0 424
duke@0 425 // Subclass specific initialization
duke@0 426 virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {}
duke@0 427
duke@0 428 // GC support
duke@0 429 virtual void follow_contents() {}
duke@0 430 virtual void oop_iterate(OopClosure* blk) {}
duke@0 431 virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {}
duke@0 432 virtual void adjust_pointers() {}
duke@0 433
duke@0 434 #ifndef SERIALGC
duke@0 435 // Parallel old support
duke@0 436 virtual void follow_contents(ParCompactionManager* cm) {}
duke@0 437 virtual void update_pointers() {}
duke@0 438 virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {}
duke@0 439 #endif // SERIALGC
duke@0 440
duke@0 441 // CI translation: ProfileData can represent both MethodDataOop data
duke@0 442 // as well as CIMethodData data. This function is provided for translating
duke@0 443 // an oop in a ProfileData to the ci equivalent. Generally speaking,
duke@0 444 // most ProfileData don't require any translation, so we provide the null
duke@0 445 // translation here, and the required translators are in the ci subclasses.
duke@0 446 virtual void translate_from(ProfileData* data) {}
duke@0 447
duke@0 448 virtual void print_data_on(outputStream* st) {
duke@0 449 ShouldNotReachHere();
duke@0 450 }
duke@0 451
duke@0 452 #ifndef PRODUCT
duke@0 453 void print_shared(outputStream* st, const char* name);
duke@0 454 void tab(outputStream* st);
duke@0 455 #endif
duke@0 456 };
duke@0 457
duke@0 458 // BitData
duke@0 459 //
duke@0 460 // A BitData holds a flag or two in its header.
duke@0 461 class BitData : public ProfileData {
duke@0 462 protected:
duke@0 463 enum {
duke@0 464 // null_seen:
duke@0 465 // saw a null operand (cast/aastore/instanceof)
duke@0 466 null_seen_flag = DataLayout::first_flag + 0
duke@0 467 };
duke@0 468 enum { bit_cell_count = 0 }; // no additional data fields needed.
duke@0 469 public:
duke@0 470 BitData(DataLayout* layout) : ProfileData(layout) {
duke@0 471 }
duke@0 472
duke@0 473 virtual bool is_BitData() { return true; }
duke@0 474
duke@0 475 static int static_cell_count() {
duke@0 476 return bit_cell_count;
duke@0 477 }
duke@0 478
duke@0 479 virtual int cell_count() {
duke@0 480 return static_cell_count();
duke@0 481 }
duke@0 482
duke@0 483 // Accessor
duke@0 484
duke@0 485 // The null_seen flag bit is specially known to the interpreter.
duke@0 486 // Consulting it allows the compiler to avoid setting up null_check traps.
duke@0 487 bool null_seen() { return flag_at(null_seen_flag); }
duke@0 488 void set_null_seen() { set_flag_at(null_seen_flag); }
duke@0 489
duke@0 490
duke@0 491 // Code generation support
duke@0 492 static int null_seen_byte_constant() {
duke@0 493 return flag_number_to_byte_constant(null_seen_flag);
duke@0 494 }
duke@0 495
duke@0 496 static ByteSize bit_data_size() {
duke@0 497 return cell_offset(bit_cell_count);
duke@0 498 }
duke@0 499
duke@0 500 #ifndef PRODUCT
duke@0 501 void print_data_on(outputStream* st);
duke@0 502 #endif
duke@0 503 };
duke@0 504
duke@0 505 // CounterData
duke@0 506 //
duke@0 507 // A CounterData corresponds to a simple counter.
duke@0 508 class CounterData : public BitData {
duke@0 509 protected:
duke@0 510 enum {
duke@0 511 count_off,
duke@0 512 counter_cell_count
duke@0 513 };
duke@0 514 public:
duke@0 515 CounterData(DataLayout* layout) : BitData(layout) {}
duke@0 516
duke@0 517 virtual bool is_CounterData() { return true; }
duke@0 518
duke@0 519 static int static_cell_count() {
duke@0 520 return counter_cell_count;
duke@0 521 }
duke@0 522
duke@0 523 virtual int cell_count() {
duke@0 524 return static_cell_count();
duke@0 525 }
duke@0 526
duke@0 527 // Direct accessor
duke@0 528 uint count() {
duke@0 529 return uint_at(count_off);
duke@0 530 }
duke@0 531
duke@0 532 // Code generation support
duke@0 533 static ByteSize count_offset() {
duke@0 534 return cell_offset(count_off);
duke@0 535 }
duke@0 536 static ByteSize counter_data_size() {
duke@0 537 return cell_offset(counter_cell_count);
duke@0 538 }
duke@0 539
duke@0 540 #ifndef PRODUCT
duke@0 541 void print_data_on(outputStream* st);
duke@0 542 #endif
duke@0 543 };
duke@0 544
duke@0 545 // JumpData
duke@0 546 //
duke@0 547 // A JumpData is used to access profiling information for a direct
duke@0 548 // branch. It is a counter, used for counting the number of branches,
duke@0 549 // plus a data displacement, used for realigning the data pointer to
duke@0 550 // the corresponding target bci.
duke@0 551 class JumpData : public ProfileData {
duke@0 552 protected:
duke@0 553 enum {
duke@0 554 taken_off_set,
duke@0 555 displacement_off_set,
duke@0 556 jump_cell_count
duke@0 557 };
duke@0 558
duke@0 559 void set_displacement(int displacement) {
duke@0 560 set_int_at(displacement_off_set, displacement);
duke@0 561 }
duke@0 562
duke@0 563 public:
duke@0 564 JumpData(DataLayout* layout) : ProfileData(layout) {
duke@0 565 assert(layout->tag() == DataLayout::jump_data_tag ||
duke@0 566 layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@0 567 }
duke@0 568
duke@0 569 virtual bool is_JumpData() { return true; }
duke@0 570
duke@0 571 static int static_cell_count() {
duke@0 572 return jump_cell_count;
duke@0 573 }
duke@0 574
duke@0 575 virtual int cell_count() {
duke@0 576 return static_cell_count();
duke@0 577 }
duke@0 578
duke@0 579 // Direct accessor
duke@0 580 uint taken() {
duke@0 581 return uint_at(taken_off_set);
duke@0 582 }
duke@0 583 // Saturating counter
duke@0 584 uint inc_taken() {
duke@0 585 uint cnt = taken() + 1;
duke@0 586 // Did we wrap? Will compiler screw us??
duke@0 587 if (cnt == 0) cnt--;
duke@0 588 set_uint_at(taken_off_set, cnt);
duke@0 589 return cnt;
duke@0 590 }
duke@0 591
duke@0 592 int displacement() {
duke@0 593 return int_at(displacement_off_set);
duke@0 594 }
duke@0 595
duke@0 596 // Code generation support
duke@0 597 static ByteSize taken_offset() {
duke@0 598 return cell_offset(taken_off_set);
duke@0 599 }
duke@0 600
duke@0 601 static ByteSize displacement_offset() {
duke@0 602 return cell_offset(displacement_off_set);
duke@0 603 }
duke@0 604
duke@0 605 // Specific initialization.
duke@0 606 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@0 607
duke@0 608 #ifndef PRODUCT
duke@0 609 void print_data_on(outputStream* st);
duke@0 610 #endif
duke@0 611 };
duke@0 612
duke@0 613 // ReceiverTypeData
duke@0 614 //
duke@0 615 // A ReceiverTypeData is used to access profiling information about a
duke@0 616 // dynamic type check. It consists of a counter which counts the total times
duke@0 617 // that the check is reached, and a series of (klassOop, count) pairs
duke@0 618 // which are used to store a type profile for the receiver of the check.
duke@0 619 class ReceiverTypeData : public CounterData {
duke@0 620 protected:
duke@0 621 enum {
duke@0 622 receiver0_offset = counter_cell_count,
duke@0 623 count0_offset,
duke@0 624 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
duke@0 625 };
duke@0 626
duke@0 627 public:
duke@0 628 ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
duke@0 629 assert(layout->tag() == DataLayout::receiver_type_data_tag ||
duke@0 630 layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
duke@0 631 }
duke@0 632
duke@0 633 virtual bool is_ReceiverTypeData() { return true; }
duke@0 634
duke@0 635 static int static_cell_count() {
duke@0 636 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
duke@0 637 }
duke@0 638
duke@0 639 virtual int cell_count() {
duke@0 640 return static_cell_count();
duke@0 641 }
duke@0 642
duke@0 643 // Direct accessors
duke@0 644 static uint row_limit() {
duke@0 645 return TypeProfileWidth;
duke@0 646 }
duke@0 647 static int receiver_cell_index(uint row) {
duke@0 648 return receiver0_offset + row * receiver_type_row_cell_count;
duke@0 649 }
duke@0 650 static int receiver_count_cell_index(uint row) {
duke@0 651 return count0_offset + row * receiver_type_row_cell_count;
duke@0 652 }
duke@0 653
duke@0 654 // Get the receiver at row. The 'unchecked' version is needed by parallel old
duke@0 655 // gc; it does not assert the receiver is a klass. During compaction of the
duke@0 656 // perm gen, the klass may already have moved, so the is_klass() predicate
duke@0 657 // would fail. The 'normal' version should be used whenever possible.
duke@0 658 klassOop receiver_unchecked(uint row) {
duke@0 659 assert(row < row_limit(), "oob");
duke@0 660 oop recv = oop_at(receiver_cell_index(row));
duke@0 661 return (klassOop)recv;
duke@0 662 }
duke@0 663
duke@0 664 klassOop receiver(uint row) {
duke@0 665 klassOop recv = receiver_unchecked(row);
duke@0 666 assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type");
duke@0 667 return recv;
duke@0 668 }
duke@0 669
duke@0 670 uint receiver_count(uint row) {
duke@0 671 assert(row < row_limit(), "oob");
duke@0 672 return uint_at(receiver_count_cell_index(row));
duke@0 673 }
duke@0 674
duke@0 675 // Code generation support
duke@0 676 static ByteSize receiver_offset(uint row) {
duke@0 677 return cell_offset(receiver_cell_index(row));
duke@0 678 }
duke@0 679 static ByteSize receiver_count_offset(uint row) {
duke@0 680 return cell_offset(receiver_count_cell_index(row));
duke@0 681 }
duke@0 682 static ByteSize receiver_type_data_size() {
duke@0 683 return cell_offset(static_cell_count());
duke@0 684 }
duke@0 685
duke@0 686 // GC support
duke@0 687 virtual void follow_contents();
duke@0 688 virtual void oop_iterate(OopClosure* blk);
duke@0 689 virtual void oop_iterate_m(OopClosure* blk, MemRegion mr);
duke@0 690 virtual void adjust_pointers();
duke@0 691
duke@0 692 #ifndef SERIALGC
duke@0 693 // Parallel old support
duke@0 694 virtual void follow_contents(ParCompactionManager* cm);
duke@0 695 virtual void update_pointers();
duke@0 696 virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr);
duke@0 697 #endif // SERIALGC
duke@0 698
duke@0 699 oop* adr_receiver(uint row) {
duke@0 700 return adr_oop_at(receiver_cell_index(row));
duke@0 701 }
duke@0 702
duke@0 703 #ifndef PRODUCT
duke@0 704 void print_receiver_data_on(outputStream* st);
duke@0 705 void print_data_on(outputStream* st);
duke@0 706 #endif
duke@0 707 };
duke@0 708
duke@0 709 // VirtualCallData
duke@0 710 //
duke@0 711 // A VirtualCallData is used to access profiling information about a
duke@0 712 // virtual call. For now, it has nothing more than a ReceiverTypeData.
duke@0 713 class VirtualCallData : public ReceiverTypeData {
duke@0 714 public:
duke@0 715 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
duke@0 716 assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
duke@0 717 }
duke@0 718
duke@0 719 virtual bool is_VirtualCallData() { return true; }
duke@0 720
duke@0 721 static int static_cell_count() {
duke@0 722 // At this point we could add more profile state, e.g., for arguments.
duke@0 723 // But for now it's the same size as the base record type.
duke@0 724 return ReceiverTypeData::static_cell_count();
duke@0 725 }
duke@0 726
duke@0 727 virtual int cell_count() {
duke@0 728 return static_cell_count();
duke@0 729 }
duke@0 730
duke@0 731 // Direct accessors
duke@0 732 static ByteSize virtual_call_data_size() {
duke@0 733 return cell_offset(static_cell_count());
duke@0 734 }
duke@0 735
duke@0 736 #ifndef PRODUCT
duke@0 737 void print_data_on(outputStream* st);
duke@0 738 #endif
duke@0 739 };
duke@0 740
duke@0 741 // RetData
duke@0 742 //
duke@0 743 // A RetData is used to access profiling information for a ret bytecode.
duke@0 744 // It is composed of a count of the number of times that the ret has
duke@0 745 // been executed, followed by a series of triples of the form
duke@0 746 // (bci, count, di) which count the number of times that some bci was the
duke@0 747 // target of the ret and cache a corresponding data displacement.
duke@0 748 class RetData : public CounterData {
duke@0 749 protected:
duke@0 750 enum {
duke@0 751 bci0_offset = counter_cell_count,
duke@0 752 count0_offset,
duke@0 753 displacement0_offset,
duke@0 754 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
duke@0 755 };
duke@0 756
duke@0 757 void set_bci(uint row, int bci) {
duke@0 758 assert((uint)row < row_limit(), "oob");
duke@0 759 set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@0 760 }
duke@0 761 void release_set_bci(uint row, int bci) {
duke@0 762 assert((uint)row < row_limit(), "oob");
duke@0 763 // 'release' when setting the bci acts as a valid flag for other
duke@0 764 // threads wrt bci_count and bci_displacement.
duke@0 765 release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@0 766 }
duke@0 767 void set_bci_count(uint row, uint count) {
duke@0 768 assert((uint)row < row_limit(), "oob");
duke@0 769 set_uint_at(count0_offset + row * ret_row_cell_count, count);
duke@0 770 }
duke@0 771 void set_bci_displacement(uint row, int disp) {
duke@0 772 set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
duke@0 773 }
duke@0 774
duke@0 775 public:
duke@0 776 RetData(DataLayout* layout) : CounterData(layout) {
duke@0 777 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
duke@0 778 }
duke@0 779
duke@0 780 virtual bool is_RetData() { return true; }
duke@0 781
duke@0 782 enum {
duke@0 783 no_bci = -1 // value of bci when bci1/2 are not in use.
duke@0 784 };
duke@0 785
duke@0 786 static int static_cell_count() {
duke@0 787 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
duke@0 788 }
duke@0 789
duke@0 790 virtual int cell_count() {
duke@0 791 return static_cell_count();
duke@0 792 }
duke@0 793
duke@0 794 static uint row_limit() {
duke@0 795 return BciProfileWidth;
duke@0 796 }
duke@0 797 static int bci_cell_index(uint row) {
duke@0 798 return bci0_offset + row * ret_row_cell_count;
duke@0 799 }
duke@0 800 static int bci_count_cell_index(uint row) {
duke@0 801 return count0_offset + row * ret_row_cell_count;
duke@0 802 }
duke@0 803 static int bci_displacement_cell_index(uint row) {
duke@0 804 return displacement0_offset + row * ret_row_cell_count;
duke@0 805 }
duke@0 806
duke@0 807 // Direct accessors
duke@0 808 int bci(uint row) {
duke@0 809 return int_at(bci_cell_index(row));
duke@0 810 }
duke@0 811 uint bci_count(uint row) {
duke@0 812 return uint_at(bci_count_cell_index(row));
duke@0 813 }
duke@0 814 int bci_displacement(uint row) {
duke@0 815 return int_at(bci_displacement_cell_index(row));
duke@0 816 }
duke@0 817
duke@0 818 // Interpreter Runtime support
duke@0 819 address fixup_ret(int return_bci, methodDataHandle mdo);
duke@0 820
duke@0 821 // Code generation support
duke@0 822 static ByteSize bci_offset(uint row) {
duke@0 823 return cell_offset(bci_cell_index(row));
duke@0 824 }
duke@0 825 static ByteSize bci_count_offset(uint row) {
duke@0 826 return cell_offset(bci_count_cell_index(row));
duke@0 827 }
duke@0 828 static ByteSize bci_displacement_offset(uint row) {
duke@0 829 return cell_offset(bci_displacement_cell_index(row));
duke@0 830 }
duke@0 831
duke@0 832 // Specific initialization.
duke@0 833 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@0 834
duke@0 835 #ifndef PRODUCT
duke@0 836 void print_data_on(outputStream* st);
duke@0 837 #endif
duke@0 838 };
duke@0 839
duke@0 840 // BranchData
duke@0 841 //
duke@0 842 // A BranchData is used to access profiling data for a two-way branch.
duke@0 843 // It consists of taken and not_taken counts as well as a data displacement
duke@0 844 // for the taken case.
duke@0 845 class BranchData : public JumpData {
duke@0 846 protected:
duke@0 847 enum {
duke@0 848 not_taken_off_set = jump_cell_count,
duke@0 849 branch_cell_count
duke@0 850 };
duke@0 851
duke@0 852 void set_displacement(int displacement) {
duke@0 853 set_int_at(displacement_off_set, displacement);
duke@0 854 }
duke@0 855
duke@0 856 public:
duke@0 857 BranchData(DataLayout* layout) : JumpData(layout) {
duke@0 858 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@0 859 }
duke@0 860
duke@0 861 virtual bool is_BranchData() { return true; }
duke@0 862
duke@0 863 static int static_cell_count() {
duke@0 864 return branch_cell_count;
duke@0 865 }
duke@0 866
duke@0 867 virtual int cell_count() {
duke@0 868 return static_cell_count();
duke@0 869 }
duke@0 870
duke@0 871 // Direct accessor
duke@0 872 uint not_taken() {
duke@0 873 return uint_at(not_taken_off_set);
duke@0 874 }
duke@0 875
duke@0 876 uint inc_not_taken() {
duke@0 877 uint cnt = not_taken() + 1;
duke@0 878 // Did we wrap? Will compiler screw us??
duke@0 879 if (cnt == 0) cnt--;
duke@0 880 set_uint_at(not_taken_off_set, cnt);
duke@0 881 return cnt;
duke@0 882 }
duke@0 883
duke@0 884 // Code generation support
duke@0 885 static ByteSize not_taken_offset() {
duke@0 886 return cell_offset(not_taken_off_set);
duke@0 887 }
duke@0 888 static ByteSize branch_data_size() {
duke@0 889 return cell_offset(branch_cell_count);
duke@0 890 }
duke@0 891
duke@0 892 // Specific initialization.
duke@0 893 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@0 894
duke@0 895 #ifndef PRODUCT
duke@0 896 void print_data_on(outputStream* st);
duke@0 897 #endif
duke@0 898 };
duke@0 899
duke@0 900 // ArrayData
duke@0 901 //
duke@0 902 // A ArrayData is a base class for accessing profiling data which does
duke@0 903 // not have a statically known size. It consists of an array length
duke@0 904 // and an array start.
duke@0 905 class ArrayData : public ProfileData {
duke@0 906 protected:
duke@0 907 friend class DataLayout;
duke@0 908
duke@0 909 enum {
duke@0 910 array_len_off_set,
duke@0 911 array_start_off_set
duke@0 912 };
duke@0 913
duke@0 914 uint array_uint_at(int index) {
duke@0 915 int aindex = index + array_start_off_set;
duke@0 916 return uint_at(aindex);
duke@0 917 }
duke@0 918 int array_int_at(int index) {
duke@0 919 int aindex = index + array_start_off_set;
duke@0 920 return int_at(aindex);
duke@0 921 }
duke@0 922 oop array_oop_at(int index) {
duke@0 923 int aindex = index + array_start_off_set;
duke@0 924 return oop_at(aindex);
duke@0 925 }
duke@0 926 void array_set_int_at(int index, int value) {
duke@0 927 int aindex = index + array_start_off_set;
duke@0 928 set_int_at(aindex, value);
duke@0 929 }
duke@0 930
duke@0 931 // Code generation support for subclasses.
duke@0 932 static ByteSize array_element_offset(int index) {
duke@0 933 return cell_offset(array_start_off_set + index);
duke@0 934 }
duke@0 935
duke@0 936 public:
duke@0 937 ArrayData(DataLayout* layout) : ProfileData(layout) {}
duke@0 938
duke@0 939 virtual bool is_ArrayData() { return true; }
duke@0 940
duke@0 941 static int static_cell_count() {
duke@0 942 return -1;
duke@0 943 }
duke@0 944
duke@0 945 int array_len() {
duke@0 946 return int_at_unchecked(array_len_off_set);
duke@0 947 }
duke@0 948
duke@0 949 virtual int cell_count() {
duke@0 950 return array_len() + 1;
duke@0 951 }
duke@0 952
duke@0 953 // Code generation support
duke@0 954 static ByteSize array_len_offset() {
duke@0 955 return cell_offset(array_len_off_set);
duke@0 956 }
duke@0 957 static ByteSize array_start_offset() {
duke@0 958 return cell_offset(array_start_off_set);
duke@0 959 }
duke@0 960 };
duke@0 961
duke@0 962 // MultiBranchData
duke@0 963 //
duke@0 964 // A MultiBranchData is used to access profiling information for
duke@0 965 // a multi-way branch (*switch bytecodes). It consists of a series
duke@0 966 // of (count, displacement) pairs, which count the number of times each
duke@0 967 // case was taken and specify the data displacment for each branch target.
duke@0 968 class MultiBranchData : public ArrayData {
duke@0 969 protected:
duke@0 970 enum {
duke@0 971 default_count_off_set,
duke@0 972 default_disaplacement_off_set,
duke@0 973 case_array_start
duke@0 974 };
duke@0 975 enum {
duke@0 976 relative_count_off_set,
duke@0 977 relative_displacement_off_set,
duke@0 978 per_case_cell_count
duke@0 979 };
duke@0 980
duke@0 981 void set_default_displacement(int displacement) {
duke@0 982 array_set_int_at(default_disaplacement_off_set, displacement);
duke@0 983 }
duke@0 984 void set_displacement_at(int index, int displacement) {
duke@0 985 array_set_int_at(case_array_start +
duke@0 986 index * per_case_cell_count +
duke@0 987 relative_displacement_off_set,
duke@0 988 displacement);
duke@0 989 }
duke@0 990
duke@0 991 public:
duke@0 992 MultiBranchData(DataLayout* layout) : ArrayData(layout) {
duke@0 993 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
duke@0 994 }
duke@0 995
duke@0 996 virtual bool is_MultiBranchData() { return true; }
duke@0 997
duke@0 998 static int compute_cell_count(BytecodeStream* stream);
duke@0 999
duke@0 1000 int number_of_cases() {
duke@0 1001 int alen = array_len() - 2; // get rid of default case here.
duke@0 1002 assert(alen % per_case_cell_count == 0, "must be even");
duke@0 1003 return (alen / per_case_cell_count);
duke@0 1004 }
duke@0 1005
duke@0 1006 uint default_count() {
duke@0 1007 return array_uint_at(default_count_off_set);
duke@0 1008 }
duke@0 1009 int default_displacement() {
duke@0 1010 return array_int_at(default_disaplacement_off_set);
duke@0 1011 }
duke@0 1012
duke@0 1013 uint count_at(int index) {
duke@0 1014 return array_uint_at(case_array_start +
duke@0 1015 index * per_case_cell_count +
duke@0 1016 relative_count_off_set);
duke@0 1017 }
duke@0 1018 int displacement_at(int index) {
duke@0 1019 return array_int_at(case_array_start +
duke@0 1020 index * per_case_cell_count +
duke@0 1021 relative_displacement_off_set);
duke@0 1022 }
duke@0 1023
duke@0 1024 // Code generation support
duke@0 1025 static ByteSize default_count_offset() {
duke@0 1026 return array_element_offset(default_count_off_set);
duke@0 1027 }
duke@0 1028 static ByteSize default_displacement_offset() {
duke@0 1029 return array_element_offset(default_disaplacement_off_set);
duke@0 1030 }
duke@0 1031 static ByteSize case_count_offset(int index) {
duke@0 1032 return case_array_offset() +
duke@0 1033 (per_case_size() * index) +
duke@0 1034 relative_count_offset();
duke@0 1035 }
duke@0 1036 static ByteSize case_array_offset() {
duke@0 1037 return array_element_offset(case_array_start);
duke@0 1038 }
duke@0 1039 static ByteSize per_case_size() {
duke@0 1040 return in_ByteSize(per_case_cell_count) * cell_size;
duke@0 1041 }
duke@0 1042 static ByteSize relative_count_offset() {
duke@0 1043 return in_ByteSize(relative_count_off_set) * cell_size;
duke@0 1044 }
duke@0 1045 static ByteSize relative_displacement_offset() {
duke@0 1046 return in_ByteSize(relative_displacement_off_set) * cell_size;
duke@0 1047 }
duke@0 1048
duke@0 1049 // Specific initialization.
duke@0 1050 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@0 1051
duke@0 1052 #ifndef PRODUCT
duke@0 1053 void print_data_on(outputStream* st);
duke@0 1054 #endif
duke@0 1055 };
duke@0 1056
kvn@45 1057 class ArgInfoData : public ArrayData {
kvn@45 1058
kvn@45 1059 public:
kvn@45 1060 ArgInfoData(DataLayout* layout) : ArrayData(layout) {
kvn@45 1061 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
kvn@45 1062 }
kvn@45 1063
kvn@45 1064 virtual bool is_ArgInfoData() { return true; }
kvn@45 1065
kvn@45 1066
kvn@45 1067 int number_of_args() {
kvn@45 1068 return array_len();
kvn@45 1069 }
kvn@45 1070
kvn@45 1071 uint arg_modified(int arg) {
kvn@45 1072 return array_uint_at(arg);
kvn@45 1073 }
kvn@45 1074
kvn@45 1075 void set_arg_modified(int arg, uint val) {
kvn@45 1076 array_set_int_at(arg, val);
kvn@45 1077 }
kvn@45 1078
kvn@45 1079 #ifndef PRODUCT
kvn@45 1080 void print_data_on(outputStream* st);
kvn@45 1081 #endif
kvn@45 1082 };
kvn@45 1083
duke@0 1084 // methodDataOop
duke@0 1085 //
duke@0 1086 // A methodDataOop holds information which has been collected about
duke@0 1087 // a method. Its layout looks like this:
duke@0 1088 //
duke@0 1089 // -----------------------------
duke@0 1090 // | header |
duke@0 1091 // | klass |
duke@0 1092 // -----------------------------
duke@0 1093 // | method |
duke@0 1094 // | size of the methodDataOop |
duke@0 1095 // -----------------------------
duke@0 1096 // | Data entries... |
duke@0 1097 // | (variable size) |
duke@0 1098 // | |
duke@0 1099 // . .
duke@0 1100 // . .
duke@0 1101 // . .
duke@0 1102 // | |
duke@0 1103 // -----------------------------
duke@0 1104 //
duke@0 1105 // The data entry area is a heterogeneous array of DataLayouts. Each
duke@0 1106 // DataLayout in the array corresponds to a specific bytecode in the
duke@0 1107 // method. The entries in the array are sorted by the corresponding
duke@0 1108 // bytecode. Access to the data is via resource-allocated ProfileData,
duke@0 1109 // which point to the underlying blocks of DataLayout structures.
duke@0 1110 //
duke@0 1111 // During interpretation, if profiling in enabled, the interpreter
duke@0 1112 // maintains a method data pointer (mdp), which points at the entry
duke@0 1113 // in the array corresponding to the current bci. In the course of
duke@0 1114 // intepretation, when a bytecode is encountered that has profile data
duke@0 1115 // associated with it, the entry pointed to by mdp is updated, then the
duke@0 1116 // mdp is adjusted to point to the next appropriate DataLayout. If mdp
duke@0 1117 // is NULL to begin with, the interpreter assumes that the current method
duke@0 1118 // is not (yet) being profiled.
duke@0 1119 //
duke@0 1120 // In methodDataOop parlance, "dp" is a "data pointer", the actual address
duke@0 1121 // of a DataLayout element. A "di" is a "data index", the offset in bytes
duke@0 1122 // from the base of the data entry array. A "displacement" is the byte offset
duke@0 1123 // in certain ProfileData objects that indicate the amount the mdp must be
duke@0 1124 // adjusted in the event of a change in control flow.
duke@0 1125 //
duke@0 1126
duke@0 1127 class methodDataOopDesc : public oopDesc {
duke@0 1128 friend class VMStructs;
duke@0 1129 private:
duke@0 1130 friend class ProfileData;
duke@0 1131
duke@0 1132 // Back pointer to the methodOop
duke@0 1133 methodOop _method;
duke@0 1134
duke@0 1135 // Size of this oop in bytes
duke@0 1136 int _size;
duke@0 1137
duke@0 1138 // Cached hint for bci_to_dp and bci_to_data
duke@0 1139 int _hint_di;
duke@0 1140
duke@0 1141 // Whole-method sticky bits and flags
duke@0 1142 public:
duke@0 1143 enum {
duke@0 1144 _trap_hist_limit = 16, // decoupled from Deoptimization::Reason_LIMIT
duke@0 1145 _trap_hist_mask = max_jubyte,
duke@0 1146 _extra_data_count = 4 // extra DataLayout headers, for trap history
duke@0 1147 }; // Public flag values
duke@0 1148 private:
duke@0 1149 uint _nof_decompiles; // count of all nmethod removals
duke@0 1150 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits
duke@0 1151 uint _nof_overflow_traps; // trap count, excluding _trap_hist
duke@0 1152 union {
duke@0 1153 intptr_t _align;
duke@0 1154 u1 _array[_trap_hist_limit];
duke@0 1155 } _trap_hist;
duke@0 1156
duke@0 1157 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@0 1158 intx _eflags; // flags on escape information
duke@0 1159 intx _arg_local; // bit set of non-escaping arguments
duke@0 1160 intx _arg_stack; // bit set of stack-allocatable arguments
duke@0 1161 intx _arg_returned; // bit set of returned arguments
duke@0 1162
duke@0 1163 int _creation_mileage; // method mileage at MDO creation
duke@0 1164
duke@0 1165 // Size of _data array in bytes. (Excludes header and extra_data fields.)
duke@0 1166 int _data_size;
duke@0 1167
duke@0 1168 // Beginning of the data entries
duke@0 1169 intptr_t _data[1];
duke@0 1170
duke@0 1171 // Helper for size computation
duke@0 1172 static int compute_data_size(BytecodeStream* stream);
duke@0 1173 static int bytecode_cell_count(Bytecodes::Code code);
duke@0 1174 enum { no_profile_data = -1, variable_cell_count = -2 };
duke@0 1175
duke@0 1176 // Helper for initialization
duke@0 1177 DataLayout* data_layout_at(int data_index) {
duke@0 1178 assert(data_index % sizeof(intptr_t) == 0, "unaligned");
duke@0 1179 return (DataLayout*) (((address)_data) + data_index);
duke@0 1180 }
duke@0 1181
duke@0 1182 // Initialize an individual data segment. Returns the size of
duke@0 1183 // the segment in bytes.
duke@0 1184 int initialize_data(BytecodeStream* stream, int data_index);
duke@0 1185
duke@0 1186 // Helper for data_at
duke@0 1187 DataLayout* limit_data_position() {
duke@0 1188 return (DataLayout*)((address)data_base() + _data_size);
duke@0 1189 }
duke@0 1190 bool out_of_bounds(int data_index) {
duke@0 1191 return data_index >= data_size();
duke@0 1192 }
duke@0 1193
duke@0 1194 // Give each of the data entries a chance to perform specific
duke@0 1195 // data initialization.
duke@0 1196 void post_initialize(BytecodeStream* stream);
duke@0 1197
duke@0 1198 // hint accessors
duke@0 1199 int hint_di() const { return _hint_di; }
duke@0 1200 void set_hint_di(int di) {
duke@0 1201 assert(!out_of_bounds(di), "hint_di out of bounds");
duke@0 1202 _hint_di = di;
duke@0 1203 }
duke@0 1204 ProfileData* data_before(int bci) {
duke@0 1205 // avoid SEGV on this edge case
duke@0 1206 if (data_size() == 0)
duke@0 1207 return NULL;
duke@0 1208 int hint = hint_di();
duke@0 1209 if (data_layout_at(hint)->bci() <= bci)
duke@0 1210 return data_at(hint);
duke@0 1211 return first_data();
duke@0 1212 }
duke@0 1213
duke@0 1214 // What is the index of the first data entry?
duke@0 1215 int first_di() { return 0; }
duke@0 1216
duke@0 1217 // Find or create an extra ProfileData:
duke@0 1218 ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
duke@0 1219
kvn@45 1220 // return the argument info cell
kvn@45 1221 ArgInfoData *arg_info();
kvn@45 1222
duke@0 1223 public:
duke@0 1224 static int header_size() {
duke@0 1225 return sizeof(methodDataOopDesc)/wordSize;
duke@0 1226 }
duke@0 1227
duke@0 1228 // Compute the size of a methodDataOop before it is created.
duke@0 1229 static int compute_allocation_size_in_bytes(methodHandle method);
duke@0 1230 static int compute_allocation_size_in_words(methodHandle method);
duke@0 1231 static int compute_extra_data_count(int data_size, int empty_bc_count);
duke@0 1232
duke@0 1233 // Determine if a given bytecode can have profile information.
duke@0 1234 static bool bytecode_has_profile(Bytecodes::Code code) {
duke@0 1235 return bytecode_cell_count(code) != no_profile_data;
duke@0 1236 }
duke@0 1237
duke@0 1238 // Perform initialization of a new methodDataOop
duke@0 1239 void initialize(methodHandle method);
duke@0 1240
duke@0 1241 // My size
duke@0 1242 int object_size_in_bytes() { return _size; }
duke@0 1243 int object_size() {
duke@0 1244 return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord);
duke@0 1245 }
duke@0 1246
duke@0 1247 int creation_mileage() const { return _creation_mileage; }
duke@0 1248 void set_creation_mileage(int x) { _creation_mileage = x; }
duke@0 1249 bool is_mature() const; // consult mileage and ProfileMaturityPercentage
duke@0 1250 static int mileage_of(methodOop m);
duke@0 1251
duke@0 1252 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@0 1253 enum EscapeFlag {
duke@0 1254 estimated = 1 << 0,
kvn@78 1255 return_local = 1 << 1,
kvn@78 1256 return_allocated = 1 << 2,
kvn@78 1257 allocated_escapes = 1 << 3,
kvn@78 1258 unknown_modified = 1 << 4
duke@0 1259 };
duke@0 1260
duke@0 1261 intx eflags() { return _eflags; }
duke@0 1262 intx arg_local() { return _arg_local; }
duke@0 1263 intx arg_stack() { return _arg_stack; }
duke@0 1264 intx arg_returned() { return _arg_returned; }
kvn@45 1265 uint arg_modified(int a) { ArgInfoData *aid = arg_info();
kvn@45 1266 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@45 1267 return aid->arg_modified(a); }
duke@0 1268
duke@0 1269 void set_eflags(intx v) { _eflags = v; }
duke@0 1270 void set_arg_local(intx v) { _arg_local = v; }
duke@0 1271 void set_arg_stack(intx v) { _arg_stack = v; }
duke@0 1272 void set_arg_returned(intx v) { _arg_returned = v; }
kvn@45 1273 void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info();
kvn@45 1274 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@45 1275
kvn@45 1276 aid->set_arg_modified(a, v); }
duke@0 1277
duke@0 1278 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
duke@0 1279
duke@0 1280 // Location and size of data area
duke@0 1281 address data_base() const {
duke@0 1282 return (address) _data;
duke@0 1283 }
duke@0 1284 int data_size() {
duke@0 1285 return _data_size;
duke@0 1286 }
duke@0 1287
duke@0 1288 // Accessors
duke@0 1289 methodOop method() { return _method; }
duke@0 1290
duke@0 1291 // Get the data at an arbitrary (sort of) data index.
duke@0 1292 ProfileData* data_at(int data_index);
duke@0 1293
duke@0 1294 // Walk through the data in order.
duke@0 1295 ProfileData* first_data() { return data_at(first_di()); }
duke@0 1296 ProfileData* next_data(ProfileData* current);
duke@0 1297 bool is_valid(ProfileData* current) { return current != NULL; }
duke@0 1298
duke@0 1299 // Convert a dp (data pointer) to a di (data index).
duke@0 1300 int dp_to_di(address dp) {
duke@0 1301 return dp - ((address)_data);
duke@0 1302 }
duke@0 1303
duke@0 1304 address di_to_dp(int di) {
duke@0 1305 return (address)data_layout_at(di);
duke@0 1306 }
duke@0 1307
duke@0 1308 // bci to di/dp conversion.
duke@0 1309 address bci_to_dp(int bci);
duke@0 1310 int bci_to_di(int bci) {
duke@0 1311 return dp_to_di(bci_to_dp(bci));
duke@0 1312 }
duke@0 1313
duke@0 1314 // Get the data at an arbitrary bci, or NULL if there is none.
duke@0 1315 ProfileData* bci_to_data(int bci);
duke@0 1316
duke@0 1317 // Same, but try to create an extra_data record if one is needed:
duke@0 1318 ProfileData* allocate_bci_to_data(int bci) {
duke@0 1319 ProfileData* data = bci_to_data(bci);
duke@0 1320 return (data != NULL) ? data : bci_to_extra_data(bci, true);
duke@0 1321 }
duke@0 1322
duke@0 1323 // Add a handful of extra data records, for trap tracking.
duke@0 1324 DataLayout* extra_data_base() { return limit_data_position(); }
duke@0 1325 DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); }
duke@0 1326 int extra_data_size() { return (address)extra_data_limit()
duke@0 1327 - (address)extra_data_base(); }
duke@0 1328 static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
duke@0 1329
duke@0 1330 // Return (uint)-1 for overflow.
duke@0 1331 uint trap_count(int reason) const {
duke@0 1332 assert((uint)reason < _trap_hist_limit, "oob");
duke@0 1333 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
duke@0 1334 }
duke@0 1335 // For loops:
duke@0 1336 static uint trap_reason_limit() { return _trap_hist_limit; }
duke@0 1337 static uint trap_count_limit() { return _trap_hist_mask; }
duke@0 1338 uint inc_trap_count(int reason) {
duke@0 1339 // Count another trap, anywhere in this method.
duke@0 1340 assert(reason >= 0, "must be single trap");
duke@0 1341 if ((uint)reason < _trap_hist_limit) {
duke@0 1342 uint cnt1 = 1 + _trap_hist._array[reason];
duke@0 1343 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow...
duke@0 1344 _trap_hist._array[reason] = cnt1;
duke@0 1345 return cnt1;
duke@0 1346 } else {
duke@0 1347 return _trap_hist_mask + (++_nof_overflow_traps);
duke@0 1348 }
duke@0 1349 } else {
duke@0 1350 // Could not represent the count in the histogram.
duke@0 1351 return (++_nof_overflow_traps);
duke@0 1352 }
duke@0 1353 }
duke@0 1354
duke@0 1355 uint overflow_trap_count() const {
duke@0 1356 return _nof_overflow_traps;
duke@0 1357 }
duke@0 1358 uint overflow_recompile_count() const {
duke@0 1359 return _nof_overflow_recompiles;
duke@0 1360 }
duke@0 1361 void inc_overflow_recompile_count() {
duke@0 1362 _nof_overflow_recompiles += 1;
duke@0 1363 }
duke@0 1364 uint decompile_count() const {
duke@0 1365 return _nof_decompiles;
duke@0 1366 }
duke@0 1367 void inc_decompile_count() {
duke@0 1368 _nof_decompiles += 1;
duke@0 1369 }
duke@0 1370
duke@0 1371 // Support for code generation
duke@0 1372 static ByteSize data_offset() {
duke@0 1373 return byte_offset_of(methodDataOopDesc, _data[0]);
duke@0 1374 }
duke@0 1375
duke@0 1376 // GC support
duke@0 1377 oop* adr_method() const { return (oop*)&_method; }
duke@0 1378 bool object_is_parsable() const { return _size != 0; }
duke@0 1379 void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; }
duke@0 1380
duke@0 1381 #ifndef PRODUCT
duke@0 1382 // printing support for method data
duke@0 1383 void print_data_on(outputStream* st);
duke@0 1384 #endif
duke@0 1385
duke@0 1386 // verification
duke@0 1387 void verify_data_on(outputStream* st);
duke@0 1388 };