annotate src/share/vm/utilities/globalDefinitions.hpp @ 7745:6dc8db7164d2

Added tag jdk9-b49 for changeset 360cd1fc42f1
author katleman
date Thu, 05 Feb 2015 11:43:29 -0800
parents fee07a43d038
children f83851ae258e
rev   line source
duke@0 1 /*
goetz@7622 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
trims@1472 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1472 20 * or visit www.oracle.com if you need additional information or have any
trims@1472 21 * questions.
duke@0 22 *
duke@0 23 */
duke@0 24
stefank@1879 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@1879 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@1879 27
dcubed@2767 28 #ifndef __STDC_FORMAT_MACROS
never@2721 29 #define __STDC_FORMAT_MACROS
dcubed@2767 30 #endif
never@2721 31
stefank@1879 32 #ifdef TARGET_COMPILER_gcc
stefank@1879 33 # include "utilities/globalDefinitions_gcc.hpp"
stefank@1879 34 #endif
stefank@1879 35 #ifdef TARGET_COMPILER_visCPP
stefank@1879 36 # include "utilities/globalDefinitions_visCPP.hpp"
stefank@1879 37 #endif
stefank@1879 38 #ifdef TARGET_COMPILER_sparcWorks
stefank@1879 39 # include "utilities/globalDefinitions_sparcWorks.hpp"
stefank@1879 40 #endif
goetz@5965 41 #ifdef TARGET_COMPILER_xlc
goetz@5965 42 # include "utilities/globalDefinitions_xlc.hpp"
goetz@5965 43 #endif
stefank@1879 44
drchase@6412 45 #ifndef PRAGMA_DIAG_PUSH
drchase@6412 46 #define PRAGMA_DIAG_PUSH
drchase@6412 47 #endif
drchase@6412 48 #ifndef PRAGMA_DIAG_POP
drchase@6412 49 #define PRAGMA_DIAG_POP
drchase@6412 50 #endif
drchase@6412 51 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
drchase@6412 52 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
drchase@6412 53 #endif
drchase@6412 54 #ifndef PRAGMA_FORMAT_IGNORED
drchase@6412 55 #define PRAGMA_FORMAT_IGNORED
drchase@6412 56 #endif
drchase@6412 57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
drchase@6412 58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
drchase@6412 59 #endif
drchase@6412 60 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
drchase@6412 61 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
drchase@6412 62 #endif
drchase@6412 63 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6412 64 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6412 65 #endif
drchase@6412 66 #ifndef ATTRIBUTE_PRINTF
drchase@6412 67 #define ATTRIBUTE_PRINTF(fmt, vargs)
drchase@6412 68 #endif
mgerdin@7060 69 #ifndef ATTRIBUTE_SCANF
mgerdin@7060 70 #define ATTRIBUTE_SCANF(fmt, vargs)
mgerdin@7060 71 #endif
drchase@6412 72
drchase@6412 73
stefank@1879 74 #include "utilities/macros.hpp"
stefank@1879 75
duke@0 76 // This file holds all globally used constants & types, class (forward)
duke@0 77 // declarations and a few frequently used utility functions.
duke@0 78
duke@0 79 //----------------------------------------------------------------------------------------------------
duke@0 80 // Constants
duke@0 81
duke@0 82 const int LogBytesPerShort = 1;
duke@0 83 const int LogBytesPerInt = 2;
duke@0 84 #ifdef _LP64
duke@0 85 const int LogBytesPerWord = 3;
duke@0 86 #else
duke@0 87 const int LogBytesPerWord = 2;
duke@0 88 #endif
duke@0 89 const int LogBytesPerLong = 3;
duke@0 90
duke@0 91 const int BytesPerShort = 1 << LogBytesPerShort;
duke@0 92 const int BytesPerInt = 1 << LogBytesPerInt;
duke@0 93 const int BytesPerWord = 1 << LogBytesPerWord;
duke@0 94 const int BytesPerLong = 1 << LogBytesPerLong;
duke@0 95
duke@0 96 const int LogBitsPerByte = 3;
duke@0 97 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@0 98 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@0 99 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@0 100 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@0 101
duke@0 102 const int BitsPerByte = 1 << LogBitsPerByte;
duke@0 103 const int BitsPerShort = 1 << LogBitsPerShort;
duke@0 104 const int BitsPerInt = 1 << LogBitsPerInt;
duke@0 105 const int BitsPerWord = 1 << LogBitsPerWord;
duke@0 106 const int BitsPerLong = 1 << LogBitsPerLong;
duke@0 107
duke@0 108 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@0 109 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@0 110
duke@0 111 const int WordsPerLong = 2; // Number of stack entries for longs
duke@0 112
coleenp@113 113 const int oopSize = sizeof(char*); // Full-width oop
coleenp@113 114 extern int heapOopSize; // Oop within a java object
duke@0 115 const int wordSize = sizeof(char*);
duke@0 116 const int longSize = sizeof(jlong);
duke@0 117 const int jintSize = sizeof(jint);
duke@0 118 const int size_tSize = sizeof(size_t);
duke@0 119
coleenp@113 120 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@0 121
coleenp@113 122 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@113 123 extern int LogBitsPerHeapOop;
coleenp@113 124 extern int BytesPerHeapOop;
coleenp@113 125 extern int BitsPerHeapOop;
duke@0 126
duke@0 127 const int BitsPerJavaInteger = 32;
twisti@559 128 const int BitsPerJavaLong = 64;
duke@0 129 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@0 130
coleenp@113 131 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@113 132 const int jintAsStringSize = 12;
coleenp@113 133
duke@0 134 // In fact this should be
duke@0 135 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@0 136 // see os::set_memory_serialize_page()
duke@0 137 #ifdef _LP64
duke@0 138 const int SerializePageShiftCount = 4;
duke@0 139 #else
duke@0 140 const int SerializePageShiftCount = 3;
duke@0 141 #endif
duke@0 142
duke@0 143 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@0 144 // pointer into the heap. We require that object sizes be measured in
duke@0 145 // units of heap words, so that that
duke@0 146 // HeapWord* hw;
duke@0 147 // hw += oop(hw)->foo();
duke@0 148 // works, where foo is a method (like size or scavenge) that returns the
duke@0 149 // object size.
duke@0 150 class HeapWord {
duke@0 151 friend class VMStructs;
jmasa@263 152 private:
duke@0 153 char* i;
jmasa@361 154 #ifndef PRODUCT
jmasa@263 155 public:
jmasa@263 156 char* value() { return i; }
jmasa@263 157 #endif
duke@0 158 };
duke@0 159
coleenp@3602 160 // Analogous opaque struct for metadata allocated from
coleenp@3602 161 // metaspaces.
coleenp@3602 162 class MetaWord {
coleenp@3602 163 friend class VMStructs;
coleenp@3602 164 private:
coleenp@3602 165 char* i;
coleenp@3602 166 };
coleenp@3602 167
duke@0 168 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@113 169 const int HeapWordSize = sizeof(HeapWord);
duke@0 170 #ifdef _LP64
coleenp@113 171 const int LogHeapWordSize = 3;
duke@0 172 #else
coleenp@113 173 const int LogHeapWordSize = 2;
duke@0 174 #endif
coleenp@113 175 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@113 176 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@0 177
duke@0 178 // The larger HeapWordSize for 64bit requires larger heaps
duke@0 179 // for the same application running in 64bit. See bug 4967770.
duke@0 180 // The minimum alignment to a heap word size is done. Other
jwilhelm@5862 181 // parts of the memory system may require additional alignment
duke@0 182 // and are responsible for those alignments.
duke@0 183 #ifdef _LP64
duke@0 184 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@0 185 #else
duke@0 186 #define ScaleForWordSize(x) (x)
duke@0 187 #endif
duke@0 188
duke@0 189 // The minimum number of native machine words necessary to contain "byte_size"
duke@0 190 // bytes.
duke@0 191 inline size_t heap_word_size(size_t byte_size) {
duke@0 192 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@0 193 }
duke@0 194
duke@0 195 const size_t K = 1024;
duke@0 196 const size_t M = K*K;
duke@0 197 const size_t G = M*K;
duke@0 198 const size_t HWperKB = K / sizeof(HeapWord);
duke@0 199
duke@0 200 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
duke@0 201 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
duke@0 202
duke@0 203 // Constants for converting from a base unit to milli-base units. For
duke@0 204 // example from seconds to milliseconds and microseconds
duke@0 205
duke@0 206 const int MILLIUNITS = 1000; // milli units per base unit
duke@0 207 const int MICROUNITS = 1000000; // micro units per base unit
duke@0 208 const int NANOUNITS = 1000000000; // nano units per base unit
duke@0 209
johnc@2904 210 const jlong NANOSECS_PER_SEC = CONST64(1000000000);
johnc@2904 211 const jint NANOSECS_PER_MILLISEC = 1000000;
johnc@2904 212
duke@0 213 inline const char* proper_unit_for_byte_size(size_t s) {
brutisso@3331 214 #ifdef _LP64
brutisso@3331 215 if (s >= 10*G) {
brutisso@3331 216 return "G";
brutisso@3331 217 }
brutisso@3331 218 #endif
duke@0 219 if (s >= 10*M) {
duke@0 220 return "M";
duke@0 221 } else if (s >= 10*K) {
duke@0 222 return "K";
duke@0 223 } else {
duke@0 224 return "B";
duke@0 225 }
duke@0 226 }
duke@0 227
brutisso@3327 228 template <class T>
brutisso@3327 229 inline T byte_size_in_proper_unit(T s) {
brutisso@3331 230 #ifdef _LP64
brutisso@3331 231 if (s >= 10*G) {
brutisso@3331 232 return (T)(s/G);
brutisso@3331 233 }
brutisso@3331 234 #endif
duke@0 235 if (s >= 10*M) {
brutisso@3327 236 return (T)(s/M);
duke@0 237 } else if (s >= 10*K) {
brutisso@3327 238 return (T)(s/K);
duke@0 239 } else {
duke@0 240 return s;
duke@0 241 }
duke@0 242 }
duke@0 243
duke@0 244 //----------------------------------------------------------------------------------------------------
duke@0 245 // VM type definitions
duke@0 246
duke@0 247 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@0 248 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@0 249
duke@0 250 typedef intptr_t intx;
duke@0 251 typedef uintptr_t uintx;
duke@0 252
duke@0 253 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@0 254 const intx max_intx = (uintx)min_intx - 1;
duke@0 255 const uintx max_uintx = (uintx)-1;
duke@0 256
duke@0 257 // Table of values:
duke@0 258 // sizeof intx 4 8
duke@0 259 // min_intx 0x80000000 0x8000000000000000
duke@0 260 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@0 261 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@0 262
duke@0 263 typedef unsigned int uint; NEEDS_CLEANUP
duke@0 264
duke@0 265
duke@0 266 //----------------------------------------------------------------------------------------------------
duke@0 267 // Java type definitions
duke@0 268
duke@0 269 // All kinds of 'plain' byte addresses
duke@0 270 typedef signed char s_char;
duke@0 271 typedef unsigned char u_char;
duke@0 272 typedef u_char* address;
duke@0 273 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@0 274 // except for some implementations of a C++
duke@0 275 // linkage pointer to function. Should never
duke@0 276 // need one of those to be placed in this
duke@0 277 // type anyway.
duke@0 278
duke@0 279 // Utility functions to "portably" (?) bit twiddle pointers
duke@0 280 // Where portable means keep ANSI C++ compilers quiet
duke@0 281
duke@0 282 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@0 283 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@0 284
duke@0 285 // Utility functions to "portably" make cast to/from function pointers.
duke@0 286
duke@0 287 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@0 288 inline address_word castable_address(address x) { return address_word(x) ; }
duke@0 289 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@0 290
duke@0 291 // Pointer subtraction.
duke@0 292 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@0 293 // the range we might need to find differences from one end of the heap
duke@0 294 // to the other.
duke@0 295 // A typical use might be:
duke@0 296 // if (pointer_delta(end(), top()) >= size) {
duke@0 297 // // enough room for an object of size
duke@0 298 // ...
duke@0 299 // and then additions like
duke@0 300 // ... top() + size ...
duke@0 301 // are safe because we know that top() is at least size below end().
duke@0 302 inline size_t pointer_delta(const void* left,
duke@0 303 const void* right,
duke@0 304 size_t element_size) {
duke@0 305 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@0 306 }
duke@0 307 // A version specialized for HeapWord*'s.
duke@0 308 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@0 309 return pointer_delta(left, right, sizeof(HeapWord));
duke@0 310 }
coleenp@3602 311 // A version specialized for MetaWord*'s.
coleenp@3602 312 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
coleenp@3602 313 return pointer_delta(left, right, sizeof(MetaWord));
coleenp@3602 314 }
duke@0 315
duke@0 316 //
duke@0 317 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@0 318 // directly without at best a warning. This macro accomplishes it silently
duke@0 319 // In every case that is present at this point the value be cast is a pointer
duke@0 320 // to a C linkage function. In somecase the type used for the cast reflects
duke@0 321 // that linkage and a picky compiler would not complain. In other cases because
duke@0 322 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@0 323 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@0 324 // picky enough to catch these instances (which are few). It is possible that
duke@0 325 // using templates could fix these for all cases. This use of templates is likely
duke@0 326 // so far from the middle of the road that it is likely to be problematic in
duke@0 327 // many C++ compilers.
duke@0 328 //
duke@0 329 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
duke@0 330 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@0 331
duke@0 332 // Unsigned byte types for os and stream.hpp
duke@0 333
duke@0 334 // Unsigned one, two, four and eigth byte quantities used for describing
duke@0 335 // the .class file format. See JVM book chapter 4.
duke@0 336
duke@0 337 typedef jubyte u1;
duke@0 338 typedef jushort u2;
duke@0 339 typedef juint u4;
duke@0 340 typedef julong u8;
duke@0 341
duke@0 342 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@0 343 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@0 344 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@0 345 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@0 346
phh@2992 347 typedef jbyte s1;
phh@2992 348 typedef jshort s2;
phh@2992 349 typedef jint s4;
phh@2992 350 typedef jlong s8;
phh@2992 351
duke@0 352 //----------------------------------------------------------------------------------------------------
duke@0 353 // JVM spec restrictions
duke@0 354
duke@0 355 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@0 356
tschatzl@5427 357 // Default ProtectionDomainCacheSize values
tschatzl@5427 358
tschatzl@5427 359 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
duke@0 360
duke@0 361 //----------------------------------------------------------------------------------------------------
hseigel@4523 362 // Default and minimum StringTableSize values
hseigel@3842 363
hseigel@4523 364 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
tschatzl@5427 365 const int minimumStringTableSize = 1009;
hseigel@3842 366
kevinw@5415 367 const int defaultSymbolTableSize = 20011;
kevinw@5415 368 const int minimumSymbolTableSize = 1009;
kevinw@5415 369
hseigel@3842 370
hseigel@3842 371 //----------------------------------------------------------------------------------------------------
duke@0 372 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@0 373 //
duke@0 374 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@0 375
duke@0 376 #define HOTSWAP
duke@0 377
duke@0 378 //----------------------------------------------------------------------------------------------------
duke@0 379 // Object alignment, in units of HeapWords.
duke@0 380 //
duke@0 381 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@0 382 // reference fields can be naturally aligned.
duke@0 383
kvn@1491 384 extern int MinObjAlignment;
kvn@1491 385 extern int MinObjAlignmentInBytes;
kvn@1491 386 extern int MinObjAlignmentInBytesMask;
duke@0 387
kvn@1491 388 extern int LogMinObjAlignment;
kvn@1491 389 extern int LogMinObjAlignmentInBytes;
coleenp@113 390
roland@3724 391 const int LogKlassAlignmentInBytes = 3;
roland@3724 392 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
roland@3724 393 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
roland@3724 394 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
roland@3724 395
goetz@7622 396 // Maximal size of heap where unscaled compression can be used. Also upper bound
goetz@7622 397 // for heap placement: 4GB.
goetz@7622 398 const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
goetz@7622 399 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
goetz@7622 400 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
goetz@7622 401 extern uint64_t OopEncodingHeapMax;
goetz@7622 402
goetz@7622 403 // Maximal size of compressed class space. Above this limit compression is not possible.
goetz@7622 404 // Also upper bound for placement of zero based class space. (Class space is further limited
goetz@7622 405 // to be < 3G, see arguments.cpp.)
goetz@7622 406 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
roland@3724 407
duke@0 408 // Machine dependent stuff
duke@0 409
kvn@6182 410 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
kvn@6182 411 // Include Restricted Transactional Memory lock eliding optimization
kvn@6182 412 #define INCLUDE_RTM_OPT 1
kvn@6182 413 #define RTM_OPT_ONLY(code) code
kvn@6182 414 #else
kvn@6182 415 #define INCLUDE_RTM_OPT 0
kvn@6182 416 #define RTM_OPT_ONLY(code)
kvn@6182 417 #endif
kvn@6182 418 // States of Restricted Transactional Memory usage.
kvn@6182 419 enum RTMState {
kvn@6182 420 NoRTM = 0x2, // Don't use RTM
kvn@6182 421 UseRTM = 0x1, // Use RTM
kvn@6182 422 ProfileRTM = 0x0 // Use RTM with abort ratio calculation
kvn@6182 423 };
kvn@6182 424
stefank@1879 425 #ifdef TARGET_ARCH_x86
stefank@1879 426 # include "globalDefinitions_x86.hpp"
stefank@1879 427 #endif
stefank@1879 428 #ifdef TARGET_ARCH_sparc
stefank@1879 429 # include "globalDefinitions_sparc.hpp"
stefank@1879 430 #endif
stefank@1879 431 #ifdef TARGET_ARCH_zero
stefank@1879 432 # include "globalDefinitions_zero.hpp"
stefank@1879 433 #endif
bobv@2073 434 #ifdef TARGET_ARCH_arm
bobv@2073 435 # include "globalDefinitions_arm.hpp"
bobv@2073 436 #endif
bobv@2073 437 #ifdef TARGET_ARCH_ppc
bobv@2073 438 # include "globalDefinitions_ppc.hpp"
bobv@2073 439 #endif
stefank@1879 440
jprovino@4753 441 /*
jprovino@4967 442 * If a platform does not support native stack walking
jprovino@4753 443 * the platform specific globalDefinitions (above)
jprovino@4967 444 * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
jprovino@4753 445 */
jprovino@4967 446 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
jprovino@4967 447 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
jprovino@4753 448 #endif
duke@0 449
goetz@6006 450 // To assure the IRIW property on processors that are not multiple copy
goetz@6006 451 // atomic, sync instructions must be issued between volatile reads to
goetz@6006 452 // assure their ordering, instead of after volatile stores.
goetz@6006 453 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
goetz@6006 454 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
goetz@6006 455 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
goetz@6006 456 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
goetz@6006 457 #else
goetz@6006 458 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
goetz@6006 459 #endif
goetz@6006 460
duke@0 461 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@0 462 // Note: this value must be a power of 2
duke@0 463
duke@0 464 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@0 465
duke@0 466 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@0 467 // for use in places like enum definitions that require compile-time constant
duke@0 468 // expressions and a function for all other places so as to get type checking.
duke@0 469
duke@0 470 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@0 471
stefank@5143 472 inline bool is_size_aligned(size_t size, size_t alignment) {
stefank@5143 473 return align_size_up_(size, alignment) == size;
stefank@5143 474 }
stefank@5143 475
stefank@5143 476 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
stefank@5143 477 return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
stefank@5143 478 }
stefank@5143 479
duke@0 480 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@0 481 return align_size_up_(size, alignment);
duke@0 482 }
duke@0 483
duke@0 484 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@0 485
duke@0 486 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@0 487 return align_size_down_(size, alignment);
duke@0 488 }
duke@0 489
stefank@5080 490 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
stefank@5080 491
stefank@5143 492 inline void* align_ptr_up(void* ptr, size_t alignment) {
stefank@5143 493 return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
stefank@5143 494 }
stefank@5143 495
stefank@5143 496 inline void* align_ptr_down(void* ptr, size_t alignment) {
stefank@5143 497 return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
stefank@5143 498 }
stefank@5143 499
duke@0 500 // Align objects by rounding up their size, in HeapWord units.
duke@0 501
duke@0 502 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
duke@0 503
duke@0 504 inline intptr_t align_object_size(intptr_t size) {
duke@0 505 return align_size_up(size, MinObjAlignment);
duke@0 506 }
duke@0 507
kvn@1491 508 inline bool is_object_aligned(intptr_t addr) {
kvn@1491 509 return addr == align_object_size(addr);
kvn@1491 510 }
kvn@1491 511
duke@0 512 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@0 513
duke@0 514 inline intptr_t align_object_offset(intptr_t offset) {
duke@0 515 return align_size_up(offset, HeapWordsPerLong);
duke@0 516 }
duke@0 517
stefank@5080 518 inline void* align_pointer_up(const void* addr, size_t size) {
stefank@5080 519 return (void*) align_size_up_((uintptr_t)addr, size);
stefank@5080 520 }
stefank@5080 521
jwilhelm@5648 522 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
jwilhelm@5648 523
jwilhelm@5648 524 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
jwilhelm@5648 525 size_t aligned_size = align_size_down_(size, alignment);
jwilhelm@5648 526 return aligned_size > 0 ? aligned_size : alignment;
jwilhelm@5648 527 }
jwilhelm@5648 528
mikael@4454 529 // Clamp an address to be within a specific page
mikael@4454 530 // 1. If addr is on the page it is returned as is
mikael@4454 531 // 2. If addr is above the page_address the start of the *next* page will be returned
mikael@4454 532 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
mikael@4454 533 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
mikael@4454 534 if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
mikael@4454 535 // address is in the specified page, just return it as is
mikael@4454 536 return addr;
mikael@4454 537 } else if (addr > page_address) {
mikael@4454 538 // address is above specified page, return start of next page
mikael@4454 539 return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
mikael@4454 540 } else {
mikael@4454 541 // address is below specified page, return start of page
mikael@4454 542 return (address)align_size_down(intptr_t(page_address), page_size);
mikael@4454 543 }
mikael@4454 544 }
mikael@4454 545
mikael@4454 546
jcoomes@1585 547 // The expected size in bytes of a cache line, used to pad data structures.
dcubed@7236 548 #ifndef DEFAULT_CACHE_LINE_SIZE
dcubed@7236 549 #define DEFAULT_CACHE_LINE_SIZE 64
dcubed@7236 550 #endif
jcoomes@1585 551
duke@0 552
duke@0 553 //----------------------------------------------------------------------------------------------------
duke@0 554 // Utility macros for compilers
duke@0 555 // used to silence compiler warnings
duke@0 556
duke@0 557 #define Unused_Variable(var) var
duke@0 558
duke@0 559
duke@0 560 //----------------------------------------------------------------------------------------------------
duke@0 561 // Miscellaneous
duke@0 562
duke@0 563 // 6302670 Eliminate Hotspot __fabsf dependency
duke@0 564 // All fabs() callers should call this function instead, which will implicitly
duke@0 565 // convert the operand to double, avoiding a dependency on __fabsf which
duke@0 566 // doesn't exist in early versions of Solaris 8.
duke@0 567 inline double fabsd(double value) {
duke@0 568 return fabs(value);
duke@0 569 }
duke@0 570
thartmann@6825 571 //----------------------------------------------------------------------------------------------------
thartmann@6825 572 // Special casts
thartmann@6825 573 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
thartmann@6825 574 typedef union {
thartmann@6825 575 jfloat f;
thartmann@6825 576 jint i;
thartmann@6825 577 } FloatIntConv;
thartmann@6825 578
thartmann@6825 579 typedef union {
thartmann@6825 580 jdouble d;
thartmann@6825 581 jlong l;
thartmann@6825 582 julong ul;
thartmann@6825 583 } DoubleLongConv;
thartmann@6825 584
thartmann@6825 585 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; }
thartmann@6825 586 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; }
thartmann@6825 587
thartmann@6825 588 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; }
thartmann@6825 589 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; }
thartmann@6825 590 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; }
thartmann@6825 591
duke@0 592 inline jint low (jlong value) { return jint(value); }
duke@0 593 inline jint high(jlong value) { return jint(value >> 32); }
duke@0 594
duke@0 595 // the fancy casts are a hopefully portable way
duke@0 596 // to do unsigned 32 to 64 bit type conversion
duke@0 597 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@0 598 *value |= (jlong)(julong)(juint)low; }
duke@0 599
duke@0 600 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@0 601 *value |= (jlong)high << 32; }
duke@0 602
duke@0 603 inline jlong jlong_from(jint h, jint l) {
duke@0 604 jlong result = 0; // initialization to avoid warning
duke@0 605 set_high(&result, h);
duke@0 606 set_low(&result, l);
duke@0 607 return result;
duke@0 608 }
duke@0 609
duke@0 610 union jlong_accessor {
duke@0 611 jint words[2];
duke@0 612 jlong long_value;
duke@0 613 };
duke@0 614
coleenp@113 615 void basic_types_init(); // cannot define here; uses assert
duke@0 616
duke@0 617
duke@0 618 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@0 619 enum BasicType {
roland@3724 620 T_BOOLEAN = 4,
roland@3724 621 T_CHAR = 5,
roland@3724 622 T_FLOAT = 6,
roland@3724 623 T_DOUBLE = 7,
roland@3724 624 T_BYTE = 8,
roland@3724 625 T_SHORT = 9,
roland@3724 626 T_INT = 10,
roland@3724 627 T_LONG = 11,
roland@3724 628 T_OBJECT = 12,
roland@3724 629 T_ARRAY = 13,
roland@3724 630 T_VOID = 14,
roland@3724 631 T_ADDRESS = 15,
roland@3724 632 T_NARROWOOP = 16,
roland@3724 633 T_METADATA = 17,
roland@3724 634 T_NARROWKLASS = 18,
roland@3724 635 T_CONFLICT = 19, // for stack value type with conflicting contents
roland@3724 636 T_ILLEGAL = 99
duke@0 637 };
duke@0 638
kvn@29 639 inline bool is_java_primitive(BasicType t) {
kvn@29 640 return T_BOOLEAN <= t && t <= T_LONG;
kvn@29 641 }
kvn@29 642
jrose@710 643 inline bool is_subword_type(BasicType t) {
jrose@710 644 // these guys are processed exactly like T_INT in calling sequences:
jrose@710 645 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
jrose@710 646 }
jrose@710 647
jrose@710 648 inline bool is_signed_subword_type(BasicType t) {
jrose@710 649 return (t == T_BYTE || t == T_SHORT);
jrose@710 650 }
jrose@710 651
duke@0 652 // Convert a char from a classfile signature to a BasicType
duke@0 653 inline BasicType char2type(char c) {
duke@0 654 switch( c ) {
duke@0 655 case 'B': return T_BYTE;
duke@0 656 case 'C': return T_CHAR;
duke@0 657 case 'D': return T_DOUBLE;
duke@0 658 case 'F': return T_FLOAT;
duke@0 659 case 'I': return T_INT;
duke@0 660 case 'J': return T_LONG;
duke@0 661 case 'S': return T_SHORT;
duke@0 662 case 'Z': return T_BOOLEAN;
duke@0 663 case 'V': return T_VOID;
duke@0 664 case 'L': return T_OBJECT;
duke@0 665 case '[': return T_ARRAY;
duke@0 666 }
duke@0 667 return T_ILLEGAL;
duke@0 668 }
duke@0 669
duke@0 670 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@0 671 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@0 672 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@0 673 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@0 674 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@0 675 extern BasicType name2type(const char* name);
duke@0 676
duke@0 677 // Auxilary math routines
duke@0 678 // least common multiple
duke@0 679 extern size_t lcm(size_t a, size_t b);
duke@0 680
duke@0 681
duke@0 682 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@0 683 enum BasicTypeSize {
roland@3724 684 T_BOOLEAN_size = 1,
roland@3724 685 T_CHAR_size = 1,
roland@3724 686 T_FLOAT_size = 1,
roland@3724 687 T_DOUBLE_size = 2,
roland@3724 688 T_BYTE_size = 1,
roland@3724 689 T_SHORT_size = 1,
roland@3724 690 T_INT_size = 1,
roland@3724 691 T_LONG_size = 2,
roland@3724 692 T_OBJECT_size = 1,
roland@3724 693 T_ARRAY_size = 1,
roland@3724 694 T_NARROWOOP_size = 1,
roland@3724 695 T_NARROWKLASS_size = 1,
roland@3724 696 T_VOID_size = 0
duke@0 697 };
duke@0 698
duke@0 699
duke@0 700 // maps a BasicType to its instance field storage type:
duke@0 701 // all sub-word integral types are widened to T_INT
duke@0 702 extern BasicType type2field[T_CONFLICT+1];
duke@0 703 extern BasicType type2wfield[T_CONFLICT+1];
duke@0 704
duke@0 705
duke@0 706 // size in bytes
duke@0 707 enum ArrayElementSize {
roland@3724 708 T_BOOLEAN_aelem_bytes = 1,
roland@3724 709 T_CHAR_aelem_bytes = 2,
roland@3724 710 T_FLOAT_aelem_bytes = 4,
roland@3724 711 T_DOUBLE_aelem_bytes = 8,
roland@3724 712 T_BYTE_aelem_bytes = 1,
roland@3724 713 T_SHORT_aelem_bytes = 2,
roland@3724 714 T_INT_aelem_bytes = 4,
roland@3724 715 T_LONG_aelem_bytes = 8,
duke@0 716 #ifdef _LP64
roland@3724 717 T_OBJECT_aelem_bytes = 8,
roland@3724 718 T_ARRAY_aelem_bytes = 8,
duke@0 719 #else
roland@3724 720 T_OBJECT_aelem_bytes = 4,
roland@3724 721 T_ARRAY_aelem_bytes = 4,
duke@0 722 #endif
roland@3724 723 T_NARROWOOP_aelem_bytes = 4,
roland@3724 724 T_NARROWKLASS_aelem_bytes = 4,
roland@3724 725 T_VOID_aelem_bytes = 0
duke@0 726 };
duke@0 727
kvn@29 728 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@29 729 #ifdef ASSERT
kvn@29 730 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@29 731 #else
never@1683 732 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
kvn@29 733 #endif
duke@0 734
duke@0 735
duke@0 736 // JavaValue serves as a container for arbitrary Java values.
duke@0 737
duke@0 738 class JavaValue {
duke@0 739
duke@0 740 public:
duke@0 741 typedef union JavaCallValue {
duke@0 742 jfloat f;
duke@0 743 jdouble d;
duke@0 744 jint i;
duke@0 745 jlong l;
duke@0 746 jobject h;
duke@0 747 } JavaCallValue;
duke@0 748
duke@0 749 private:
duke@0 750 BasicType _type;
duke@0 751 JavaCallValue _value;
duke@0 752
duke@0 753 public:
duke@0 754 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@0 755
duke@0 756 JavaValue(jfloat value) {
duke@0 757 _type = T_FLOAT;
duke@0 758 _value.f = value;
duke@0 759 }
duke@0 760
duke@0 761 JavaValue(jdouble value) {
duke@0 762 _type = T_DOUBLE;
duke@0 763 _value.d = value;
duke@0 764 }
duke@0 765
duke@0 766 jfloat get_jfloat() const { return _value.f; }
duke@0 767 jdouble get_jdouble() const { return _value.d; }
duke@0 768 jint get_jint() const { return _value.i; }
duke@0 769 jlong get_jlong() const { return _value.l; }
duke@0 770 jobject get_jobject() const { return _value.h; }
duke@0 771 JavaCallValue* get_value_addr() { return &_value; }
duke@0 772 BasicType get_type() const { return _type; }
duke@0 773
duke@0 774 void set_jfloat(jfloat f) { _value.f = f;}
duke@0 775 void set_jdouble(jdouble d) { _value.d = d;}
duke@0 776 void set_jint(jint i) { _value.i = i;}
duke@0 777 void set_jlong(jlong l) { _value.l = l;}
duke@0 778 void set_jobject(jobject h) { _value.h = h;}
duke@0 779 void set_type(BasicType t) { _type = t; }
duke@0 780
duke@0 781 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@0 782 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@0 783 jchar get_jchar() const { return (jchar) (_value.i);}
duke@0 784 jshort get_jshort() const { return (jshort) (_value.i);}
duke@0 785
duke@0 786 };
duke@0 787
duke@0 788
duke@0 789 #define STACK_BIAS 0
duke@0 790 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@0 791 // in order to extend the reach of the stack pointer.
duke@0 792 #if defined(SPARC) && defined(_LP64)
duke@0 793 #undef STACK_BIAS
duke@0 794 #define STACK_BIAS 0x7ff
duke@0 795 #endif
duke@0 796
duke@0 797
duke@0 798 // TosState describes the top-of-stack state before and after the execution of
duke@0 799 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
duke@0 800 // registers. The TosState corresponds to the 'machine represention' of this cached
duke@0 801 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@0 802 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@0 803 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@0 804 // state when it comes to machine representation but is used separately for (oop)
duke@0 805 // type specific operations (e.g. verification code).
duke@0 806
duke@0 807 enum TosState { // describes the tos cache contents
duke@0 808 btos = 0, // byte, bool tos cached
jrose@726 809 ctos = 1, // char tos cached
jrose@726 810 stos = 2, // short tos cached
duke@0 811 itos = 3, // int tos cached
duke@0 812 ltos = 4, // long tos cached
duke@0 813 ftos = 5, // float tos cached
duke@0 814 dtos = 6, // double tos cached
duke@0 815 atos = 7, // object cached
duke@0 816 vtos = 8, // tos not cached
duke@0 817 number_of_states,
duke@0 818 ilgl // illegal state: should not occur
duke@0 819 };
duke@0 820
duke@0 821
duke@0 822 inline TosState as_TosState(BasicType type) {
duke@0 823 switch (type) {
duke@0 824 case T_BYTE : return btos;
jrose@726 825 case T_BOOLEAN: return btos; // FIXME: Add ztos
duke@0 826 case T_CHAR : return ctos;
duke@0 827 case T_SHORT : return stos;
duke@0 828 case T_INT : return itos;
duke@0 829 case T_LONG : return ltos;
duke@0 830 case T_FLOAT : return ftos;
duke@0 831 case T_DOUBLE : return dtos;
duke@0 832 case T_VOID : return vtos;
duke@0 833 case T_ARRAY : // fall through
duke@0 834 case T_OBJECT : return atos;
duke@0 835 }
duke@0 836 return ilgl;
duke@0 837 }
duke@0 838
jrose@726 839 inline BasicType as_BasicType(TosState state) {
jrose@726 840 switch (state) {
jrose@726 841 //case ztos: return T_BOOLEAN;//FIXME
jrose@726 842 case btos : return T_BYTE;
jrose@726 843 case ctos : return T_CHAR;
jrose@726 844 case stos : return T_SHORT;
jrose@726 845 case itos : return T_INT;
jrose@726 846 case ltos : return T_LONG;
jrose@726 847 case ftos : return T_FLOAT;
jrose@726 848 case dtos : return T_DOUBLE;
jrose@726 849 case atos : return T_OBJECT;
jrose@726 850 case vtos : return T_VOID;
jrose@726 851 }
jrose@726 852 return T_ILLEGAL;
jrose@726 853 }
jrose@726 854
duke@0 855
duke@0 856 // Helper function to convert BasicType info into TosState
duke@0 857 // Note: Cannot define here as it uses global constant at the time being.
duke@0 858 TosState as_TosState(BasicType type);
duke@0 859
duke@0 860
duke@0 861 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@0 862 // information is needed by the safepoint code.
duke@0 863 //
duke@0 864 // There are 4 essential states:
duke@0 865 //
duke@0 866 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@0 867 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@0 868 // _thread_in_vm : Executing in the vm
duke@0 869 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@0 870 //
duke@0 871 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@0 872 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@0 873 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@0 874 //
duke@0 875 // Given a state, the xxx_trans state can always be found by adding 1.
duke@0 876 //
duke@0 877 enum JavaThreadState {
duke@0 878 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@0 879 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@0 880 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@0 881 _thread_in_native = 4, // running in native code
duke@0 882 _thread_in_native_trans = 5, // corresponding transition state
duke@0 883 _thread_in_vm = 6, // running in VM
duke@0 884 _thread_in_vm_trans = 7, // corresponding transition state
duke@0 885 _thread_in_Java = 8, // running in Java or in stub code
duke@0 886 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@0 887 _thread_blocked = 10, // blocked in vm
duke@0 888 _thread_blocked_trans = 11, // corresponding transition state
duke@0 889 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@0 890 };
duke@0 891
duke@0 892
duke@0 893 // Handy constants for deciding which compiler mode to use.
duke@0 894 enum MethodCompilation {
thartmann@7072 895 InvocationEntryBci = -1 // i.e., not a on-stack replacement compilation
duke@0 896 };
duke@0 897
duke@0 898 // Enumeration to distinguish tiers of compilation
duke@0 899 enum CompLevel {
iveresov@1703 900 CompLevel_any = -1,
iveresov@1703 901 CompLevel_all = -1,
iveresov@1703 902 CompLevel_none = 0, // Interpreter
iveresov@1703 903 CompLevel_simple = 1, // C1
iveresov@1703 904 CompLevel_limited_profile = 2, // C1, invocation & backedge counters
iveresov@1703 905 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo
twisti@2294 906 CompLevel_full_optimization = 4, // C2 or Shark
duke@0 907
twisti@2294 908 #if defined(COMPILER2) || defined(SHARK)
iveresov@1703 909 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered
iveresov@1703 910 #elif defined(COMPILER1)
iveresov@1703 911 CompLevel_highest_tier = CompLevel_simple, // pure C1
duke@0 912 #else
iveresov@1703 913 CompLevel_highest_tier = CompLevel_none,
iveresov@1703 914 #endif
iveresov@1703 915
iveresov@1703 916 #if defined(TIERED)
iveresov@1703 917 CompLevel_initial_compile = CompLevel_full_profile // tiered
iveresov@1703 918 #elif defined(COMPILER1)
iveresov@1703 919 CompLevel_initial_compile = CompLevel_simple // pure C1
twisti@2294 920 #elif defined(COMPILER2) || defined(SHARK)
iveresov@1703 921 CompLevel_initial_compile = CompLevel_full_optimization // pure C2
iveresov@1703 922 #else
iveresov@1703 923 CompLevel_initial_compile = CompLevel_none
iveresov@1703 924 #endif
duke@0 925 };
duke@0 926
iveresov@1703 927 inline bool is_c1_compile(int comp_level) {
iveresov@1703 928 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
duke@0 929 }
iveresov@1703 930
iveresov@1703 931 inline bool is_c2_compile(int comp_level) {
duke@0 932 return comp_level == CompLevel_full_optimization;
duke@0 933 }
iveresov@1703 934
duke@0 935 inline bool is_highest_tier_compile(int comp_level) {
duke@0 936 return comp_level == CompLevel_highest_tier;
duke@0 937 }
duke@0 938
iignatyev@4473 939 inline bool is_compile(int comp_level) {
iignatyev@4473 940 return is_c1_compile(comp_level) || is_c2_compile(comp_level);
iignatyev@4473 941 }
iignatyev@4473 942
duke@0 943 //----------------------------------------------------------------------------------------------------
duke@0 944 // 'Forward' declarations of frequently used classes
duke@0 945 // (in order to reduce interface dependencies & reduce
duke@0 946 // number of unnecessary compilations after changes)
duke@0 947
duke@0 948 class symbolTable;
duke@0 949 class ClassFileStream;
duke@0 950
duke@0 951 class Event;
duke@0 952
duke@0 953 class Thread;
duke@0 954 class VMThread;
duke@0 955 class JavaThread;
duke@0 956 class Threads;
duke@0 957
duke@0 958 class VM_Operation;
duke@0 959 class VMOperationQueue;
duke@0 960
duke@0 961 class CodeBlob;
duke@0 962 class nmethod;
duke@0 963 class OSRAdapter;
duke@0 964 class I2CAdapter;
duke@0 965 class C2IAdapter;
duke@0 966 class CompiledIC;
duke@0 967 class relocInfo;
duke@0 968 class ScopeDesc;
duke@0 969 class PcDesc;
duke@0 970
duke@0 971 class Recompiler;
duke@0 972 class Recompilee;
duke@0 973 class RecompilationPolicy;
duke@0 974 class RFrame;
duke@0 975 class CompiledRFrame;
duke@0 976 class InterpretedRFrame;
duke@0 977
duke@0 978 class frame;
duke@0 979
duke@0 980 class vframe;
duke@0 981 class javaVFrame;
duke@0 982 class interpretedVFrame;
duke@0 983 class compiledVFrame;
duke@0 984 class deoptimizedVFrame;
duke@0 985 class externalVFrame;
duke@0 986 class entryVFrame;
duke@0 987
duke@0 988 class RegisterMap;
duke@0 989
duke@0 990 class Mutex;
duke@0 991 class Monitor;
duke@0 992 class BasicLock;
duke@0 993 class BasicObjectLock;
duke@0 994
duke@0 995 class PeriodicTask;
duke@0 996
duke@0 997 class JavaCallWrapper;
duke@0 998
duke@0 999 class oopDesc;
coleenp@3602 1000 class metaDataOopDesc;
duke@0 1001
duke@0 1002 class NativeCall;
duke@0 1003
duke@0 1004 class zone;
duke@0 1005
duke@0 1006 class StubQueue;
duke@0 1007
duke@0 1008 class outputStream;
duke@0 1009
duke@0 1010 class ResourceArea;
duke@0 1011
duke@0 1012 class DebugInformationRecorder;
duke@0 1013 class ScopeValue;
duke@0 1014 class CompressedStream;
duke@0 1015 class DebugInfoReadStream;
duke@0 1016 class DebugInfoWriteStream;
duke@0 1017 class LocationValue;
duke@0 1018 class ConstantValue;
duke@0 1019 class IllegalValue;
duke@0 1020
duke@0 1021 class PrivilegedElement;
duke@0 1022 class MonitorArray;
duke@0 1023
duke@0 1024 class MonitorInfo;
duke@0 1025
duke@0 1026 class OffsetClosure;
duke@0 1027 class OopMapCache;
duke@0 1028 class InterpreterOopMap;
duke@0 1029 class OopMapCacheEntry;
duke@0 1030 class OSThread;
duke@0 1031
duke@0 1032 typedef int (*OSThreadStartFunc)(void*);
duke@0 1033
duke@0 1034 class Space;
duke@0 1035
duke@0 1036 class JavaValue;
duke@0 1037 class methodHandle;
duke@0 1038 class JavaCallArguments;
duke@0 1039
duke@0 1040 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@0 1041
duke@0 1042 extern void basic_fatal(const char* msg);
duke@0 1043
duke@0 1044
duke@0 1045 //----------------------------------------------------------------------------------------------------
duke@0 1046 // Special constants for debugging
duke@0 1047
duke@0 1048 const jint badInt = -3; // generic "bad int" value
duke@0 1049 const long badAddressVal = -2; // generic "bad address" value
duke@0 1050 const long badOopVal = -1; // generic "bad oop" value
duke@0 1051 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@0 1052 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@0 1053 const int badResourceValue = 0xAB; // value used to zap resource area
duke@0 1054 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@0 1055 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
goetz@7331 1056 const intptr_t badJNIHandleVal = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@0 1057 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
coleenp@3602 1058 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
duke@0 1059 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@0 1060 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@0 1061
duke@0 1062
duke@0 1063 // (These must be implemented as #defines because C++ compilers are
duke@0 1064 // not obligated to inline non-integral constants!)
duke@0 1065 #define badAddress ((address)::badAddressVal)
hseigel@5349 1066 #define badOop (cast_to_oop(::badOopVal))
duke@0 1067 #define badHeapWord (::badHeapWordVal)
hseigel@5349 1068 #define badJNIHandle (cast_to_oop(::badJNIHandleVal))
duke@0 1069
jcoomes@1311 1070 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
jcoomes@1311 1071 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
duke@0 1072
duke@0 1073 //----------------------------------------------------------------------------------------------------
duke@0 1074 // Utility functions for bitfield manipulations
duke@0 1075
duke@0 1076 const intptr_t AllBits = ~0; // all bits set in a word
duke@0 1077 const intptr_t NoBits = 0; // no bits set in a word
duke@0 1078 const jlong NoLongBits = 0; // no bits set in a long
duke@0 1079 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@0 1080
duke@0 1081 // get a word with the n.th or the right-most or left-most n bits set
duke@0 1082 // (note: #define used only so that they can be used in enum constant definitions)
duke@0 1083 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
duke@0 1084 #define right_n_bits(n) (nth_bit(n) - 1)
duke@0 1085 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
duke@0 1086
duke@0 1087 // bit-operations using a mask m
duke@0 1088 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@0 1089 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@0 1090 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@0 1091 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@0 1092 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@0 1093
duke@0 1094 // bit-operations using the n.th bit
duke@0 1095 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@0 1096 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@0 1097 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@0 1098
duke@0 1099 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@0 1100 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@0 1101 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@0 1102 }
duke@0 1103
duke@0 1104
duke@0 1105 //----------------------------------------------------------------------------------------------------
duke@0 1106 // Utility functions for integers
duke@0 1107
duke@0 1108 // Avoid use of global min/max macros which may cause unwanted double
duke@0 1109 // evaluation of arguments.
duke@0 1110 #ifdef max
duke@0 1111 #undef max
duke@0 1112 #endif
duke@0 1113
duke@0 1114 #ifdef min
duke@0 1115 #undef min
duke@0 1116 #endif
duke@0 1117
duke@0 1118 #define max(a,b) Do_not_use_max_use_MAX2_instead
duke@0 1119 #define min(a,b) Do_not_use_min_use_MIN2_instead
duke@0 1120
duke@0 1121 // It is necessary to use templates here. Having normal overloaded
duke@0 1122 // functions does not work because it is necessary to provide both 32-
duke@0 1123 // and 64-bit overloaded functions, which does not work, and having
duke@0 1124 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@0 1125 // will be even more error-prone than macros.
duke@0 1126 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@0 1127 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@0 1128 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@0 1129 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@0 1130 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@0 1131 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@0 1132
duke@0 1133 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@0 1134
duke@0 1135 // true if x is a power of 2, false otherwise
duke@0 1136 inline bool is_power_of_2(intptr_t x) {
duke@0 1137 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@0 1138 }
duke@0 1139
duke@0 1140 // long version of is_power_of_2
duke@0 1141 inline bool is_power_of_2_long(jlong x) {
duke@0 1142 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@0 1143 }
duke@0 1144
zmajo@7740 1145 // Returns largest i such that 2^i <= x.
zmajo@7740 1146 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
zmajo@7740 1147 // If x == 0, the function returns -1.
duke@0 1148 inline int log2_intptr(intptr_t x) {
duke@0 1149 int i = -1;
zmajo@7740 1150 uintptr_t p = 1;
duke@0 1151 while (p != 0 && p <= (uintptr_t)x) {
duke@0 1152 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@0 1153 i++; p *= 2;
duke@0 1154 }
duke@0 1155 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
zmajo@7740 1156 // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
duke@0 1157 return i;
duke@0 1158 }
duke@0 1159
duke@0 1160 //* largest i such that 2^i <= x
duke@0 1161 // A negative value of 'x' will return '63'
duke@0 1162 inline int log2_long(jlong x) {
duke@0 1163 int i = -1;
duke@0 1164 julong p = 1;
duke@0 1165 while (p != 0 && p <= (julong)x) {
duke@0 1166 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@0 1167 i++; p *= 2;
duke@0 1168 }
duke@0 1169 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@605 1170 // (if p = 0 then overflow occurred and i = 63)
duke@0 1171 return i;
duke@0 1172 }
duke@0 1173
duke@0 1174 //* the argument must be exactly a power of 2
duke@0 1175 inline int exact_log2(intptr_t x) {
duke@0 1176 #ifdef ASSERT
duke@0 1177 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@0 1178 #endif
duke@0 1179 return log2_intptr(x);
duke@0 1180 }
duke@0 1181
twisti@568 1182 //* the argument must be exactly a power of 2
twisti@568 1183 inline int exact_log2_long(jlong x) {
twisti@568 1184 #ifdef ASSERT
twisti@568 1185 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@568 1186 #endif
twisti@568 1187 return log2_long(x);
twisti@568 1188 }
twisti@568 1189
duke@0 1190
duke@0 1191 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@0 1192 inline intptr_t round_to(intptr_t x, uintx s) {
duke@0 1193 #ifdef ASSERT
duke@0 1194 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@0 1195 #endif
duke@0 1196 const uintx m = s - 1;
duke@0 1197 return mask_bits(x + m, ~m);
duke@0 1198 }
duke@0 1199
duke@0 1200 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@0 1201 inline intptr_t round_down(intptr_t x, uintx s) {
duke@0 1202 #ifdef ASSERT
duke@0 1203 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@0 1204 #endif
duke@0 1205 const uintx m = s - 1;
duke@0 1206 return mask_bits(x, ~m);
duke@0 1207 }
duke@0 1208
duke@0 1209
duke@0 1210 inline bool is_odd (intx x) { return x & 1; }
duke@0 1211 inline bool is_even(intx x) { return !is_odd(x); }
duke@0 1212
duke@0 1213 // "to" should be greater than "from."
duke@0 1214 inline intx byte_size(void* from, void* to) {
duke@0 1215 return (address)to - (address)from;
duke@0 1216 }
duke@0 1217
duke@0 1218 //----------------------------------------------------------------------------------------------------
duke@0 1219 // Avoid non-portable casts with these routines (DEPRECATED)
duke@0 1220
duke@0 1221 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@0 1222 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@0 1223
duke@0 1224 // Given sequence of four bytes, build into a 32-bit word
duke@0 1225 // following the conventions used in class files.
duke@0 1226 // On the 386, this could be realized with a simple address cast.
duke@0 1227 //
duke@0 1228
duke@0 1229 // This routine takes eight bytes:
duke@0 1230 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@1709 1231 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
twisti@1709 1232 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
twisti@1709 1233 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
twisti@1709 1234 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
twisti@1709 1235 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
twisti@1709 1236 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
twisti@1709 1237 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
twisti@1709 1238 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
duke@0 1239 }
duke@0 1240
duke@0 1241 // This routine takes four bytes:
duke@0 1242 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
twisti@1709 1243 return (( u4(c1) << 24 ) & 0xff000000)
twisti@1709 1244 | (( u4(c2) << 16 ) & 0x00ff0000)
twisti@1709 1245 | (( u4(c3) << 8 ) & 0x0000ff00)
twisti@1709 1246 | (( u4(c4) << 0 ) & 0x000000ff);
duke@0 1247 }
duke@0 1248
duke@0 1249 // And this one works if the four bytes are contiguous in memory:
duke@0 1250 inline u4 build_u4_from( u1* p ) {
duke@0 1251 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@0 1252 }
duke@0 1253
duke@0 1254 // Ditto for two-byte ints:
duke@0 1255 inline u2 build_u2_from( u1 c1, u1 c2 ) {
twisti@1709 1256 return u2((( u2(c1) << 8 ) & 0xff00)
twisti@1709 1257 | (( u2(c2) << 0 ) & 0x00ff));
duke@0 1258 }
duke@0 1259
duke@0 1260 // And this one works if the two bytes are contiguous in memory:
duke@0 1261 inline u2 build_u2_from( u1* p ) {
duke@0 1262 return build_u2_from( p[0], p[1] );
duke@0 1263 }
duke@0 1264
duke@0 1265 // Ditto for floats:
duke@0 1266 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@0 1267 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@0 1268 return *(jfloat*)&u;
duke@0 1269 }
duke@0 1270
duke@0 1271 inline jfloat build_float_from( u1* p ) {
duke@0 1272 u4 u = build_u4_from( p );
duke@0 1273 return *(jfloat*)&u;
duke@0 1274 }
duke@0 1275
duke@0 1276
duke@0 1277 // now (64-bit) longs
duke@0 1278
duke@0 1279 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@1709 1280 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
twisti@1709 1281 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
twisti@1709 1282 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
twisti@1709 1283 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
twisti@1709 1284 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
twisti@1709 1285 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
twisti@1709 1286 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
twisti@1709 1287 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
duke@0 1288 }
duke@0 1289
duke@0 1290 inline jlong build_long_from( u1* p ) {
duke@0 1291 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@0 1292 }
duke@0 1293
duke@0 1294
duke@0 1295 // Doubles, too!
duke@0 1296 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@0 1297 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@0 1298 return *(jdouble*)&u;
duke@0 1299 }
duke@0 1300
duke@0 1301 inline jdouble build_double_from( u1* p ) {
duke@0 1302 jlong u = build_long_from( p );
duke@0 1303 return *(jdouble*)&u;
duke@0 1304 }
duke@0 1305
duke@0 1306
duke@0 1307 // Portable routines to go the other way:
duke@0 1308
duke@0 1309 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@0 1310 c1 = u1(x >> 8);
duke@0 1311 c2 = u1(x);
duke@0 1312 }
duke@0 1313
duke@0 1314 inline void explode_short_to( u2 x, u1* p ) {
duke@0 1315 explode_short_to( x, p[0], p[1]);
duke@0 1316 }
duke@0 1317
duke@0 1318 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@0 1319 c1 = u1(x >> 24);
duke@0 1320 c2 = u1(x >> 16);
duke@0 1321 c3 = u1(x >> 8);
duke@0 1322 c4 = u1(x);
duke@0 1323 }
duke@0 1324
duke@0 1325 inline void explode_int_to( u4 x, u1* p ) {
duke@0 1326 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@0 1327 }
duke@0 1328
duke@0 1329
duke@0 1330 // Pack and extract shorts to/from ints:
duke@0 1331
duke@0 1332 inline int extract_low_short_from_int(jint x) {
duke@0 1333 return x & 0xffff;
duke@0 1334 }
duke@0 1335
duke@0 1336 inline int extract_high_short_from_int(jint x) {
duke@0 1337 return (x >> 16) & 0xffff;
duke@0 1338 }
duke@0 1339
duke@0 1340 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@0 1341 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@0 1342 }
duke@0 1343
drchase@6412 1344 // Convert pointer to intptr_t, for use in printing pointers.
drchase@6412 1345 inline intptr_t p2i(const void * p) {
drchase@6412 1346 return (intptr_t) p;
drchase@6412 1347 }
drchase@6412 1348
duke@0 1349 // Printf-style formatters for fixed- and variable-width types as pointers and
never@2721 1350 // integers. These are derived from the definitions in inttypes.h. If the platform
never@2721 1351 // doesn't provide appropriate definitions, they should be provided in
never@2721 1352 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@0 1353
tonyp@2208 1354 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
tonyp@2037 1355
duke@0 1356 // Format 32-bit quantities.
never@2721 1357 #define INT32_FORMAT "%" PRId32
never@2721 1358 #define UINT32_FORMAT "%" PRIu32
never@2721 1359 #define INT32_FORMAT_W(width) "%" #width PRId32
never@2721 1360 #define UINT32_FORMAT_W(width) "%" #width PRIu32
duke@0 1361
never@2721 1362 #define PTR32_FORMAT "0x%08" PRIx32
duke@0 1363
duke@0 1364 // Format 64-bit quantities.
never@2721 1365 #define INT64_FORMAT "%" PRId64
never@2721 1366 #define UINT64_FORMAT "%" PRIu64
drchase@6412 1367 #define UINT64_FORMAT_X "%" PRIx64
never@2721 1368 #define INT64_FORMAT_W(width) "%" #width PRId64
never@2721 1369 #define UINT64_FORMAT_W(width) "%" #width PRIu64
duke@0 1370
never@2721 1371 #define PTR64_FORMAT "0x%016" PRIx64
duke@0 1372
hseigel@4030 1373 // Format jlong, if necessary
hseigel@4030 1374 #ifndef JLONG_FORMAT
hseigel@4030 1375 #define JLONG_FORMAT INT64_FORMAT
hseigel@4030 1376 #endif
hseigel@4030 1377 #ifndef JULONG_FORMAT
hseigel@4030 1378 #define JULONG_FORMAT UINT64_FORMAT
hseigel@4030 1379 #endif
minqi@6446 1380 #ifndef JULONG_FORMAT_X
minqi@6446 1381 #define JULONG_FORMAT_X UINT64_FORMAT_X
minqi@6446 1382 #endif
hseigel@4030 1383
never@2721 1384 // Format pointers which change size between 32- and 64-bit.
duke@0 1385 #ifdef _LP64
never@2721 1386 #define INTPTR_FORMAT "0x%016" PRIxPTR
never@2721 1387 #define PTR_FORMAT "0x%016" PRIxPTR
duke@0 1388 #else // !_LP64
never@2721 1389 #define INTPTR_FORMAT "0x%08" PRIxPTR
never@2721 1390 #define PTR_FORMAT "0x%08" PRIxPTR
duke@0 1391 #endif // _LP64
duke@0 1392
drchase@6412 1393 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR
drchase@6412 1394
stefank@6324 1395 #define SSIZE_FORMAT "%" PRIdPTR
stefank@6324 1396 #define SIZE_FORMAT "%" PRIuPTR
stefank@6324 1397 #define SIZE_FORMAT_HEX "0x%" PRIxPTR
stefank@6324 1398 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
stefank@6324 1399 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR
stefank@6324 1400 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
never@2721 1401
never@2721 1402 #define INTX_FORMAT "%" PRIdPTR
never@2721 1403 #define UINTX_FORMAT "%" PRIuPTR
never@2721 1404 #define INTX_FORMAT_W(width) "%" #width PRIdPTR
never@2721 1405 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
never@2721 1406
duke@0 1407
duke@0 1408 // Enable zap-a-lot if in debug version.
duke@0 1409
duke@0 1410 # ifdef ASSERT
duke@0 1411 # ifdef COMPILER2
duke@0 1412 # define ENABLE_ZAP_DEAD_LOCALS
duke@0 1413 #endif /* COMPILER2 */
duke@0 1414 # endif /* ASSERT */
duke@0 1415
duke@0 1416 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
stefank@1879 1417
coleenp@3860 1418 // Dereference vptr
coleenp@3860 1419 // All C++ compilers that we know of have the vtbl pointer in the first
coleenp@3860 1420 // word. If there are exceptions, this function needs to be made compiler
coleenp@3860 1421 // specific.
coleenp@6445 1422 static inline void* dereference_vptr(const void* addr) {
coleenp@3860 1423 return *(void**)addr;
coleenp@3860 1424 }
coleenp@3860 1425
mikael@4454 1426 #ifndef PRODUCT
mikael@4454 1427
mikael@4454 1428 // For unit testing only
mikael@4454 1429 class GlobalDefinitions {
mikael@4454 1430 public:
mikael@4454 1431 static void test_globals();
mikael@4454 1432 };
mikael@4454 1433
mikael@4454 1434 #endif // PRODUCT
mikael@4454 1435
stefank@1879 1436 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP