annotate src/share/vm/runtime/sharedRuntime.cpp @ 1601:126ea7725993

6953477: Increase portability and flexibility of building Hotspot Summary: A collection of portability improvements including shared code support for PPC, ARM platforms, software floating point, cross compilation support and improvements in error crash detail. Reviewed-by: phh, never, coleenp, dholmes
author bobv
date Tue, 03 Aug 2010 08:13:38 -0400
parents 2a47bd84841f
children a62d332029cf
rev   line source
duke@0 1 /*
trims@1472 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
trims@1472 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1472 20 * or visit www.oracle.com if you need additional information or have any
trims@1472 21 * questions.
duke@0 22 *
duke@0 23 */
duke@0 24
duke@0 25 #include "incls/_precompiled.incl"
duke@0 26 #include "incls/_sharedRuntime.cpp.incl"
duke@0 27 #include <math.h>
duke@0 28
duke@0 29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@0 30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@0 31 char*, int, char*, int, char*, int);
duke@0 32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@0 33 char*, int, char*, int, char*, int);
duke@0 34
duke@0 35 // Implementation of SharedRuntime
duke@0 36
duke@0 37 #ifndef PRODUCT
duke@0 38 // For statistics
duke@0 39 int SharedRuntime::_ic_miss_ctr = 0;
duke@0 40 int SharedRuntime::_wrong_method_ctr = 0;
duke@0 41 int SharedRuntime::_resolve_static_ctr = 0;
duke@0 42 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@0 43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@0 44 int SharedRuntime::_implicit_null_throws = 0;
duke@0 45 int SharedRuntime::_implicit_div0_throws = 0;
duke@0 46 int SharedRuntime::_throw_null_ctr = 0;
duke@0 47
duke@0 48 int SharedRuntime::_nof_normal_calls = 0;
duke@0 49 int SharedRuntime::_nof_optimized_calls = 0;
duke@0 50 int SharedRuntime::_nof_inlined_calls = 0;
duke@0 51 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@0 52 int SharedRuntime::_nof_static_calls = 0;
duke@0 53 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@0 54 int SharedRuntime::_nof_interface_calls = 0;
duke@0 55 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@0 56 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@0 57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@0 58 int SharedRuntime::_nof_removable_exceptions = 0;
duke@0 59
duke@0 60 int SharedRuntime::_new_instance_ctr=0;
duke@0 61 int SharedRuntime::_new_array_ctr=0;
duke@0 62 int SharedRuntime::_multi1_ctr=0;
duke@0 63 int SharedRuntime::_multi2_ctr=0;
duke@0 64 int SharedRuntime::_multi3_ctr=0;
duke@0 65 int SharedRuntime::_multi4_ctr=0;
duke@0 66 int SharedRuntime::_multi5_ctr=0;
duke@0 67 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@0 68 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@0 69 int SharedRuntime::_mon_enter_ctr=0;
duke@0 70 int SharedRuntime::_mon_exit_ctr=0;
duke@0 71 int SharedRuntime::_partial_subtype_ctr=0;
duke@0 72 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@0 73 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@0 74 int SharedRuntime::_jint_array_copy_ctr=0;
duke@0 75 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@0 76 int SharedRuntime::_oop_array_copy_ctr=0;
duke@0 77 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@0 78 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@0 79 int SharedRuntime::_generic_array_copy_ctr=0;
duke@0 80 int SharedRuntime::_slow_array_copy_ctr=0;
duke@0 81 int SharedRuntime::_find_handler_ctr=0;
duke@0 82 int SharedRuntime::_rethrow_ctr=0;
duke@0 83
duke@0 84 int SharedRuntime::_ICmiss_index = 0;
duke@0 85 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@0 86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@0 87
duke@0 88 void SharedRuntime::trace_ic_miss(address at) {
duke@0 89 for (int i = 0; i < _ICmiss_index; i++) {
duke@0 90 if (_ICmiss_at[i] == at) {
duke@0 91 _ICmiss_count[i]++;
duke@0 92 return;
duke@0 93 }
duke@0 94 }
duke@0 95 int index = _ICmiss_index++;
duke@0 96 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@0 97 _ICmiss_at[index] = at;
duke@0 98 _ICmiss_count[index] = 1;
duke@0 99 }
duke@0 100
duke@0 101 void SharedRuntime::print_ic_miss_histogram() {
duke@0 102 if (ICMissHistogram) {
duke@0 103 tty->print_cr ("IC Miss Histogram:");
duke@0 104 int tot_misses = 0;
duke@0 105 for (int i = 0; i < _ICmiss_index; i++) {
duke@0 106 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@0 107 tot_misses += _ICmiss_count[i];
duke@0 108 }
duke@0 109 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@0 110 }
duke@0 111 }
duke@0 112 #endif // PRODUCT
duke@0 113
ysr@342 114 #ifndef SERIALGC
ysr@342 115
ysr@342 116 // G1 write-barrier pre: executed before a pointer store.
ysr@342 117 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
ysr@342 118 if (orig == NULL) {
ysr@342 119 assert(false, "should be optimized out");
ysr@342 120 return;
ysr@342 121 }
ysr@845 122 assert(orig->is_oop(true /* ignore mark word */), "Error");
ysr@342 123 // store the original value that was in the field reference
ysr@342 124 thread->satb_mark_queue().enqueue(orig);
ysr@342 125 JRT_END
ysr@342 126
ysr@342 127 // G1 write-barrier post: executed after a pointer store.
ysr@342 128 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
ysr@342 129 thread->dirty_card_queue().enqueue(card_addr);
ysr@342 130 JRT_END
ysr@342 131
ysr@342 132 #endif // !SERIALGC
ysr@342 133
duke@0 134
duke@0 135 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@0 136 return x * y;
duke@0 137 JRT_END
duke@0 138
duke@0 139
duke@0 140 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@0 141 if (x == min_jlong && y == CONST64(-1)) {
duke@0 142 return x;
duke@0 143 } else {
duke@0 144 return x / y;
duke@0 145 }
duke@0 146 JRT_END
duke@0 147
duke@0 148
duke@0 149 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@0 150 if (x == min_jlong && y == CONST64(-1)) {
duke@0 151 return 0;
duke@0 152 } else {
duke@0 153 return x % y;
duke@0 154 }
duke@0 155 JRT_END
duke@0 156
duke@0 157
duke@0 158 const juint float_sign_mask = 0x7FFFFFFF;
duke@0 159 const juint float_infinity = 0x7F800000;
duke@0 160 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@0 161 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@0 162
duke@0 163 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@0 164 #ifdef _WIN64
duke@0 165 // 64-bit Windows on amd64 returns the wrong values for
duke@0 166 // infinity operands.
duke@0 167 union { jfloat f; juint i; } xbits, ybits;
duke@0 168 xbits.f = x;
duke@0 169 ybits.f = y;
duke@0 170 // x Mod Infinity == x unless x is infinity
duke@0 171 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@0 172 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@0 173 return x;
duke@0 174 }
duke@0 175 #endif
duke@0 176 return ((jfloat)fmod((double)x,(double)y));
duke@0 177 JRT_END
duke@0 178
duke@0 179
duke@0 180 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@0 181 #ifdef _WIN64
duke@0 182 union { jdouble d; julong l; } xbits, ybits;
duke@0 183 xbits.d = x;
duke@0 184 ybits.d = y;
duke@0 185 // x Mod Infinity == x unless x is infinity
duke@0 186 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@0 187 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@0 188 return x;
duke@0 189 }
duke@0 190 #endif
duke@0 191 return ((jdouble)fmod((double)x,(double)y));
duke@0 192 JRT_END
duke@0 193
bobv@1601 194 #ifdef __SOFTFP__
bobv@1601 195 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
bobv@1601 196 return x + y;
bobv@1601 197 JRT_END
bobv@1601 198
bobv@1601 199 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
bobv@1601 200 return x - y;
bobv@1601 201 JRT_END
bobv@1601 202
bobv@1601 203 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
bobv@1601 204 return x * y;
bobv@1601 205 JRT_END
bobv@1601 206
bobv@1601 207 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
bobv@1601 208 return x / y;
bobv@1601 209 JRT_END
bobv@1601 210
bobv@1601 211 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
bobv@1601 212 return x + y;
bobv@1601 213 JRT_END
bobv@1601 214
bobv@1601 215 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
bobv@1601 216 return x - y;
bobv@1601 217 JRT_END
bobv@1601 218
bobv@1601 219 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
bobv@1601 220 return x * y;
bobv@1601 221 JRT_END
bobv@1601 222
bobv@1601 223 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
bobv@1601 224 return x / y;
bobv@1601 225 JRT_END
bobv@1601 226
bobv@1601 227 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
bobv@1601 228 return (jfloat)x;
bobv@1601 229 JRT_END
bobv@1601 230
bobv@1601 231 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
bobv@1601 232 return (jdouble)x;
bobv@1601 233 JRT_END
bobv@1601 234
bobv@1601 235 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
bobv@1601 236 return (jdouble)x;
bobv@1601 237 JRT_END
bobv@1601 238
bobv@1601 239 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
bobv@1601 240 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
bobv@1601 241 JRT_END
bobv@1601 242
bobv@1601 243 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
bobv@1601 244 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@1601 245 JRT_END
bobv@1601 246
bobv@1601 247 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
bobv@1601 248 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
bobv@1601 249 JRT_END
bobv@1601 250
bobv@1601 251 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
bobv@1601 252 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@1601 253 JRT_END
bobv@1601 254
bobv@1601 255 // Functions to return the opposite of the aeabi functions for nan.
bobv@1601 256 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
bobv@1601 257 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@1601 258 JRT_END
bobv@1601 259
bobv@1601 260 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
bobv@1601 261 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@1601 262 JRT_END
bobv@1601 263
bobv@1601 264 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
bobv@1601 265 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@1601 266 JRT_END
bobv@1601 267
bobv@1601 268 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
bobv@1601 269 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@1601 270 JRT_END
bobv@1601 271
bobv@1601 272 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
bobv@1601 273 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@1601 274 JRT_END
bobv@1601 275
bobv@1601 276 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
bobv@1601 277 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@1601 278 JRT_END
bobv@1601 279
bobv@1601 280 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
bobv@1601 281 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@1601 282 JRT_END
bobv@1601 283
bobv@1601 284 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
bobv@1601 285 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@1601 286 JRT_END
bobv@1601 287
bobv@1601 288 // Intrinsics make gcc generate code for these.
bobv@1601 289 float SharedRuntime::fneg(float f) {
bobv@1601 290 return -f;
bobv@1601 291 }
bobv@1601 292
bobv@1601 293 double SharedRuntime::dneg(double f) {
bobv@1601 294 return -f;
bobv@1601 295 }
bobv@1601 296
bobv@1601 297 #endif // __SOFTFP__
bobv@1601 298
bobv@1601 299 #if defined(__SOFTFP__) || defined(E500V2)
bobv@1601 300 // Intrinsics make gcc generate code for these.
bobv@1601 301 double SharedRuntime::dabs(double f) {
bobv@1601 302 return (f <= (double)0.0) ? (double)0.0 - f : f;
bobv@1601 303 }
bobv@1601 304
bobv@1601 305 double SharedRuntime::dsqrt(double f) {
bobv@1601 306 return sqrt(f);
bobv@1601 307 }
bobv@1601 308 #endif
duke@0 309
duke@0 310 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
kvn@508 311 if (g_isnan(x))
kvn@508 312 return 0;
kvn@508 313 if (x >= (jfloat) max_jint)
kvn@508 314 return max_jint;
kvn@508 315 if (x <= (jfloat) min_jint)
kvn@508 316 return min_jint;
kvn@508 317 return (jint) x;
duke@0 318 JRT_END
duke@0 319
duke@0 320
duke@0 321 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
kvn@508 322 if (g_isnan(x))
kvn@508 323 return 0;
kvn@508 324 if (x >= (jfloat) max_jlong)
kvn@508 325 return max_jlong;
kvn@508 326 if (x <= (jfloat) min_jlong)
kvn@508 327 return min_jlong;
kvn@508 328 return (jlong) x;
duke@0 329 JRT_END
duke@0 330
duke@0 331
duke@0 332 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
kvn@508 333 if (g_isnan(x))
kvn@508 334 return 0;
kvn@508 335 if (x >= (jdouble) max_jint)
kvn@508 336 return max_jint;
kvn@508 337 if (x <= (jdouble) min_jint)
kvn@508 338 return min_jint;
kvn@508 339 return (jint) x;
duke@0 340 JRT_END
duke@0 341
duke@0 342
duke@0 343 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
kvn@508 344 if (g_isnan(x))
kvn@508 345 return 0;
kvn@508 346 if (x >= (jdouble) max_jlong)
kvn@508 347 return max_jlong;
kvn@508 348 if (x <= (jdouble) min_jlong)
kvn@508 349 return min_jlong;
kvn@508 350 return (jlong) x;
duke@0 351 JRT_END
duke@0 352
duke@0 353
duke@0 354 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@0 355 return (jfloat)x;
duke@0 356 JRT_END
duke@0 357
duke@0 358
duke@0 359 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@0 360 return (jfloat)x;
duke@0 361 JRT_END
duke@0 362
duke@0 363
duke@0 364 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@0 365 return (jdouble)x;
duke@0 366 JRT_END
duke@0 367
duke@0 368 // Exception handling accross interpreter/compiler boundaries
duke@0 369 //
duke@0 370 // exception_handler_for_return_address(...) returns the continuation address.
duke@0 371 // The continuation address is the entry point of the exception handler of the
duke@0 372 // previous frame depending on the return address.
duke@0 373
twisti@1295 374 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
duke@0 375 assert(frame::verify_return_pc(return_address), "must be a return pc");
duke@0 376
twisti@1368 377 // Reset MethodHandle flag.
twisti@1368 378 thread->set_is_method_handle_return(false);
twisti@1368 379
duke@0 380 // the fastest case first
duke@0 381 CodeBlob* blob = CodeCache::find_blob(return_address);
duke@0 382 if (blob != NULL && blob->is_nmethod()) {
duke@0 383 nmethod* code = (nmethod*)blob;
duke@0 384 assert(code != NULL, "nmethod must be present");
twisti@1295 385 // Check if the return address is a MethodHandle call site.
twisti@1368 386 thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
duke@0 387 // native nmethods don't have exception handlers
duke@0 388 assert(!code->is_native_method(), "no exception handler");
duke@0 389 assert(code->header_begin() != code->exception_begin(), "no exception handler");
duke@0 390 if (code->is_deopt_pc(return_address)) {
duke@0 391 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@0 392 } else {
duke@0 393 return code->exception_begin();
duke@0 394 }
duke@0 395 }
duke@0 396
duke@0 397 // Entry code
duke@0 398 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@0 399 return StubRoutines::catch_exception_entry();
duke@0 400 }
duke@0 401 // Interpreted code
duke@0 402 if (Interpreter::contains(return_address)) {
duke@0 403 return Interpreter::rethrow_exception_entry();
duke@0 404 }
duke@0 405
duke@0 406 // Compiled code
duke@0 407 if (CodeCache::contains(return_address)) {
duke@0 408 CodeBlob* blob = CodeCache::find_blob(return_address);
duke@0 409 if (blob->is_nmethod()) {
duke@0 410 nmethod* code = (nmethod*)blob;
duke@0 411 assert(code != NULL, "nmethod must be present");
twisti@1295 412 // Check if the return address is a MethodHandle call site.
twisti@1368 413 thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
duke@0 414 assert(code->header_begin() != code->exception_begin(), "no exception handler");
duke@0 415 return code->exception_begin();
duke@0 416 }
duke@0 417 if (blob->is_runtime_stub()) {
duke@0 418 ShouldNotReachHere(); // callers are responsible for skipping runtime stub frames
duke@0 419 }
duke@0 420 }
duke@0 421 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
duke@0 422 #ifndef PRODUCT
duke@0 423 { ResourceMark rm;
duke@0 424 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@0 425 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@0 426 tty->print_cr("b) other problem");
duke@0 427 }
duke@0 428 #endif // PRODUCT
duke@0 429 ShouldNotReachHere();
duke@0 430 return NULL;
duke@0 431 }
duke@0 432
duke@0 433
twisti@1295 434 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
twisti@1295 435 return raw_exception_handler_for_return_address(thread, return_address);
duke@0 436 JRT_END
duke@0 437
twisti@1295 438
duke@0 439 address SharedRuntime::get_poll_stub(address pc) {
duke@0 440 address stub;
duke@0 441 // Look up the code blob
duke@0 442 CodeBlob *cb = CodeCache::find_blob(pc);
duke@0 443
duke@0 444 // Should be an nmethod
duke@0 445 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@0 446
duke@0 447 // Look up the relocation information
duke@0 448 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@0 449 "safepoint polling: type must be poll" );
duke@0 450
duke@0 451 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@0 452 "Only polling locations are used for safepoint");
duke@0 453
duke@0 454 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
duke@0 455 if (at_poll_return) {
duke@0 456 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@0 457 "polling page return stub not created yet");
duke@0 458 stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
duke@0 459 } else {
duke@0 460 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@0 461 "polling page safepoint stub not created yet");
duke@0 462 stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
duke@0 463 }
duke@0 464 #ifndef PRODUCT
duke@0 465 if( TraceSafepoint ) {
duke@0 466 char buf[256];
duke@0 467 jio_snprintf(buf, sizeof(buf),
duke@0 468 "... found polling page %s exception at pc = "
duke@0 469 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@0 470 at_poll_return ? "return" : "loop",
duke@0 471 (intptr_t)pc, (intptr_t)stub);
duke@0 472 tty->print_raw_cr(buf);
duke@0 473 }
duke@0 474 #endif // PRODUCT
duke@0 475 return stub;
duke@0 476 }
duke@0 477
duke@0 478
duke@0 479 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
duke@0 480 assert(caller.is_interpreted_frame(), "");
duke@0 481 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@0 482 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
duke@0 483 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
duke@0 484 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@0 485 return result;
duke@0 486 }
duke@0 487
duke@0 488
duke@0 489 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
dcubed@1213 490 if (JvmtiExport::can_post_on_exceptions()) {
duke@0 491 vframeStream vfst(thread, true);
duke@0 492 methodHandle method = methodHandle(thread, vfst.method());
duke@0 493 address bcp = method()->bcp_from(vfst.bci());
duke@0 494 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@0 495 }
duke@0 496 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@0 497 }
duke@0 498
duke@0 499 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
duke@0 500 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@0 501 throw_and_post_jvmti_exception(thread, h_exception);
duke@0 502 }
duke@0 503
dcubed@610 504 // The interpreter code to call this tracing function is only
dcubed@610 505 // called/generated when TraceRedefineClasses has the right bits
dcubed@610 506 // set. Since obsolete methods are never compiled, we don't have
dcubed@610 507 // to modify the compilers to generate calls to this function.
dcubed@610 508 //
dcubed@610 509 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
dcubed@610 510 JavaThread* thread, methodOopDesc* method))
dcubed@610 511 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
dcubed@610 512
dcubed@610 513 if (method->is_obsolete()) {
dcubed@610 514 // We are calling an obsolete method, but this is not necessarily
dcubed@610 515 // an error. Our method could have been redefined just after we
dcubed@610 516 // fetched the methodOop from the constant pool.
dcubed@610 517
dcubed@610 518 // RC_TRACE macro has an embedded ResourceMark
dcubed@610 519 RC_TRACE_WITH_THREAD(0x00001000, thread,
dcubed@610 520 ("calling obsolete method '%s'",
dcubed@610 521 method->name_and_sig_as_C_string()));
dcubed@610 522 if (RC_TRACE_ENABLED(0x00002000)) {
dcubed@610 523 // this option is provided to debug calls to obsolete methods
dcubed@610 524 guarantee(false, "faulting at call to an obsolete method.");
dcubed@610 525 }
dcubed@610 526 }
dcubed@610 527 return 0;
dcubed@610 528 JRT_END
dcubed@610 529
duke@0 530 // ret_pc points into caller; we are returning caller's exception handler
duke@0 531 // for given exception
duke@0 532 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@0 533 bool force_unwind, bool top_frame_only) {
duke@0 534 assert(nm != NULL, "must exist");
duke@0 535 ResourceMark rm;
duke@0 536
duke@0 537 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@0 538 // determine handler bci, if any
duke@0 539 EXCEPTION_MARK;
duke@0 540
duke@0 541 int handler_bci = -1;
duke@0 542 int scope_depth = 0;
duke@0 543 if (!force_unwind) {
duke@0 544 int bci = sd->bci();
duke@0 545 do {
duke@0 546 bool skip_scope_increment = false;
duke@0 547 // exception handler lookup
duke@0 548 KlassHandle ek (THREAD, exception->klass());
duke@0 549 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
duke@0 550 if (HAS_PENDING_EXCEPTION) {
duke@0 551 // We threw an exception while trying to find the exception handler.
duke@0 552 // Transfer the new exception to the exception handle which will
duke@0 553 // be set into thread local storage, and do another lookup for an
duke@0 554 // exception handler for this exception, this time starting at the
duke@0 555 // BCI of the exception handler which caused the exception to be
duke@0 556 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@0 557 // argument to ensure that the correct exception is thrown (4870175).
duke@0 558 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@0 559 CLEAR_PENDING_EXCEPTION;
duke@0 560 if (handler_bci >= 0) {
duke@0 561 bci = handler_bci;
duke@0 562 handler_bci = -1;
duke@0 563 skip_scope_increment = true;
duke@0 564 }
duke@0 565 }
duke@0 566 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@0 567 sd = sd->sender();
duke@0 568 if (sd != NULL) {
duke@0 569 bci = sd->bci();
duke@0 570 }
duke@0 571 ++scope_depth;
duke@0 572 }
duke@0 573 } while (!top_frame_only && handler_bci < 0 && sd != NULL);
duke@0 574 }
duke@0 575
duke@0 576 // found handling method => lookup exception handler
duke@0 577 int catch_pco = ret_pc - nm->instructions_begin();
duke@0 578
duke@0 579 ExceptionHandlerTable table(nm);
duke@0 580 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@0 581 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@0 582 // Allow abbreviated catch tables. The idea is to allow a method
duke@0 583 // to materialize its exceptions without committing to the exact
duke@0 584 // routing of exceptions. In particular this is needed for adding
duke@0 585 // a synthethic handler to unlock monitors when inlining
duke@0 586 // synchonized methods since the unlock path isn't represented in
duke@0 587 // the bytecodes.
duke@0 588 t = table.entry_for(catch_pco, -1, 0);
duke@0 589 }
duke@0 590
never@1378 591 #ifdef COMPILER1
never@1378 592 if (t == NULL && nm->is_compiled_by_c1()) {
never@1378 593 assert(nm->unwind_handler_begin() != NULL, "");
never@1378 594 return nm->unwind_handler_begin();
never@1378 595 }
never@1378 596 #endif
never@1378 597
duke@0 598 if (t == NULL) {
duke@0 599 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@0 600 tty->print_cr(" Exception:");
duke@0 601 exception->print();
duke@0 602 tty->cr();
duke@0 603 tty->print_cr(" Compiled exception table :");
duke@0 604 table.print();
duke@0 605 nm->print_code();
duke@0 606 guarantee(false, "missing exception handler");
duke@0 607 return NULL;
duke@0 608 }
duke@0 609
duke@0 610 return nm->instructions_begin() + t->pco();
duke@0 611 }
duke@0 612
duke@0 613 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@0 614 // These errors occur only at call sites
duke@0 615 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@0 616 JRT_END
duke@0 617
dcubed@16 618 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@16 619 // These errors occur only at call sites
dcubed@16 620 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@16 621 JRT_END
dcubed@16 622
duke@0 623 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@0 624 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@0 625 JRT_END
duke@0 626
duke@0 627 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@0 628 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@0 629 JRT_END
duke@0 630
duke@0 631 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@0 632 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@0 633 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@0 634 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@0 635 JRT_END
duke@0 636
duke@0 637 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@0 638 // We avoid using the normal exception construction in this case because
duke@0 639 // it performs an upcall to Java, and we're already out of stack space.
duke@0 640 klassOop k = SystemDictionary::StackOverflowError_klass();
duke@0 641 oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
duke@0 642 Handle exception (thread, exception_oop);
duke@0 643 if (StackTraceInThrowable) {
duke@0 644 java_lang_Throwable::fill_in_stack_trace(exception);
duke@0 645 }
duke@0 646 throw_and_post_jvmti_exception(thread, exception);
duke@0 647 JRT_END
duke@0 648
duke@0 649 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@0 650 address pc,
duke@0 651 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@0 652 {
duke@0 653 address target_pc = NULL;
duke@0 654
duke@0 655 if (Interpreter::contains(pc)) {
duke@0 656 #ifdef CC_INTERP
duke@0 657 // C++ interpreter doesn't throw implicit exceptions
duke@0 658 ShouldNotReachHere();
duke@0 659 #else
duke@0 660 switch (exception_kind) {
duke@0 661 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@0 662 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@0 663 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@0 664 default: ShouldNotReachHere();
duke@0 665 }
duke@0 666 #endif // !CC_INTERP
duke@0 667 } else {
duke@0 668 switch (exception_kind) {
duke@0 669 case STACK_OVERFLOW: {
duke@0 670 // Stack overflow only occurs upon frame setup; the callee is
duke@0 671 // going to be unwound. Dispatch to a shared runtime stub
duke@0 672 // which will cause the StackOverflowError to be fabricated
duke@0 673 // and processed.
duke@0 674 // For stack overflow in deoptimization blob, cleanup thread.
duke@0 675 if (thread->deopt_mark() != NULL) {
duke@0 676 Deoptimization::cleanup_deopt_info(thread, NULL);
duke@0 677 }
duke@0 678 return StubRoutines::throw_StackOverflowError_entry();
duke@0 679 }
duke@0 680
duke@0 681 case IMPLICIT_NULL: {
duke@0 682 if (VtableStubs::contains(pc)) {
duke@0 683 // We haven't yet entered the callee frame. Fabricate an
duke@0 684 // exception and begin dispatching it in the caller. Since
duke@0 685 // the caller was at a call site, it's safe to destroy all
duke@0 686 // caller-saved registers, as these entry points do.
duke@0 687 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
poonam@465 688
poonam@465 689 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
poonam@465 690 if (vt_stub == NULL) return NULL;
poonam@465 691
duke@0 692 if (vt_stub->is_abstract_method_error(pc)) {
duke@0 693 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
duke@0 694 return StubRoutines::throw_AbstractMethodError_entry();
duke@0 695 } else {
duke@0 696 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@0 697 }
duke@0 698 } else {
duke@0 699 CodeBlob* cb = CodeCache::find_blob(pc);
poonam@465 700
poonam@465 701 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
poonam@465 702 if (cb == NULL) return NULL;
duke@0 703
duke@0 704 // Exception happened in CodeCache. Must be either:
duke@0 705 // 1. Inline-cache check in C2I handler blob,
duke@0 706 // 2. Inline-cache check in nmethod, or
duke@0 707 // 3. Implict null exception in nmethod
duke@0 708
duke@0 709 if (!cb->is_nmethod()) {
twisti@1299 710 guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
poonam@465 711 "exception happened outside interpreter, nmethods and vtable stubs (1)");
duke@0 712 // There is no handler here, so we will simply unwind.
duke@0 713 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@0 714 }
duke@0 715
duke@0 716 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@0 717 nmethod* nm = (nmethod*)cb;
duke@0 718 if (nm->inlinecache_check_contains(pc)) {
duke@0 719 // exception happened inside inline-cache check code
duke@0 720 // => the nmethod is not yet active (i.e., the frame
duke@0 721 // is not set up yet) => use return address pushed by
duke@0 722 // caller => don't push another return address
duke@0 723 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@0 724 }
duke@0 725
duke@0 726 #ifndef PRODUCT
duke@0 727 _implicit_null_throws++;
duke@0 728 #endif
duke@0 729 target_pc = nm->continuation_for_implicit_exception(pc);
never@1250 730 // If there's an unexpected fault, target_pc might be NULL,
never@1250 731 // in which case we want to fall through into the normal
never@1250 732 // error handling code.
duke@0 733 }
duke@0 734
duke@0 735 break; // fall through
duke@0 736 }
duke@0 737
duke@0 738
duke@0 739 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@0 740 nmethod* nm = CodeCache::find_nmethod(pc);
duke@0 741 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@0 742 #ifndef PRODUCT
duke@0 743 _implicit_div0_throws++;
duke@0 744 #endif
duke@0 745 target_pc = nm->continuation_for_implicit_exception(pc);
never@1250 746 // If there's an unexpected fault, target_pc might be NULL,
never@1250 747 // in which case we want to fall through into the normal
never@1250 748 // error handling code.
duke@0 749 break; // fall through
duke@0 750 }
duke@0 751
duke@0 752 default: ShouldNotReachHere();
duke@0 753 }
duke@0 754
duke@0 755 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@0 756
duke@0 757 // for AbortVMOnException flag
duke@0 758 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@0 759 if (exception_kind == IMPLICIT_NULL) {
duke@0 760 Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@0 761 } else {
duke@0 762 Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@0 763 }
duke@0 764 return target_pc;
duke@0 765 }
duke@0 766
duke@0 767 ShouldNotReachHere();
duke@0 768 return NULL;
duke@0 769 }
duke@0 770
duke@0 771
duke@0 772 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@0 773 {
duke@0 774 THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
duke@0 775 }
duke@0 776 JNI_END
duke@0 777
duke@0 778
duke@0 779 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@0 780 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@0 781 }
duke@0 782
duke@0 783
duke@0 784 #ifndef PRODUCT
duke@0 785 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@0 786 const frame f = thread->last_frame();
duke@0 787 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@0 788 #ifndef PRODUCT
duke@0 789 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@0 790 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@0 791 #endif // !PRODUCT
duke@0 792 return preserve_this_value;
duke@0 793 JRT_END
duke@0 794 #endif // !PRODUCT
duke@0 795
duke@0 796
duke@0 797 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@0 798 os::yield_all(attempts);
duke@0 799 JRT_END
duke@0 800
duke@0 801
duke@0 802 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@0 803 assert(obj->is_oop(), "must be a valid oop");
duke@0 804 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
duke@0 805 instanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@0 806 JRT_END
duke@0 807
duke@0 808
duke@0 809 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@0 810 if (thread != NULL) {
duke@0 811 if (thread->is_Java_thread()) {
duke@0 812 oop obj = ((JavaThread*)thread)->threadObj();
duke@0 813 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@0 814 }
duke@0 815 }
duke@0 816 return 0;
duke@0 817 }
duke@0 818
duke@0 819 /**
duke@0 820 * This function ought to be a void function, but cannot be because
duke@0 821 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@0 822 * 6254741. Once that is fixed we can remove the dummy return value.
duke@0 823 */
duke@0 824 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
duke@0 825 return dtrace_object_alloc_base(Thread::current(), o);
duke@0 826 }
duke@0 827
duke@0 828 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
duke@0 829 assert(DTraceAllocProbes, "wrong call");
duke@0 830 Klass* klass = o->blueprint();
duke@0 831 int size = o->size();
duke@0 832 symbolOop name = klass->name();
duke@0 833 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@0 834 name->bytes(), name->utf8_length(), size * HeapWordSize);
duke@0 835 return 0;
duke@0 836 }
duke@0 837
duke@0 838 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
duke@0 839 JavaThread* thread, methodOopDesc* method))
duke@0 840 assert(DTraceMethodProbes, "wrong call");
duke@0 841 symbolOop kname = method->klass_name();
duke@0 842 symbolOop name = method->name();
duke@0 843 symbolOop sig = method->signature();
duke@0 844 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@0 845 kname->bytes(), kname->utf8_length(),
duke@0 846 name->bytes(), name->utf8_length(),
duke@0 847 sig->bytes(), sig->utf8_length());
duke@0 848 return 0;
duke@0 849 JRT_END
duke@0 850
duke@0 851 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
duke@0 852 JavaThread* thread, methodOopDesc* method))
duke@0 853 assert(DTraceMethodProbes, "wrong call");
duke@0 854 symbolOop kname = method->klass_name();
duke@0 855 symbolOop name = method->name();
duke@0 856 symbolOop sig = method->signature();
duke@0 857 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@0 858 kname->bytes(), kname->utf8_length(),
duke@0 859 name->bytes(), name->utf8_length(),
duke@0 860 sig->bytes(), sig->utf8_length());
duke@0 861 return 0;
duke@0 862 JRT_END
duke@0 863
duke@0 864
duke@0 865 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@0 866 // for a call current in progress, i.e., arguments has been pushed on stack
duke@0 867 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@0 868 // vtable updates, etc. Caller frame must be compiled.
duke@0 869 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@0 870 ResourceMark rm(THREAD);
duke@0 871
duke@0 872 // last java frame on stack (which includes native call frames)
duke@0 873 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@0 874
duke@0 875 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@0 876 }
duke@0 877
duke@0 878
duke@0 879 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@0 880 // for a call current in progress, i.e., arguments has been pushed on stack
duke@0 881 // but callee has not been invoked yet. Caller frame must be compiled.
duke@0 882 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@0 883 vframeStream& vfst,
duke@0 884 Bytecodes::Code& bc,
duke@0 885 CallInfo& callinfo, TRAPS) {
duke@0 886 Handle receiver;
duke@0 887 Handle nullHandle; //create a handy null handle for exception returns
duke@0 888
duke@0 889 assert(!vfst.at_end(), "Java frame must exist");
duke@0 890
duke@0 891 // Find caller and bci from vframe
duke@0 892 methodHandle caller (THREAD, vfst.method());
duke@0 893 int bci = vfst.bci();
duke@0 894
duke@0 895 // Find bytecode
duke@0 896 Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
jrose@1522 897 bc = bytecode->java_code();
duke@0 898 int bytecode_index = bytecode->index();
duke@0 899
duke@0 900 // Find receiver for non-static call
duke@0 901 if (bc != Bytecodes::_invokestatic) {
duke@0 902 // This register map must be update since we need to find the receiver for
duke@0 903 // compiled frames. The receiver might be in a register.
duke@0 904 RegisterMap reg_map2(thread);
duke@0 905 frame stubFrame = thread->last_frame();
duke@0 906 // Caller-frame is a compiled frame
duke@0 907 frame callerFrame = stubFrame.sender(&reg_map2);
duke@0 908
duke@0 909 methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
duke@0 910 if (callee.is_null()) {
duke@0 911 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@0 912 }
duke@0 913 // Retrieve from a compiled argument list
duke@0 914 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@0 915
duke@0 916 if (receiver.is_null()) {
duke@0 917 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@0 918 }
duke@0 919 }
duke@0 920
duke@0 921 // Resolve method. This is parameterized by bytecode.
duke@0 922 constantPoolHandle constants (THREAD, caller->constants());
duke@0 923 assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@0 924 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@0 925
duke@0 926 #ifdef ASSERT
duke@0 927 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
twisti@1135 928 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
duke@0 929 assert(receiver.not_null(), "should have thrown exception");
duke@0 930 KlassHandle receiver_klass (THREAD, receiver->klass());
duke@0 931 klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@0 932 // klass is already loaded
duke@0 933 KlassHandle static_receiver_klass (THREAD, rk);
duke@0 934 assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
duke@0 935 if (receiver_klass->oop_is_instance()) {
duke@0 936 if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@0 937 tty->print_cr("ERROR: Klass not yet initialized!!");
duke@0 938 receiver_klass.print();
duke@0 939 }
duke@0 940 assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@0 941 }
duke@0 942 }
duke@0 943 #endif
duke@0 944
duke@0 945 return receiver;
duke@0 946 }
duke@0 947
duke@0 948 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@0 949 ResourceMark rm(THREAD);
duke@0 950 // We need first to check if any Java activations (compiled, interpreted)
duke@0 951 // exist on the stack since last JavaCall. If not, we need
duke@0 952 // to get the target method from the JavaCall wrapper.
duke@0 953 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@0 954 methodHandle callee_method;
duke@0 955 if (vfst.at_end()) {
duke@0 956 // No Java frames were found on stack since we did the JavaCall.
duke@0 957 // Hence the stack can only contain an entry_frame. We need to
duke@0 958 // find the target method from the stub frame.
duke@0 959 RegisterMap reg_map(thread, false);
duke@0 960 frame fr = thread->last_frame();
duke@0 961 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@0 962 fr = fr.sender(&reg_map);
duke@0 963 assert(fr.is_entry_frame(), "must be");
duke@0 964 // fr is now pointing to the entry frame.
duke@0 965 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@0 966 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@0 967 } else {
duke@0 968 Bytecodes::Code bc;
duke@0 969 CallInfo callinfo;
duke@0 970 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@0 971 callee_method = callinfo.selected_method();
duke@0 972 }
duke@0 973 assert(callee_method()->is_method(), "must be");
duke@0 974 return callee_method;
duke@0 975 }
duke@0 976
duke@0 977 // Resolves a call.
duke@0 978 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@0 979 bool is_virtual,
duke@0 980 bool is_optimized, TRAPS) {
duke@0 981 methodHandle callee_method;
duke@0 982 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@0 983 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@0 984 int retry_count = 0;
duke@0 985 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
never@1142 986 callee_method->method_holder() != SystemDictionary::Object_klass()) {
duke@0 987 // If has a pending exception then there is no need to re-try to
duke@0 988 // resolve this method.
duke@0 989 // If the method has been redefined, we need to try again.
duke@0 990 // Hack: we have no way to update the vtables of arrays, so don't
duke@0 991 // require that java.lang.Object has been updated.
duke@0 992
duke@0 993 // It is very unlikely that method is redefined more than 100 times
duke@0 994 // in the middle of resolve. If it is looping here more than 100 times
duke@0 995 // means then there could be a bug here.
duke@0 996 guarantee((retry_count++ < 100),
duke@0 997 "Could not resolve to latest version of redefined method");
duke@0 998 // method is redefined in the middle of resolve so re-try.
duke@0 999 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@0 1000 }
duke@0 1001 }
duke@0 1002 return callee_method;
duke@0 1003 }
duke@0 1004
duke@0 1005 // Resolves a call. The compilers generate code for calls that go here
duke@0 1006 // and are patched with the real destination of the call.
duke@0 1007 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@0 1008 bool is_virtual,
duke@0 1009 bool is_optimized, TRAPS) {
duke@0 1010
duke@0 1011 ResourceMark rm(thread);
duke@0 1012 RegisterMap cbl_map(thread, false);
duke@0 1013 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@0 1014
twisti@1295 1015 CodeBlob* caller_cb = caller_frame.cb();
twisti@1295 1016 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
twisti@1295 1017 nmethod* caller_nm = caller_cb->as_nmethod_or_null();
duke@0 1018 // make sure caller is not getting deoptimized
duke@0 1019 // and removed before we are done with it.
duke@0 1020 // CLEANUP - with lazy deopt shouldn't need this lock
twisti@1295 1021 nmethodLocker caller_lock(caller_nm);
duke@0 1022
duke@0 1023
duke@0 1024 // determine call info & receiver
duke@0 1025 // note: a) receiver is NULL for static calls
duke@0 1026 // b) an exception is thrown if receiver is NULL for non-static calls
duke@0 1027 CallInfo call_info;
duke@0 1028 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@0 1029 Handle receiver = find_callee_info(thread, invoke_code,
duke@0 1030 call_info, CHECK_(methodHandle()));
duke@0 1031 methodHandle callee_method = call_info.selected_method();
duke@0 1032
duke@0 1033 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
duke@0 1034 ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
duke@0 1035
duke@0 1036 #ifndef PRODUCT
duke@0 1037 // tracing/debugging/statistics
duke@0 1038 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@0 1039 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@0 1040 (&_resolve_static_ctr);
duke@0 1041 Atomic::inc(addr);
duke@0 1042
duke@0 1043 if (TraceCallFixup) {
duke@0 1044 ResourceMark rm(thread);
duke@0 1045 tty->print("resolving %s%s (%s) call to",
duke@0 1046 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@0 1047 Bytecodes::name(invoke_code));
duke@0 1048 callee_method->print_short_name(tty);
duke@0 1049 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@0 1050 }
duke@0 1051 #endif
duke@0 1052
twisti@1295 1053 // JSR 292
twisti@1295 1054 // If the resolved method is a MethodHandle invoke target the call
twisti@1295 1055 // site must be a MethodHandle call site.
twisti@1295 1056 if (callee_method->is_method_handle_invoke()) {
twisti@1295 1057 assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
twisti@1295 1058 }
twisti@1295 1059
duke@0 1060 // Compute entry points. This might require generation of C2I converter
duke@0 1061 // frames, so we cannot be holding any locks here. Furthermore, the
duke@0 1062 // computation of the entry points is independent of patching the call. We
duke@0 1063 // always return the entry-point, but we only patch the stub if the call has
duke@0 1064 // not been deoptimized. Return values: For a virtual call this is an
duke@0 1065 // (cached_oop, destination address) pair. For a static call/optimized
duke@0 1066 // virtual this is just a destination address.
duke@0 1067
duke@0 1068 StaticCallInfo static_call_info;
duke@0 1069 CompiledICInfo virtual_call_info;
duke@0 1070
duke@0 1071 // Make sure the callee nmethod does not get deoptimized and removed before
duke@0 1072 // we are done patching the code.
twisti@1295 1073 nmethod* callee_nm = callee_method->code();
twisti@1295 1074 nmethodLocker nl_callee(callee_nm);
duke@0 1075 #ifdef ASSERT
twisti@1295 1076 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
duke@0 1077 #endif
duke@0 1078
duke@0 1079 if (is_virtual) {
duke@0 1080 assert(receiver.not_null(), "sanity check");
duke@0 1081 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
duke@0 1082 KlassHandle h_klass(THREAD, receiver->klass());
duke@0 1083 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@0 1084 is_optimized, static_bound, virtual_call_info,
duke@0 1085 CHECK_(methodHandle()));
duke@0 1086 } else {
duke@0 1087 // static call
duke@0 1088 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@0 1089 }
duke@0 1090
duke@0 1091 // grab lock, check for deoptimization and potentially patch caller
duke@0 1092 {
duke@0 1093 MutexLocker ml_patch(CompiledIC_lock);
duke@0 1094
duke@0 1095 // Now that we are ready to patch if the methodOop was redefined then
duke@0 1096 // don't update call site and let the caller retry.
duke@0 1097
duke@0 1098 if (!callee_method->is_old()) {
duke@0 1099 #ifdef ASSERT
duke@0 1100 // We must not try to patch to jump to an already unloaded method.
duke@0 1101 if (dest_entry_point != 0) {
duke@0 1102 assert(CodeCache::find_blob(dest_entry_point) != NULL,
duke@0 1103 "should not unload nmethod while locked");
duke@0 1104 }
duke@0 1105 #endif
duke@0 1106 if (is_virtual) {
duke@0 1107 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@0 1108 if (inline_cache->is_clean()) {
duke@0 1109 inline_cache->set_to_monomorphic(virtual_call_info);
duke@0 1110 }
duke@0 1111 } else {
duke@0 1112 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@0 1113 if (ssc->is_clean()) ssc->set(static_call_info);
duke@0 1114 }
duke@0 1115 }
duke@0 1116
duke@0 1117 } // unlock CompiledIC_lock
duke@0 1118
duke@0 1119 return callee_method;
duke@0 1120 }
duke@0 1121
duke@0 1122
duke@0 1123 // Inline caches exist only in compiled code
duke@0 1124 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@0 1125 #ifdef ASSERT
duke@0 1126 RegisterMap reg_map(thread, false);
duke@0 1127 frame stub_frame = thread->last_frame();
duke@0 1128 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@0 1129 frame caller_frame = stub_frame.sender(&reg_map);
duke@0 1130 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
duke@0 1131 #endif /* ASSERT */
duke@0 1132
duke@0 1133 methodHandle callee_method;
duke@0 1134 JRT_BLOCK
duke@0 1135 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
duke@0 1136 // Return methodOop through TLS
duke@0 1137 thread->set_vm_result(callee_method());
duke@0 1138 JRT_BLOCK_END
duke@0 1139 // return compiled code entry point after potential safepoints
duke@0 1140 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@0 1141 return callee_method->verified_code_entry();
duke@0 1142 JRT_END
duke@0 1143
duke@0 1144
duke@0 1145 // Handle call site that has been made non-entrant
duke@0 1146 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@0 1147 // 6243940 We might end up in here if the callee is deoptimized
duke@0 1148 // as we race to call it. We don't want to take a safepoint if
duke@0 1149 // the caller was interpreted because the caller frame will look
duke@0 1150 // interpreted to the stack walkers and arguments are now
duke@0 1151 // "compiled" so it is much better to make this transition
duke@0 1152 // invisible to the stack walking code. The i2c path will
duke@0 1153 // place the callee method in the callee_target. It is stashed
duke@0 1154 // there because if we try and find the callee by normal means a
duke@0 1155 // safepoint is possible and have trouble gc'ing the compiled args.
duke@0 1156 RegisterMap reg_map(thread, false);
duke@0 1157 frame stub_frame = thread->last_frame();
duke@0 1158 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@0 1159 frame caller_frame = stub_frame.sender(&reg_map);
twisti@1135 1160
twisti@1135 1161 // MethodHandle invokes don't have a CompiledIC and should always
twisti@1135 1162 // simply redispatch to the callee_target.
twisti@1135 1163 address sender_pc = caller_frame.pc();
twisti@1135 1164 CodeBlob* sender_cb = caller_frame.cb();
twisti@1135 1165 nmethod* sender_nm = sender_cb->as_nmethod_or_null();
twisti@1204 1166 bool is_mh_invoke_via_adapter = false; // Direct c2c call or via adapter?
twisti@1204 1167 if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
twisti@1204 1168 // If the callee_target is set, then we have come here via an i2c
twisti@1204 1169 // adapter.
twisti@1204 1170 methodOop callee = thread->callee_target();
twisti@1204 1171 if (callee != NULL) {
twisti@1204 1172 assert(callee->is_method(), "sanity");
twisti@1204 1173 is_mh_invoke_via_adapter = true;
twisti@1204 1174 }
twisti@1204 1175 }
twisti@1135 1176
twisti@1135 1177 if (caller_frame.is_interpreted_frame() ||
twisti@1204 1178 caller_frame.is_entry_frame() ||
twisti@1204 1179 is_mh_invoke_via_adapter) {
duke@0 1180 methodOop callee = thread->callee_target();
duke@0 1181 guarantee(callee != NULL && callee->is_method(), "bad handshake");
duke@0 1182 thread->set_vm_result(callee);
duke@0 1183 thread->set_callee_target(NULL);
duke@0 1184 return callee->get_c2i_entry();
duke@0 1185 }
duke@0 1186
duke@0 1187 // Must be compiled to compiled path which is safe to stackwalk
duke@0 1188 methodHandle callee_method;
duke@0 1189 JRT_BLOCK
duke@0 1190 // Force resolving of caller (if we called from compiled frame)
duke@0 1191 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
duke@0 1192 thread->set_vm_result(callee_method());
duke@0 1193 JRT_BLOCK_END
duke@0 1194 // return compiled code entry point after potential safepoints
duke@0 1195 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@0 1196 return callee_method->verified_code_entry();
duke@0 1197 JRT_END
duke@0 1198
duke@0 1199
duke@0 1200 // resolve a static call and patch code
duke@0 1201 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@0 1202 methodHandle callee_method;
duke@0 1203 JRT_BLOCK
duke@0 1204 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
duke@0 1205 thread->set_vm_result(callee_method());
duke@0 1206 JRT_BLOCK_END
duke@0 1207 // return compiled code entry point after potential safepoints
duke@0 1208 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@0 1209 return callee_method->verified_code_entry();
duke@0 1210 JRT_END
duke@0 1211
duke@0 1212
duke@0 1213 // resolve virtual call and update inline cache to monomorphic
duke@0 1214 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@0 1215 methodHandle callee_method;
duke@0 1216 JRT_BLOCK
duke@0 1217 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
duke@0 1218 thread->set_vm_result(callee_method());
duke@0 1219 JRT_BLOCK_END
duke@0 1220 // return compiled code entry point after potential safepoints
duke@0 1221 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@0 1222 return callee_method->verified_code_entry();
duke@0 1223 JRT_END
duke@0 1224
duke@0 1225
duke@0 1226 // Resolve a virtual call that can be statically bound (e.g., always
duke@0 1227 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@0 1228 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@0 1229 methodHandle callee_method;
duke@0 1230 JRT_BLOCK
duke@0 1231 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
duke@0 1232 thread->set_vm_result(callee_method());
duke@0 1233 JRT_BLOCK_END
duke@0 1234 // return compiled code entry point after potential safepoints
duke@0 1235 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@0 1236 return callee_method->verified_code_entry();
duke@0 1237 JRT_END
duke@0 1238
duke@0 1239
duke@0 1240
duke@0 1241
duke@0 1242
duke@0 1243 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@0 1244 ResourceMark rm(thread);
duke@0 1245 CallInfo call_info;
duke@0 1246 Bytecodes::Code bc;
duke@0 1247
duke@0 1248 // receiver is NULL for static calls. An exception is thrown for NULL
duke@0 1249 // receivers for non-static calls
duke@0 1250 Handle receiver = find_callee_info(thread, bc, call_info,
duke@0 1251 CHECK_(methodHandle()));
duke@0 1252 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@0 1253 // If we fell thru to below we would think that the site was going megamorphic
duke@0 1254 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@0 1255 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@0 1256 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@0 1257 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@0 1258 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@0 1259 // never to miss again. I don't believe C2 will produce code like this but if it
duke@0 1260 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@0 1261 //
duke@0 1262 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@0 1263 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@0 1264 if (TraceCallFixup) {
duke@0 1265 RegisterMap reg_map(thread, false);
duke@0 1266 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@0 1267 ResourceMark rm(thread);
duke@0 1268 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@0 1269 callee_method->print_short_name(tty);
duke@0 1270 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@0 1271 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@0 1272 }
duke@0 1273 return callee_method;
duke@0 1274 }
duke@0 1275
duke@0 1276 methodHandle callee_method = call_info.selected_method();
duke@0 1277
duke@0 1278 bool should_be_mono = false;
duke@0 1279
duke@0 1280 #ifndef PRODUCT
duke@0 1281 Atomic::inc(&_ic_miss_ctr);
duke@0 1282
duke@0 1283 // Statistics & Tracing
duke@0 1284 if (TraceCallFixup) {
duke@0 1285 ResourceMark rm(thread);
duke@0 1286 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@0 1287 callee_method->print_short_name(tty);
duke@0 1288 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@0 1289 }
duke@0 1290
duke@0 1291 if (ICMissHistogram) {
duke@0 1292 MutexLocker m(VMStatistic_lock);
duke@0 1293 RegisterMap reg_map(thread, false);
duke@0 1294 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@0 1295 // produce statistics under the lock
duke@0 1296 trace_ic_miss(f.pc());
duke@0 1297 }
duke@0 1298 #endif
duke@0 1299
duke@0 1300 // install an event collector so that when a vtable stub is created the
duke@0 1301 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@0 1302 // event can't be posted when the stub is created as locks are held
duke@0 1303 // - instead the event will be deferred until the event collector goes
duke@0 1304 // out of scope.
duke@0 1305 JvmtiDynamicCodeEventCollector event_collector;
duke@0 1306
duke@0 1307 // Update inline cache to megamorphic. Skip update if caller has been
duke@0 1308 // made non-entrant or we are called from interpreted.
duke@0 1309 { MutexLocker ml_patch (CompiledIC_lock);
duke@0 1310 RegisterMap reg_map(thread, false);
duke@0 1311 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@0 1312 CodeBlob* cb = caller_frame.cb();
duke@0 1313 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
duke@0 1314 // Not a non-entrant nmethod, so find inline_cache
duke@0 1315 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@0 1316 bool should_be_mono = false;
duke@0 1317 if (inline_cache->is_optimized()) {
duke@0 1318 if (TraceCallFixup) {
duke@0 1319 ResourceMark rm(thread);
duke@0 1320 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@0 1321 callee_method->print_short_name(tty);
duke@0 1322 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@0 1323 }
duke@0 1324 should_be_mono = true;
duke@0 1325 } else {
duke@0 1326 compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
duke@0 1327 if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
duke@0 1328
duke@0 1329 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@0 1330 // This isn't a real miss. We must have seen that compiled code
duke@0 1331 // is now available and we want the call site converted to a
duke@0 1332 // monomorphic compiled call site.
duke@0 1333 // We can't assert for callee_method->code() != NULL because it
duke@0 1334 // could have been deoptimized in the meantime
duke@0 1335 if (TraceCallFixup) {
duke@0 1336 ResourceMark rm(thread);
duke@0 1337 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@0 1338 callee_method->print_short_name(tty);
duke@0 1339 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@0 1340 }
duke@0 1341 should_be_mono = true;
duke@0 1342 }
duke@0 1343 }
duke@0 1344 }
duke@0 1345
duke@0 1346 if (should_be_mono) {
duke@0 1347
duke@0 1348 // We have a path that was monomorphic but was going interpreted
duke@0 1349 // and now we have (or had) a compiled entry. We correct the IC
duke@0 1350 // by using a new icBuffer.
duke@0 1351 CompiledICInfo info;
duke@0 1352 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@0 1353 inline_cache->compute_monomorphic_entry(callee_method,
duke@0 1354 receiver_klass,
duke@0 1355 inline_cache->is_optimized(),
duke@0 1356 false,
duke@0 1357 info, CHECK_(methodHandle()));
duke@0 1358 inline_cache->set_to_monomorphic(info);
duke@0 1359 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
duke@0 1360 // Change to megamorphic
duke@0 1361 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
duke@0 1362 } else {
duke@0 1363 // Either clean or megamorphic
duke@0 1364 }
duke@0 1365 }
duke@0 1366 } // Release CompiledIC_lock
duke@0 1367
duke@0 1368 return callee_method;
duke@0 1369 }
duke@0 1370
duke@0 1371 //
duke@0 1372 // Resets a call-site in compiled code so it will get resolved again.
duke@0 1373 // This routines handles both virtual call sites, optimized virtual call
duke@0 1374 // sites, and static call sites. Typically used to change a call sites
duke@0 1375 // destination from compiled to interpreted.
duke@0 1376 //
duke@0 1377 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@0 1378 ResourceMark rm(thread);
duke@0 1379 RegisterMap reg_map(thread, false);
duke@0 1380 frame stub_frame = thread->last_frame();
duke@0 1381 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@0 1382 frame caller = stub_frame.sender(&reg_map);
duke@0 1383
duke@0 1384 // Do nothing if the frame isn't a live compiled frame.
duke@0 1385 // nmethod could be deoptimized by the time we get here
duke@0 1386 // so no update to the caller is needed.
duke@0 1387
duke@0 1388 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@0 1389
duke@0 1390 address pc = caller.pc();
duke@0 1391 Events::log("update call-site at pc " INTPTR_FORMAT, pc);
duke@0 1392
duke@0 1393 // Default call_addr is the location of the "basic" call.
duke@0 1394 // Determine the address of the call we a reresolving. With
duke@0 1395 // Inline Caches we will always find a recognizable call.
duke@0 1396 // With Inline Caches disabled we may or may not find a
duke@0 1397 // recognizable call. We will always find a call for static
duke@0 1398 // calls and for optimized virtual calls. For vanilla virtual
duke@0 1399 // calls it depends on the state of the UseInlineCaches switch.
duke@0 1400 //
duke@0 1401 // With Inline Caches disabled we can get here for a virtual call
duke@0 1402 // for two reasons:
duke@0 1403 // 1 - calling an abstract method. The vtable for abstract methods
duke@0 1404 // will run us thru handle_wrong_method and we will eventually
duke@0 1405 // end up in the interpreter to throw the ame.
duke@0 1406 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@0 1407 // call and between the time we fetch the entry address and
duke@0 1408 // we jump to it the target gets deoptimized. Similar to 1
duke@0 1409 // we will wind up in the interprter (thru a c2i with c2).
duke@0 1410 //
duke@0 1411 address call_addr = NULL;
duke@0 1412 {
duke@0 1413 // Get call instruction under lock because another thread may be
duke@0 1414 // busy patching it.
duke@0 1415 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@0 1416 // Location of call instruction
duke@0 1417 if (NativeCall::is_call_before(pc)) {
duke@0 1418 NativeCall *ncall = nativeCall_before(pc);
duke@0 1419 call_addr = ncall->instruction_address();
duke@0 1420 }
duke@0 1421 }
duke@0 1422
duke@0 1423 // Check for static or virtual call
duke@0 1424 bool is_static_call = false;
duke@0 1425 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@0 1426 // Make sure nmethod doesn't get deoptimized and removed until
duke@0 1427 // this is done with it.
duke@0 1428 // CLEANUP - with lazy deopt shouldn't need this lock
duke@0 1429 nmethodLocker nmlock(caller_nm);
duke@0 1430
duke@0 1431 if (call_addr != NULL) {
duke@0 1432 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@0 1433 int ret = iter.next(); // Get item
duke@0 1434 if (ret) {
duke@0 1435 assert(iter.addr() == call_addr, "must find call");
duke@0 1436 if (iter.type() == relocInfo::static_call_type) {
duke@0 1437 is_static_call = true;
duke@0 1438 } else {
duke@0 1439 assert(iter.type() == relocInfo::virtual_call_type ||
duke@0 1440 iter.type() == relocInfo::opt_virtual_call_type
duke@0 1441 , "unexpected relocInfo. type");
duke@0 1442 }
duke@0 1443 } else {
duke@0 1444 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@0 1445 }
duke@0 1446
duke@0 1447 // Cleaning the inline cache will force a new resolve. This is more robust
duke@0 1448 // than directly setting it to the new destination, since resolving of calls
duke@0 1449 // is always done through the same code path. (experience shows that it
duke@0 1450 // leads to very hard to track down bugs, if an inline cache gets updated
duke@0 1451 // to a wrong method). It should not be performance critical, since the
duke@0 1452 // resolve is only done once.
duke@0 1453
duke@0 1454 MutexLocker ml(CompiledIC_lock);
duke@0 1455 //
duke@0 1456 // We do not patch the call site if the nmethod has been made non-entrant
duke@0 1457 // as it is a waste of time
duke@0 1458 //
duke@0 1459 if (caller_nm->is_in_use()) {
duke@0 1460 if (is_static_call) {
duke@0 1461 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
duke@0 1462 ssc->set_to_clean();
duke@0 1463 } else {
duke@0 1464 // compiled, dispatched call (which used to call an interpreted method)
duke@0 1465 CompiledIC* inline_cache = CompiledIC_at(call_addr);
duke@0 1466 inline_cache->set_to_clean();
duke@0 1467 }
duke@0 1468 }
duke@0 1469 }
duke@0 1470
duke@0 1471 }
duke@0 1472
duke@0 1473 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@0 1474
duke@0 1475
duke@0 1476 #ifndef PRODUCT
duke@0 1477 Atomic::inc(&_wrong_method_ctr);
duke@0 1478
duke@0 1479 if (TraceCallFixup) {
duke@0 1480 ResourceMark rm(thread);
duke@0 1481 tty->print("handle_wrong_method reresolving call to");
duke@0 1482 callee_method->print_short_name(tty);
duke@0 1483 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@0 1484 }
duke@0 1485 #endif
duke@0 1486
duke@0 1487 return callee_method;
duke@0 1488 }
duke@0 1489
duke@0 1490 // ---------------------------------------------------------------------------
duke@0 1491 // We are calling the interpreter via a c2i. Normally this would mean that
duke@0 1492 // we were called by a compiled method. However we could have lost a race
duke@0 1493 // where we went int -> i2c -> c2i and so the caller could in fact be
twisti@1205 1494 // interpreted. If the caller is compiled we attempt to patch the caller
duke@0 1495 // so he no longer calls into the interpreter.
duke@0 1496 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
duke@0 1497 methodOop moop(method);
duke@0 1498
duke@0 1499 address entry_point = moop->from_compiled_entry();
duke@0 1500
duke@0 1501 // It's possible that deoptimization can occur at a call site which hasn't
duke@0 1502 // been resolved yet, in which case this function will be called from
duke@0 1503 // an nmethod that has been patched for deopt and we can ignore the
duke@0 1504 // request for a fixup.
duke@0 1505 // Also it is possible that we lost a race in that from_compiled_entry
duke@0 1506 // is now back to the i2c in that case we don't need to patch and if
duke@0 1507 // we did we'd leap into space because the callsite needs to use
duke@0 1508 // "to interpreter" stub in order to load up the methodOop. Don't
duke@0 1509 // ask me how I know this...
duke@0 1510
duke@0 1511 CodeBlob* cb = CodeCache::find_blob(caller_pc);
twisti@1205 1512 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
twisti@1205 1513 return;
twisti@1205 1514 }
twisti@1205 1515
twisti@1205 1516 // The check above makes sure this is a nmethod.
twisti@1205 1517 nmethod* nm = cb->as_nmethod_or_null();
twisti@1205 1518 assert(nm, "must be");
twisti@1205 1519
twisti@1205 1520 // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
twisti@1205 1521 // to implement MethodHandle actions.
twisti@1205 1522 if (nm->is_method_handle_return(caller_pc)) {
duke@0 1523 return;
duke@0 1524 }
duke@0 1525
duke@0 1526 // There is a benign race here. We could be attempting to patch to a compiled
duke@0 1527 // entry point at the same time the callee is being deoptimized. If that is
duke@0 1528 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@0 1529 // call site with the same old data. clear_code will set code() to NULL
duke@0 1530 // at the end of it. If we happen to see that NULL then we can skip trying
duke@0 1531 // to patch. If we hit the window where the callee has a c2i in the
duke@0 1532 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@0 1533 // and patch the code with the same old data. Asi es la vida.
duke@0 1534
duke@0 1535 if (moop->code() == NULL) return;
duke@0 1536
twisti@1205 1537 if (nm->is_in_use()) {
duke@0 1538
duke@0 1539 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@0 1540 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@0 1541 if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
duke@0 1542 NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
duke@0 1543 //
duke@0 1544 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@0 1545 // virtual call. Because the resolvee uses the verified entry it may then
duke@0 1546 // see compiled code and attempt to patch the site by calling us. This would
duke@0 1547 // then incorrectly convert the call site to optimized and its downhill from
duke@0 1548 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@0 1549 // just made a call site that could be megamorphic into a monomorphic site
duke@0 1550 // for the rest of its life! Just another racing bug in the life of
duke@0 1551 // fixup_callers_callsite ...
duke@0 1552 //
twisti@1483 1553 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
duke@0 1554 iter.next();
duke@0 1555 assert(iter.has_current(), "must have a reloc at java call site");
duke@0 1556 relocInfo::relocType typ = iter.reloc()->type();
duke@0 1557 if ( typ != relocInfo::static_call_type &&
duke@0 1558 typ != relocInfo::opt_virtual_call_type &&
duke@0 1559 typ != relocInfo::static_stub_type) {
duke@0 1560 return;
duke@0 1561 }
duke@0 1562 address destination = call->destination();
duke@0 1563 if (destination != entry_point) {
duke@0 1564 CodeBlob* callee = CodeCache::find_blob(destination);
duke@0 1565 // callee == cb seems weird. It means calling interpreter thru stub.
duke@0 1566 if (callee == cb || callee->is_adapter_blob()) {
duke@0 1567 // static call or optimized virtual
duke@0 1568 if (TraceCallFixup) {
twisti@1204 1569 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@0 1570 moop->print_short_name(tty);
duke@0 1571 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@0 1572 }
duke@0 1573 call->set_destination_mt_safe(entry_point);
duke@0 1574 } else {
duke@0 1575 if (TraceCallFixup) {
duke@0 1576 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@0 1577 moop->print_short_name(tty);
duke@0 1578 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@0 1579 }
duke@0 1580 // assert is too strong could also be resolve destinations.
duke@0 1581 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@0 1582 }
duke@0 1583 } else {
duke@0 1584 if (TraceCallFixup) {
twisti@1204 1585 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@0 1586 moop->print_short_name(tty);
duke@0 1587 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@0 1588 }
duke@0 1589 }
duke@0 1590 }
duke@0 1591 }
duke@0 1592
duke@0 1593 IRT_END
duke@0 1594
duke@0 1595
duke@0 1596 // same as JVM_Arraycopy, but called directly from compiled code
duke@0 1597 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@0 1598 oopDesc* dest, jint dest_pos,
duke@0 1599 jint length,
duke@0 1600 JavaThread* thread)) {
duke@0 1601 #ifndef PRODUCT
duke@0 1602 _slow_array_copy_ctr++;
duke@0 1603 #endif
duke@0 1604 // Check if we have null pointers
duke@0 1605 if (src == NULL || dest == NULL) {
duke@0 1606 THROW(vmSymbols::java_lang_NullPointerException());
duke@0 1607 }
duke@0 1608 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@0 1609 // even though the copy_array API also performs dynamic checks to ensure
duke@0 1610 // that src and dest are truly arrays (and are conformable).
duke@0 1611 // The copy_array mechanism is awkward and could be removed, but
duke@0 1612 // the compilers don't call this function except as a last resort,
duke@0 1613 // so it probably doesn't matter.
duke@0 1614 Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos,
duke@0 1615 (arrayOopDesc*)dest, dest_pos,
duke@0 1616 length, thread);
duke@0 1617 }
duke@0 1618 JRT_END
duke@0 1619
duke@0 1620 char* SharedRuntime::generate_class_cast_message(
duke@0 1621 JavaThread* thread, const char* objName) {
duke@0 1622
duke@0 1623 // Get target class name from the checkcast instruction
duke@0 1624 vframeStream vfst(thread, true);
duke@0 1625 assert(!vfst.at_end(), "Java frame must exist");
duke@0 1626 Bytecode_checkcast* cc = Bytecode_checkcast_at(
duke@0 1627 vfst.method()->bcp_from(vfst.bci()));
duke@0 1628 Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
duke@0 1629 cc->index(), thread));
duke@0 1630 return generate_class_cast_message(objName, targetKlass->external_name());
duke@0 1631 }
duke@0 1632
jrose@710 1633 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
jrose@710 1634 oopDesc* required,
jrose@710 1635 oopDesc* actual) {
jrose@710 1636 assert(EnableMethodHandles, "");
jrose@710 1637 oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
jrose@710 1638 if (singleKlass != NULL) {
jrose@710 1639 const char* objName = "argument or return value";
jrose@710 1640 if (actual != NULL) {
jrose@710 1641 // be flexible about the junk passed in:
jrose@710 1642 klassOop ak = (actual->is_klass()
jrose@710 1643 ? (klassOop)actual
jrose@710 1644 : actual->klass());
jrose@710 1645 objName = Klass::cast(ak)->external_name();
jrose@710 1646 }
jrose@710 1647 Klass* targetKlass = Klass::cast(required->is_klass()
jrose@710 1648 ? (klassOop)required
jrose@710 1649 : java_lang_Class::as_klassOop(required));
jrose@710 1650 return generate_class_cast_message(objName, targetKlass->external_name());
jrose@710 1651 } else {
jrose@710 1652 // %%% need to get the MethodType string, without messing around too much
jrose@710 1653 // Get a signature from the invoke instruction
jrose@710 1654 const char* mhName = "method handle";
jrose@710 1655 const char* targetType = "the required signature";
jrose@710 1656 vframeStream vfst(thread, true);
jrose@710 1657 if (!vfst.at_end()) {
jrose@710 1658 Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
jrose@710 1659 methodHandle target;
jrose@710 1660 {
jrose@710 1661 EXCEPTION_MARK;
jrose@710 1662 target = call->static_target(THREAD);
jrose@710 1663 if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
jrose@710 1664 }
jrose@710 1665 if (target.not_null()
jrose@710 1666 && target->is_method_handle_invoke()
jrose@710 1667 && required == target->method_handle_type()) {
jrose@710 1668 targetType = target->signature()->as_C_string();
jrose@710 1669 }
jrose@710 1670 }
jrose@710 1671 klassOop kignore; int fignore;
jrose@710 1672 methodOop actual_method = MethodHandles::decode_method(actual,
jrose@710 1673 kignore, fignore);
jrose@710 1674 if (actual_method != NULL) {
jrose@1427 1675 if (methodOopDesc::is_method_handle_invoke_name(actual_method->name()))
jrose@710 1676 mhName = "$";
jrose@710 1677 else
jrose@710 1678 mhName = actual_method->signature()->as_C_string();
jrose@710 1679 if (mhName[0] == '$')
jrose@710 1680 mhName = actual_method->signature()->as_C_string();
jrose@710 1681 }
jrose@710 1682 return generate_class_cast_message(mhName, targetType,
jrose@710 1683 " cannot be called as ");
jrose@710 1684 }
jrose@710 1685 }
jrose@710 1686
jrose@710 1687 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
jrose@710 1688 oopDesc* required) {
jrose@710 1689 if (required == NULL) return NULL;
never@1142 1690 if (required->klass() == SystemDictionary::Class_klass())
jrose@710 1691 return required;
jrose@710 1692 if (required->is_klass())
jrose@710 1693 return Klass::cast(klassOop(required))->java_mirror();
jrose@710 1694 return NULL;
jrose@710 1695 }
jrose@710 1696
jrose@710 1697
duke@0 1698 char* SharedRuntime::generate_class_cast_message(
jrose@710 1699 const char* objName, const char* targetKlassName, const char* desc) {
duke@0 1700 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@0 1701
kamg@53 1702 char* message = NEW_RESOURCE_ARRAY(char, msglen);
duke@0 1703 if (NULL == message) {
kamg@53 1704 // Shouldn't happen, but don't cause even more problems if it does
duke@0 1705 message = const_cast<char*>(objName);
duke@0 1706 } else {
duke@0 1707 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@0 1708 }
duke@0 1709 return message;
duke@0 1710 }
duke@0 1711
duke@0 1712 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@0 1713 (void) JavaThread::current()->reguard_stack();
duke@0 1714 JRT_END
duke@0 1715
duke@0 1716
duke@0 1717 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@0 1718 #ifndef PRODUCT
duke@0 1719 int SharedRuntime::_monitor_enter_ctr=0;
duke@0 1720 #endif
duke@0 1721 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@0 1722 oop obj(_obj);
duke@0 1723 #ifndef PRODUCT
duke@0 1724 _monitor_enter_ctr++; // monitor enter slow
duke@0 1725 #endif
duke@0 1726 if (PrintBiasedLockingStatistics) {
duke@0 1727 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@0 1728 }
duke@0 1729 Handle h_obj(THREAD, obj);
duke@0 1730 if (UseBiasedLocking) {
duke@0 1731 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@0 1732 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@0 1733 } else {
duke@0 1734 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@0 1735 }
duke@0 1736 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@0 1737 JRT_END
duke@0 1738
duke@0 1739 #ifndef PRODUCT
duke@0 1740 int SharedRuntime::_monitor_exit_ctr=0;
duke@0 1741 #endif
duke@0 1742 // Handles the uncommon cases of monitor unlocking in compiled code
duke@0 1743 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@0 1744 oop obj(_obj);
duke@0 1745 #ifndef PRODUCT
duke@0 1746 _monitor_exit_ctr++; // monitor exit slow
duke@0 1747 #endif
duke@0 1748 Thread* THREAD = JavaThread::current();
duke@0 1749 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@0 1750 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@0 1751 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@0 1752 #undef MIGHT_HAVE_PENDING
duke@0 1753 #ifdef MIGHT_HAVE_PENDING
duke@0 1754 // Save and restore any pending_exception around the exception mark.
duke@0 1755 // While the slow_exit must not throw an exception, we could come into
duke@0 1756 // this routine with one set.
duke@0 1757 oop pending_excep = NULL;
duke@0 1758 const char* pending_file;
duke@0 1759 int pending_line;
duke@0 1760 if (HAS_PENDING_EXCEPTION) {
duke@0 1761 pending_excep = PENDING_EXCEPTION;
duke@0 1762 pending_file = THREAD->exception_file();
duke@0 1763 pending_line = THREAD->exception_line();
duke@0 1764 CLEAR_PENDING_EXCEPTION;
duke@0 1765 }
duke@0 1766 #endif /* MIGHT_HAVE_PENDING */
duke@0 1767
duke@0 1768 {
duke@0 1769 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@0 1770 EXCEPTION_MARK;
duke@0 1771 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@0 1772 }
duke@0 1773
duke@0 1774 #ifdef MIGHT_HAVE_PENDING
duke@0 1775 if (pending_excep != NULL) {
duke@0 1776 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@0 1777 }
duke@0 1778 #endif /* MIGHT_HAVE_PENDING */
duke@0 1779 JRT_END
duke@0 1780
duke@0 1781 #ifndef PRODUCT
duke@0 1782
duke@0 1783 void SharedRuntime::print_statistics() {
duke@0 1784 ttyLocker ttyl;
duke@0 1785 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@0 1786
duke@0 1787 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@0 1788 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@0 1789 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@0 1790
duke@0 1791 SharedRuntime::print_ic_miss_histogram();
duke@0 1792
duke@0 1793 if (CountRemovableExceptions) {
duke@0 1794 if (_nof_removable_exceptions > 0) {
duke@0 1795 Unimplemented(); // this counter is not yet incremented
duke@0 1796 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@0 1797 }
duke@0 1798 }
duke@0 1799
duke@0 1800 // Dump the JRT_ENTRY counters
duke@0 1801 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@0 1802 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@0 1803 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@0 1804 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@0 1805 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@0 1806 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@0 1807 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@0 1808
duke@0 1809 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@0 1810 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@0 1811 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@0 1812 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@0 1813 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@0 1814
duke@0 1815 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@0 1816 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@0 1817 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@0 1818 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@0 1819 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@0 1820 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@0 1821 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@0 1822 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@0 1823 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@0 1824 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@0 1825 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@0 1826 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@0 1827 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@0 1828 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@0 1829 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@0 1830 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@0 1831
never@1187 1832 AdapterHandlerLibrary::print_statistics();
never@1187 1833
duke@0 1834 if (xtty != NULL) xtty->tail("statistics");
duke@0 1835 }
duke@0 1836
duke@0 1837 inline double percent(int x, int y) {
duke@0 1838 return 100.0 * x / MAX2(y, 1);
duke@0 1839 }
duke@0 1840
duke@0 1841 class MethodArityHistogram {
duke@0 1842 public:
duke@0 1843 enum { MAX_ARITY = 256 };
duke@0 1844 private:
duke@0 1845 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@0 1846 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@0 1847 static int _max_arity; // max. arity seen
duke@0 1848 static int _max_size; // max. arg size seen
duke@0 1849
duke@0 1850 static void add_method_to_histogram(nmethod* nm) {
duke@0 1851 methodOop m = nm->method();
duke@0 1852 ArgumentCount args(m->signature());
duke@0 1853 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@0 1854 int argsize = m->size_of_parameters();
duke@0 1855 arity = MIN2(arity, MAX_ARITY-1);
duke@0 1856 argsize = MIN2(argsize, MAX_ARITY-1);
duke@0 1857 int count = nm->method()->compiled_invocation_count();
duke@0 1858 _arity_histogram[arity] += count;
duke@0 1859 _size_histogram[argsize] += count;
duke@0 1860 _max_arity = MAX2(_max_arity, arity);
duke@0 1861 _max_size = MAX2(_max_size, argsize);
duke@0 1862 }
duke@0 1863
duke@0 1864 void print_histogram_helper(int n, int* histo, const char* name) {
duke@0 1865 const int N = MIN2(5, n);
duke@0 1866 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@0 1867 double sum = 0;
duke@0 1868 double weighted_sum = 0;
duke@0 1869 int i;
duke@0 1870 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@0 1871 double rest = sum;
duke@0 1872 double percent = sum / 100;
duke@0 1873 for (i = 0; i <= N; i++) {
duke@0 1874 rest -= histo[i];
duke@0 1875 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@0 1876 }
duke@0 1877 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@0 1878 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@0 1879 }
duke@0 1880
duke@0 1881 void print_histogram() {
duke@0 1882 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@0 1883 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@0 1884 tty->print_cr("\nSame for parameter size (in words):");
duke@0 1885 print_histogram_helper(_max_size, _size_histogram, "size");
duke@0 1886 tty->cr();
duke@0 1887 }
duke@0 1888
duke@0 1889 public:
duke@0 1890 MethodArityHistogram() {
duke@0 1891 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@0 1892 _max_arity = _max_size = 0;
duke@0 1893 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@0 1894 CodeCache::nmethods_do(add_method_to_histogram);
duke@0 1895 print_histogram();
duke@0 1896 }
duke@0 1897 };
duke@0 1898
duke@0 1899 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@0 1900 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@0 1901 int MethodArityHistogram::_max_arity;
duke@0 1902 int MethodArityHistogram::_max_size;
duke@0 1903
duke@0 1904 void SharedRuntime::print_call_statistics(int comp_total) {
duke@0 1905 tty->print_cr("Calls from compiled code:");
duke@0 1906 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@0 1907 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@0 1908 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@0 1909 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@0 1910 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@0 1911 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@0 1912 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@0 1913 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@0 1914 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@0 1915 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@0 1916 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@0 1917 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@0 1918 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@0 1919 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@0 1920 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@0 1921 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@0 1922 tty->cr();
duke@0 1923 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@0 1924 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@0 1925 tty->print_cr(" %% in nested categories are relative to their category");
duke@0 1926 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@0 1927 tty->cr();
duke@0 1928
duke@0 1929 MethodArityHistogram h;
duke@0 1930 }
duke@0 1931 #endif
duke@0 1932
duke@0 1933
never@1187 1934 // A simple wrapper class around the calling convention information
never@1187 1935 // that allows sharing of adapters for the same calling convention.
never@1187 1936 class AdapterFingerPrint : public CHeapObj {
never@1187 1937 private:
never@1187 1938 union {
never@1207 1939 int _compact[3];
never@1207 1940 int* _fingerprint;
never@1187 1941 } _value;
never@1207 1942 int _length; // A negative length indicates the fingerprint is in the compact form,
never@1207 1943 // Otherwise _value._fingerprint is the array.
never@1187 1944
never@1207 1945 // Remap BasicTypes that are handled equivalently by the adapters.
never@1207 1946 // These are correct for the current system but someday it might be
never@1207 1947 // necessary to make this mapping platform dependent.
never@1207 1948 static BasicType adapter_encoding(BasicType in) {
never@1207 1949 assert((~0xf & in) == 0, "must fit in 4 bits");
never@1207 1950 switch(in) {
never@1207 1951 case T_BOOLEAN:
never@1207 1952 case T_BYTE:
never@1207 1953 case T_SHORT:
never@1207 1954 case T_CHAR:
never@1207 1955 // There are all promoted to T_INT in the calling convention
never@1207 1956 return T_INT;
never@1207 1957
never@1207 1958 case T_OBJECT:
never@1207 1959 case T_ARRAY:
never@1207 1960 #ifdef _LP64
twisti@1426 1961 return T_LONG;
never@1207 1962 #else
twisti@1426 1963 return T_INT;
never@1207 1964 #endif
never@1207 1965
never@1207 1966 case T_INT:
never@1207 1967 case T_LONG:
never@1207 1968 case T_FLOAT:
never@1207 1969 case T_DOUBLE:
never@1207 1970 case T_VOID:
never@1207 1971 return in;
never@1207 1972
never@1207 1973 default:
never@1207 1974 ShouldNotReachHere();
never@1207 1975 return T_CONFLICT;
never@1187 1976 }
never@1187 1977 }
never@1187 1978
never@1207 1979 public:
never@1207 1980 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
never@1207 1981 // The fingerprint is based on the BasicType signature encoded
never@1207 1982 // into an array of ints with four entries per int.
never@1207 1983 int* ptr;
never@1207 1984 int len = (total_args_passed + 3) >> 2;
never@1207 1985 if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
never@1207 1986 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
never@1207 1987 // Storing the signature encoded as signed chars hits about 98%
never@1207 1988 // of the time.
never@1207 1989 _length = -len;
never@1207 1990 ptr = _value._compact;
never@1207 1991 } else {
never@1207 1992 _length = len;
never@1207 1993 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
never@1207 1994 ptr = _value._fingerprint;
never@1207 1995 }
never@1207 1996
never@1207 1997 // Now pack the BasicTypes with 4 per int
never@1207 1998 int sig_index = 0;
never@1207 1999 for (int index = 0; index < len; index++) {
never@1207 2000 int value = 0;
never@1207 2001 for (int byte = 0; byte < 4; byte++) {
never@1207 2002 if (sig_index < total_args_passed) {
never@1207 2003 value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
never@1207 2004 }
never@1207 2005 }
never@1207 2006 ptr[index] = value;
never@1207 2007 }
never@1187 2008 }
never@1187 2009
never@1187 2010 ~AdapterFingerPrint() {
never@1187 2011 if (_length > 0) {
never@1187 2012 FREE_C_HEAP_ARRAY(int, _value._fingerprint);
never@1187 2013 }
never@1187 2014 }
never@1187 2015
never@1207 2016 int value(int index) {
never@1187 2017 if (_length < 0) {
never@1187 2018 return _value._compact[index];
never@1187 2019 }
never@1187 2020 return _value._fingerprint[index];
never@1187 2021 }
never@1187 2022 int length() {
never@1187 2023 if (_length < 0) return -_length;
never@1187 2024 return _length;
never@1187 2025 }
never@1187 2026
never@1187 2027 bool is_compact() {
never@1187 2028 return _length <= 0;
never@1187 2029 }
never@1187 2030
never@1187 2031 unsigned int compute_hash() {
never@1207 2032 int hash = 0;
never@1187 2033 for (int i = 0; i < length(); i++) {
never@1207 2034 int v = value(i);
never@1187 2035 hash = (hash << 8) ^ v ^ (hash >> 5);
never@1187 2036 }
never@1187 2037 return (unsigned int)hash;
never@1187 2038 }
never@1187 2039
never@1187 2040 const char* as_string() {
never@1187 2041 stringStream st;
never@1187 2042 for (int i = 0; i < length(); i++) {
never@1187 2043 st.print(PTR_FORMAT, value(i));
never@1187 2044 }
never@1187 2045 return st.as_string();
never@1187 2046 }
never@1187 2047
never@1187 2048 bool equals(AdapterFingerPrint* other) {
never@1187 2049 if (other->_length != _length) {
never@1187 2050 return false;
never@1187 2051 }
never@1187 2052 if (_length < 0) {
never@1207 2053 return _value._compact[0] == other->_value._compact[0] &&
never@1207 2054 _value._compact[1] == other->_value._compact[1] &&
never@1207 2055 _value._compact[2] == other->_value._compact[2];
never@1187 2056 } else {
never@1187 2057 for (int i = 0; i < _length; i++) {
never@1187 2058 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
never@1187 2059 return false;
never@1187 2060 }
never@1187 2061 }
never@1187 2062 }
never@1187 2063 return true;
never@1187 2064 }
never@1187 2065 };
never@1187 2066
never@1187 2067
never@1187 2068 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
never@1187 2069 class AdapterHandlerTable : public BasicHashtable {
never@1187 2070 friend class AdapterHandlerTableIterator;
never@1187 2071
never@1187 2072 private:
never@1187 2073
kvn@1263 2074 #ifndef PRODUCT
never@1187 2075 static int _lookups; // number of calls to lookup
never@1187 2076 static int _buckets; // number of buckets checked
never@1187 2077 static int _equals; // number of buckets checked with matching hash
never@1187 2078 static int _hits; // number of successful lookups
never@1187 2079 static int _compact; // number of equals calls with compact signature
never@1187 2080 #endif
never@1187 2081
never@1187 2082 AdapterHandlerEntry* bucket(int i) {
never@1187 2083 return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
never@1187 2084 }
never@1187 2085
never@1187 2086 public:
never@1187 2087 AdapterHandlerTable()
never@1187 2088 : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
never@1187 2089
never@1187 2090 // Create a new entry suitable for insertion in the table
never@1187 2091 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
never@1187 2092 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
never@1187 2093 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1187 2094 return entry;
never@1187 2095 }
never@1187 2096
never@1187 2097 // Insert an entry into the table
never@1187 2098 void add(AdapterHandlerEntry* entry) {
never@1187 2099 int index = hash_to_index(entry->hash());
never@1187 2100 add_entry(index, entry);
never@1187 2101 }
never@1187 2102
never@1207 2103 void free_entry(AdapterHandlerEntry* entry) {
never@1207 2104 entry->deallocate();
never@1207 2105 BasicHashtable::free_entry(entry);
never@1207 2106 }
never@1207 2107
never@1187 2108 // Find a entry with the same fingerprint if it exists
never@1207 2109 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
kvn@1263 2110 NOT_PRODUCT(_lookups++);
never@1207 2111 AdapterFingerPrint fp(total_args_passed, sig_bt);
never@1187 2112 unsigned int hash = fp.compute_hash();
never@1187 2113 int index = hash_to_index(hash);
never@1187 2114 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
kvn@1263 2115 NOT_PRODUCT(_buckets++);
never@1187 2116 if (e->hash() == hash) {
kvn@1263 2117 NOT_PRODUCT(_equals++);
never@1187 2118 if (fp.equals(e->fingerprint())) {
kvn@1263 2119 #ifndef PRODUCT
never@1187 2120 if (fp.is_compact()) _compact++;
never@1187 2121 _hits++;
never@1187 2122 #endif
never@1187 2123 return e;
never@1187 2124 }
never@1187 2125 }
never@1187 2126 }
never@1187 2127 return NULL;
never@1187 2128 }
never@1187 2129
kvn@1263 2130 #ifndef PRODUCT
never@1187 2131 void print_statistics() {
never@1187 2132 ResourceMark rm;
never@1187 2133 int longest = 0;
never@1187 2134 int empty = 0;
never@1187 2135 int total = 0;
never@1187 2136 int nonempty = 0;
never@1187 2137 for (int index = 0; index < table_size(); index++) {
never@1187 2138 int count = 0;
never@1187 2139 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
never@1187 2140 count++;
never@1187 2141 }
never@1187 2142 if (count != 0) nonempty++;
never@1187 2143 if (count == 0) empty++;
never@1187 2144 if (count > longest) longest = count;
never@1187 2145 total += count;
never@1187 2146 }
never@1187 2147 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
never@1187 2148 empty, longest, total, total / (double)nonempty);
never@1187 2149 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
never@1187 2150 _lookups, _buckets, _equals, _hits, _compact);
kvn@1263 2151 }
never@1187 2152 #endif
never@1187 2153 };
never@1187 2154
never@1187 2155
kvn@1263 2156 #ifndef PRODUCT
never@1187 2157
never@1187 2158 int AdapterHandlerTable::_lookups;
never@1187 2159 int AdapterHandlerTable::_buckets;
never@1187 2160 int AdapterHandlerTable::_equals;
never@1187 2161 int AdapterHandlerTable::_hits;
never@1187 2162 int AdapterHandlerTable::_compact;
never@1187 2163
bobv@1601 2164 #endif
bobv@1601 2165
never@1187 2166 class AdapterHandlerTableIterator : public StackObj {
never@1187 2167 private:
never@1187 2168 AdapterHandlerTable* _table;
never@1187 2169 int _index;
never@1187 2170 AdapterHandlerEntry* _current;
never@1187 2171
never@1187 2172 void scan() {
never@1187 2173 while (_index < _table->table_size()) {
never@1187 2174 AdapterHandlerEntry* a = _table->bucket(_index);
twisti@1484 2175 _index++;
never@1187 2176 if (a != NULL) {
never@1187 2177 _current = a;
never@1187 2178 return;
never@1187 2179 }
never@1187 2180 }
never@1187 2181 }
never@1187 2182
never@1187 2183 public:
never@1187 2184 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
never@1187 2185 scan();
never@1187 2186 }
never@1187 2187 bool has_next() {
never@1187 2188 return _current != NULL;
never@1187 2189 }
never@1187 2190 AdapterHandlerEntry* next() {
never@1187 2191 if (_current != NULL) {
never@1187 2192 AdapterHandlerEntry* result = _current;
never@1187 2193 _current = _current->next();
never@1187 2194 if (_current == NULL) scan();
never@1187 2195 return result;
never@1187 2196 } else {
never@1187 2197 return NULL;
never@1187 2198 }
never@1187 2199 }
never@1187 2200 };
never@1187 2201
never@1187 2202
duke@0 2203 // ---------------------------------------------------------------------------
duke@0 2204 // Implementation of AdapterHandlerLibrary
never@1187 2205 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
never@1187 2206 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
duke@0 2207 const int AdapterHandlerLibrary_size = 16*K;
kvn@742 2208 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
kvn@742 2209
kvn@742 2210 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
kvn@742 2211 // Should be called only when AdapterHandlerLibrary_lock is active.
kvn@742 2212 if (_buffer == NULL) // Initialize lazily
kvn@742 2213 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
kvn@742 2214 return _buffer;
kvn@742 2215 }
duke@0 2216
duke@0 2217 void AdapterHandlerLibrary::initialize() {
never@1187 2218 if (_adapters != NULL) return;
never@1187 2219 _adapters = new AdapterHandlerTable();
duke@0 2220
duke@0 2221 // Create a special handler for abstract methods. Abstract methods
duke@0 2222 // are never compiled so an i2c entry is somewhat meaningless, but
duke@0 2223 // fill it in with something appropriate just in case. Pass handle
duke@0 2224 // wrong method for the c2i transitions.
duke@0 2225 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
never@1187 2226 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
never@1187 2227 StubRoutines::throw_AbstractMethodError_entry(),
never@1187 2228 wrong_method, wrong_method);
duke@0 2229 }
duke@0 2230
never@1187 2231 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
never@1187 2232 address i2c_entry,
never@1187 2233 address c2i_entry,
never@1187 2234 address c2i_unverified_entry) {
never@1187 2235 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1187 2236 }
never@1187 2237
never@1187 2238 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
never@1187 2239 // Use customized signature handler. Need to lock around updates to
never@1187 2240 // the AdapterHandlerTable (it is not safe for concurrent readers
never@1187 2241 // and a single writer: this could be fixed if it becomes a
never@1187 2242 // problem).
duke@0 2243
duke@0 2244 // Get the address of the ic_miss handlers before we grab the
duke@0 2245 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@0 2246 // was caused by the initialization of the stubs happening
duke@0 2247 // while we held the lock and then notifying jvmti while
duke@0 2248 // holding it. This just forces the initialization to be a little
duke@0 2249 // earlier.
duke@0 2250 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@0 2251 assert(ic_miss != NULL, "must have handler");
duke@0 2252
never@1187 2253 ResourceMark rm;
never@1187 2254
kvn@742 2255 NOT_PRODUCT(int code_size);
twisti@1299 2256 AdapterBlob* B = NULL;
kvn@742 2257 AdapterHandlerEntry* entry = NULL;
never@1187 2258 AdapterFingerPrint* fingerprint = NULL;
duke@0 2259 {
duke@0 2260 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@0 2261 // make sure data structure is initialized
duke@0 2262 initialize();
duke@0 2263
duke@0 2264 if (method->is_abstract()) {
never@1187 2265 return _abstract_method_handler;
duke@0 2266 }
duke@0 2267
never@1187 2268 // Fill in the signature array, for the calling-convention call.
never@1187 2269 int total_args_passed = method->size_of_parameters(); // All args on stack
never@1187 2270
never@1187 2271 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
never@1187 2272 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
never@1187 2273 int i = 0;
never@1187 2274 if (!method->is_static()) // Pass in receiver first
never@1187 2275 sig_bt[i++] = T_OBJECT;
never@1187 2276 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
never@1187 2277 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
never@1187 2278 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
never@1187 2279 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
never@1187 2280 }
never@1187 2281 assert(i == total_args_passed, "");
never@1187 2282
never@1207 2283 // Lookup method signature's fingerprint
never@1207 2284 entry = _adapters->lookup(total_args_passed, sig_bt);
never@1187 2285
never@1207 2286 #ifdef ASSERT
never@1207 2287 AdapterHandlerEntry* shared_entry = NULL;
never@1207 2288 if (VerifyAdapterSharing && entry != NULL) {
never@1207 2289 shared_entry = entry;
never@1207 2290 entry = NULL;
never@1207 2291 }
never@1207 2292 #endif
never@1207 2293
never@1187 2294 if (entry != NULL) {
never@1187 2295 return entry;
duke@0 2296 }
duke@0 2297
never@1207 2298 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
never@1207 2299 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
never@1207 2300
never@1187 2301 // Make a C heap allocated version of the fingerprint to store in the adapter
never@1207 2302 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
never@1187 2303
duke@0 2304 // Create I2C & C2I handlers
duke@0 2305
twisti@1299 2306 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@742 2307 if (buf != NULL) {
kvn@742 2308 CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
kvn@742 2309 short buffer_locs[20];
kvn@742 2310 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
kvn@742 2311 sizeof(buffer_locs)/sizeof(relocInfo));
kvn@742 2312 MacroAssembler _masm(&buffer);
duke@0 2313
kvn@742 2314 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
kvn@742 2315 total_args_passed,
kvn@742 2316 comp_args_on_stack,
kvn@742 2317 sig_bt,
never@1187 2318 regs,
never@1187 2319 fingerprint);
kvn@742 2320
never@1207 2321 #ifdef ASSERT
never@1207 2322 if (VerifyAdapterSharing) {
never@1207 2323 if (shared_entry != NULL) {
never@1207 2324 assert(shared_entry->compare_code(buf->instructions_begin(), buffer.code_size(), total_args_passed, sig_bt),
never@1207 2325 "code must match");
never@1207 2326 // Release the one just created and return the original
never@1207 2327 _adapters->free_entry(entry);
never@1207 2328 return shared_entry;
never@1207 2329 } else {
never@1207 2330 entry->save_code(buf->instructions_begin(), buffer.code_size(), total_args_passed, sig_bt);
never@1207 2331 }
never@1207 2332 }
never@1207 2333 #endif
never@1207 2334
twisti@1299 2335 B = AdapterBlob::create(&buffer);
kvn@742 2336 NOT_PRODUCT(code_size = buffer.code_size());
duke@0 2337 }
kvn@28 2338 if (B == NULL) {
kvn@28 2339 // CodeCache is full, disable compilation
kvn@28 2340 // Ought to log this but compile log is only per compile thread
kvn@28 2341 // and we're some non descript Java thread.
kvn@1202 2342 MutexUnlocker mu(AdapterHandlerLibrary_lock);
kvn@1202 2343 CompileBroker::handle_full_code_cache();
never@1187 2344 return NULL; // Out of CodeCache space
kvn@28 2345 }
duke@0 2346 entry->relocate(B->instructions_begin());
duke@0 2347 #ifndef PRODUCT
duke@0 2348 // debugging suppport
duke@0 2349 if (PrintAdapterHandlers) {
duke@0 2350 tty->cr();
never@1187 2351 tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
never@1187 2352 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
never@1187 2353 method->signature()->as_C_string(), fingerprint->as_string(), code_size );
duke@0 2354 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
kvn@742 2355 Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + code_size);
duke@0 2356 }
duke@0 2357 #endif
duke@0 2358
never@1187 2359 _adapters->add(entry);
duke@0 2360 }
duke@0 2361 // Outside of the lock
duke@0 2362 if (B != NULL) {
duke@0 2363 char blob_id[256];
duke@0 2364 jio_snprintf(blob_id,
duke@0 2365 sizeof(blob_id),
never@1187 2366 "%s(%s)@" PTR_FORMAT,
twisti@1299 2367 B->name(),
never@1187 2368 fingerprint->as_string(),
duke@0 2369 B->instructions_begin());
duke@0 2370 Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
duke@0 2371
duke@0 2372 if (JvmtiExport::should_post_dynamic_code_generated()) {
duke@0 2373 JvmtiExport::post_dynamic_code_generated(blob_id,
duke@0 2374 B->instructions_begin(),
duke@0 2375 B->instructions_end());
duke@0 2376 }
duke@0 2377 }
never@1187 2378 return entry;
duke@0 2379 }
duke@0 2380
duke@0 2381 void AdapterHandlerEntry::relocate(address new_base) {
duke@0 2382 ptrdiff_t delta = new_base - _i2c_entry;
duke@0 2383 _i2c_entry += delta;
duke@0 2384 _c2i_entry += delta;
duke@0 2385 _c2i_unverified_entry += delta;
duke@0 2386 }
duke@0 2387
never@1207 2388
never@1207 2389 void AdapterHandlerEntry::deallocate() {
never@1207 2390 delete _fingerprint;
never@1207 2391 #ifdef ASSERT
never@1207 2392 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
never@1207 2393 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
never@1207 2394 #endif
never@1207 2395 }
never@1207 2396
never@1207 2397
never@1207 2398 #ifdef ASSERT
never@1207 2399 // Capture the code before relocation so that it can be compared
never@1207 2400 // against other versions. If the code is captured after relocation
never@1207 2401 // then relative instructions won't be equivalent.
never@1207 2402 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1207 2403 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
never@1207 2404 _code_length = length;
never@1207 2405 memcpy(_saved_code, buffer, length);
never@1207 2406 _total_args_passed = total_args_passed;
never@1207 2407 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
never@1207 2408 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
never@1207 2409 }
never@1207 2410
never@1207 2411
never@1207 2412 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1207 2413 if (length != _code_length) {
never@1207 2414 return false;
never@1207 2415 }
never@1207 2416 for (int i = 0; i < length; i++) {
never@1207 2417 if (buffer[i] != _saved_code[i]) {
never@1207 2418 return false;
never@1207 2419 }
never@1207 2420 }
never@1207 2421 return true;
never@1207 2422 }
never@1207 2423 #endif
never@1207 2424
never@1207 2425
duke@0 2426 // Create a native wrapper for this native method. The wrapper converts the
duke@0 2427 // java compiled calling convention to the native convention, handlizes
duke@0 2428 // arguments, and transitions to native. On return from the native we transition
duke@0 2429 // back to java blocking if a safepoint is in progress.
duke@0 2430 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
duke@0 2431 ResourceMark rm;
duke@0 2432 nmethod* nm = NULL;
duke@0 2433
duke@0 2434 if (PrintCompilation) {
duke@0 2435 ttyLocker ttyl;
duke@0 2436 tty->print("--- n%s ", (method->is_synchronized() ? "s" : " "));
duke@0 2437 method->print_short_name(tty);
duke@0 2438 if (method->is_static()) {
duke@0 2439 tty->print(" (static)");
duke@0 2440 }
duke@0 2441 tty->cr();
duke@0 2442 }
duke@0 2443
duke@0 2444 assert(method->has_native_function(), "must have something valid to call!");
duke@0 2445
duke@0 2446 {
duke@0 2447 // perform the work while holding the lock, but perform any printing outside the lock
duke@0 2448 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@0 2449 // See if somebody beat us to it
duke@0 2450 nm = method->code();
duke@0 2451 if (nm) {
duke@0 2452 return nm;
duke@0 2453 }
duke@0 2454
kvn@742 2455 ResourceMark rm;
duke@0 2456
kvn@742 2457 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@742 2458 if (buf != NULL) {
kvn@742 2459 CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
kvn@742 2460 double locs_buf[20];
kvn@742 2461 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@742 2462 MacroAssembler _masm(&buffer);
duke@0 2463
kvn@742 2464 // Fill in the signature array, for the calling-convention call.
kvn@742 2465 int total_args_passed = method->size_of_parameters();
kvn@742 2466
kvn@742 2467 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
kvn@742 2468 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
kvn@742 2469 int i=0;
kvn@742 2470 if( !method->is_static() ) // Pass in receiver first
kvn@742 2471 sig_bt[i++] = T_OBJECT;
kvn@742 2472 SignatureStream ss(method->signature());
kvn@742 2473 for( ; !ss.at_return_type(); ss.next()) {
kvn@742 2474 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
kvn@742 2475 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
kvn@742 2476 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kvn@742 2477 }
kvn@742 2478 assert( i==total_args_passed, "" );
kvn@742 2479 BasicType ret_type = ss.type();
kvn@742 2480
kvn@742 2481 // Now get the compiled-Java layout as input arguments
kvn@742 2482 int comp_args_on_stack;
kvn@742 2483 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
kvn@742 2484
kvn@742 2485 // Generate the compiled-to-native wrapper code
kvn@742 2486 nm = SharedRuntime::generate_native_wrapper(&_masm,
kvn@742 2487 method,
kvn@742 2488 total_args_passed,
kvn@742 2489 comp_args_on_stack,
kvn@742 2490 sig_bt,regs,
kvn@742 2491 ret_type);
duke@0 2492 }
duke@0 2493 }
duke@0 2494
duke@0 2495 // Must unlock before calling set_code
duke@0 2496 // Install the generated code.
duke@0 2497 if (nm != NULL) {
duke@0 2498 method->set_code(method, nm);
duke@0 2499 nm->post_compiled_method_load_event();
duke@0 2500 } else {
duke@0 2501 // CodeCache is full, disable compilation
duke@0 2502 // Ought to log this but compile log is only per compile thread
duke@0 2503 // and we're some non descript Java thread.
kvn@1202 2504 MutexUnlocker mu(AdapterHandlerLibrary_lock);
kvn@1202 2505 CompileBroker::handle_full_code_cache();
duke@0 2506 }
duke@0 2507 return nm;
duke@0 2508 }
duke@0 2509
kamg@116 2510 #ifdef HAVE_DTRACE_H
kamg@116 2511 // Create a dtrace nmethod for this method. The wrapper converts the
kamg@116 2512 // java compiled calling convention to the native convention, makes a dummy call
kamg@116 2513 // (actually nops for the size of the call instruction, which become a trap if
kamg@116 2514 // probe is enabled). The returns to the caller. Since this all looks like a
kamg@116 2515 // leaf no thread transition is needed.
kamg@116 2516
kamg@116 2517 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
kamg@116 2518 ResourceMark rm;
kamg@116 2519 nmethod* nm = NULL;
kamg@116 2520
kamg@116 2521 if (PrintCompilation) {
kamg@116 2522 ttyLocker ttyl;
kamg@116 2523 tty->print("--- n%s ");
kamg@116 2524 method->print_short_name(tty);
kamg@116 2525 if (method->is_static()) {
kamg@116 2526 tty->print(" (static)");
kamg@116 2527 }
kamg@116 2528 tty->cr();
kamg@116 2529 }
kamg@116 2530
kamg@116 2531 {
kamg@116 2532 // perform the work while holding the lock, but perform any printing
kamg@116 2533 // outside the lock
kamg@116 2534 MutexLocker mu(AdapterHandlerLibrary_lock);
kamg@116 2535 // See if somebody beat us to it
kamg@116 2536 nm = method->code();
kamg@116 2537 if (nm) {
kamg@116 2538 return nm;
kamg@116 2539 }
kamg@116 2540
kvn@742 2541 ResourceMark rm;
kvn@742 2542
kvn@742 2543 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@742 2544 if (buf != NULL) {
kvn@742 2545 CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
kvn@742 2546 // Need a few relocation entries
kvn@742 2547 double locs_buf[20];
kvn@742 2548 buffer.insts()->initialize_shared_locs(
kamg@116 2549 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@742 2550 MacroAssembler _masm(&buffer);
kamg@116 2551
kvn@742 2552 // Generate the compiled-to-native wrapper code
kvn@742 2553 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
kvn@742 2554 }
kamg@116 2555 }
kamg@116 2556 return nm;
kamg@116 2557 }
kamg@116 2558
kamg@116 2559 // the dtrace method needs to convert java lang string to utf8 string.
kamg@116 2560 void SharedRuntime::get_utf(oopDesc* src, address dst) {
kamg@116 2561 typeArrayOop jlsValue = java_lang_String::value(src);
kamg@116 2562 int jlsOffset = java_lang_String::offset(src);
kamg@116 2563 int jlsLen = java_lang_String::length(src);
kamg@116 2564 jchar* jlsPos = (jlsLen == 0) ? NULL :
kamg@116 2565 jlsValue->char_at_addr(jlsOffset);
kamg@116 2566 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
kamg@116 2567 }
kamg@116 2568 #endif // ndef HAVE_DTRACE_H
kamg@116 2569
duke@0 2570 // -------------------------------------------------------------------------
duke@0 2571 // Java-Java calling convention
duke@0 2572 // (what you use when Java calls Java)
duke@0 2573
duke@0 2574 //------------------------------name_for_receiver----------------------------------
duke@0 2575 // For a given signature, return the VMReg for parameter 0.
duke@0 2576 VMReg SharedRuntime::name_for_receiver() {
duke@0 2577 VMRegPair regs;
duke@0 2578 BasicType sig_bt = T_OBJECT;
duke@0 2579 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@0 2580 // Return argument 0 register. In the LP64 build pointers
duke@0 2581 // take 2 registers, but the VM wants only the 'main' name.
duke@0 2582 return regs.first();
duke@0 2583 }
duke@0 2584
twisti@1138 2585 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool has_receiver, int* arg_size) {
duke@0 2586 // This method is returning a data structure allocating as a
duke@0 2587 // ResourceObject, so do not put any ResourceMarks in here.
duke@0 2588 char *s = sig->as_C_string();
duke@0 2589 int len = (int)strlen(s);
duke@0 2590 *s++; len--; // Skip opening paren
duke@0 2591 char *t = s+len;
duke@0 2592 while( *(--t) != ')' ) ; // Find close paren
duke@0 2593
duke@0 2594 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@0 2595 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@0 2596 int cnt = 0;
twisti@1138 2597 if (has_receiver) {
duke@0 2598 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@0 2599 }
duke@0 2600
duke@0 2601 while( s < t ) {
duke@0 2602 switch( *s++ ) { // Switch on signature character
duke@0 2603 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@0 2604 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@0 2605 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@0 2606 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@0 2607 case 'I': sig_bt[cnt++] = T_INT; break;
duke@0 2608 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@0 2609 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@0 2610 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@0 2611 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@0 2612 case 'L': // Oop
duke@0 2613 while( *s++ != ';' ) ; // Skip signature
duke@0 2614 sig_bt[cnt++] = T_OBJECT;
duke@0 2615 break;
duke@0 2616 case '[': { // Array
duke@0 2617 do { // Skip optional size
duke@0 2618 while( *s >= '0' && *s <= '9' ) s++;
duke@0 2619 } while( *s++ == '[' ); // Nested arrays?
duke@0 2620 // Skip element type
duke@0 2621 if( s[-1] == 'L' )
duke@0 2622 while( *s++ != ';' ) ; // Skip signature
duke@0 2623 sig_bt[cnt++] = T_ARRAY;
duke@0 2624 break;
duke@0 2625 }
duke@0 2626 default : ShouldNotReachHere();
duke@0 2627 }
duke@0 2628 }
duke@0 2629 assert( cnt < 256, "grow table size" );
duke@0 2630
duke@0 2631 int comp_args_on_stack;
duke@0 2632 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@0 2633
duke@0 2634 // the calling convention doesn't count out_preserve_stack_slots so
duke@0 2635 // we must add that in to get "true" stack offsets.
duke@0 2636
duke@0 2637 if (comp_args_on_stack) {
duke@0 2638 for (int i = 0; i < cnt; i++) {
duke@0 2639 VMReg reg1 = regs[i].first();
duke@0 2640 if( reg1->is_stack()) {
duke@0 2641 // Yuck
duke@0 2642 reg1 = reg1->bias(out_preserve_stack_slots());
duke@0 2643 }
duke@0 2644 VMReg reg2 = regs[i].second();
duke@0 2645 if( reg2->is_stack()) {
duke@0 2646 // Yuck
duke@0 2647 reg2 = reg2->bias(out_preserve_stack_slots());
duke@0 2648 }
duke@0 2649 regs[i].set_pair(reg2, reg1);
duke@0 2650 }
duke@0 2651 }
duke@0 2652
duke@0 2653 // results
duke@0 2654 *arg_size = cnt;
duke@0 2655 return regs;
duke@0 2656 }
duke@0 2657
duke@0 2658 // OSR Migration Code
duke@0 2659 //
duke@0 2660 // This code is used convert interpreter frames into compiled frames. It is
duke@0 2661 // called from very start of a compiled OSR nmethod. A temp array is
duke@0 2662 // allocated to hold the interesting bits of the interpreter frame. All
duke@0 2663 // active locks are inflated to allow them to move. The displaced headers and
duke@0 2664 // active interpeter locals are copied into the temp buffer. Then we return
duke@0 2665 // back to the compiled code. The compiled code then pops the current
duke@0 2666 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@0 2667 // copies the interpreter locals and displaced headers where it wants.
duke@0 2668 // Finally it calls back to free the temp buffer.
duke@0 2669 //
duke@0 2670 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@0 2671
duke@0 2672 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@0 2673
duke@0 2674 #ifdef IA64
duke@0 2675 ShouldNotReachHere(); // NYI
duke@0 2676 #endif /* IA64 */
duke@0 2677
duke@0 2678 //
duke@0 2679 // This code is dependent on the memory layout of the interpreter local
duke@0 2680 // array and the monitors. On all of our platforms the layout is identical
duke@0 2681 // so this code is shared. If some platform lays the their arrays out
duke@0 2682 // differently then this code could move to platform specific code or
duke@0 2683 // the code here could be modified to copy items one at a time using
duke@0 2684 // frame accessor methods and be platform independent.
duke@0 2685
duke@0 2686 frame fr = thread->last_frame();
duke@0 2687 assert( fr.is_interpreted_frame(), "" );
duke@0 2688 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@0 2689
duke@0 2690 // Figure out how many monitors are active.
duke@0 2691 int active_monitor_count = 0;
duke@0 2692 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@0 2693 kptr < fr.interpreter_frame_monitor_begin();
duke@0 2694 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@0 2695 if( kptr->obj() != NULL ) active_monitor_count++;
duke@0 2696 }
duke@0 2697
duke@0 2698 // QQQ we could place number of active monitors in the array so that compiled code
duke@0 2699 // could double check it.
duke@0 2700
duke@0 2701 methodOop moop = fr.interpreter_frame_method();
duke@0 2702 int max_locals = moop->max_locals();
duke@0 2703 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@0 2704 int buf_size_words = max_locals + active_monitor_count*2;
duke@0 2705 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
duke@0 2706
duke@0 2707 // Copy the locals. Order is preserved so that loading of longs works.
duke@0 2708 // Since there's no GC I can copy the oops blindly.
duke@0 2709 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
twisti@1426 2710 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@0 2711 (HeapWord*)&buf[0],
duke@0 2712 max_locals);
duke@0 2713
duke@0 2714 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@0 2715 int i = max_locals;
duke@0 2716 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@0 2717 kptr2 < fr.interpreter_frame_monitor_begin();
duke@0 2718 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@0 2719 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@0 2720 BasicLock *lock = kptr2->lock();
duke@0 2721 // Inflate so the displaced header becomes position-independent
duke@0 2722 if (lock->displaced_header()->is_unlocked())
duke@0 2723 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@0 2724 // Now the displaced header is free to move
duke@0 2725 buf[i++] = (intptr_t)lock->displaced_header();
duke@0 2726 buf[i++] = (intptr_t)kptr2->obj();
duke@0 2727 }
duke@0 2728 }
duke@0 2729 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@0 2730
duke@0 2731 return buf;
duke@0 2732 JRT_END
duke@0 2733
duke@0 2734 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
duke@0 2735 FREE_C_HEAP_ARRAY(intptr_t,buf);
duke@0 2736 JRT_END
duke@0 2737
duke@0 2738 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
never@1187 2739 AdapterHandlerTableIterator iter(_adapters);
never@1187 2740 while (iter.has_next()) {
never@1187 2741 AdapterHandlerEntry* a = iter.next();
never@1187 2742 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@0 2743 }
duke@0 2744 return false;
duke@0 2745 }
duke@0 2746
bobv@1601 2747 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
never@1187 2748 AdapterHandlerTableIterator iter(_adapters);
never@1187 2749 while (iter.has_next()) {
never@1187 2750 AdapterHandlerEntry* a = iter.next();
never@1187 2751 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
bobv@1601 2752 st->print("Adapter for signature: ");
bobv@1601 2753 st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
bobv@1601 2754 a->fingerprint()->as_string(),
bobv@1601 2755 a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
bobv@1601 2756
duke@0 2757 return;
duke@0 2758 }
duke@0 2759 }
duke@0 2760 assert(false, "Should have found handler");
duke@0 2761 }
never@1187 2762
bobv@1601 2763 #ifndef PRODUCT
bobv@1601 2764
never@1187 2765 void AdapterHandlerLibrary::print_statistics() {
never@1187 2766 _adapters->print_statistics();
never@1187 2767 }
never@1187 2768
duke@0 2769 #endif /* PRODUCT */