annotate src/share/vm/oops/methodData.hpp @ 6430:975d903e1de3

8032463: VirtualDispatch test timeout with DeoptimizeALot Summary: Introduce code aging for warm method detection Reviewed-by: kvn, twisti
author iveresov
date Tue, 13 May 2014 11:32:10 -0700
parents eb8897b2687e
children 75e1ec763270
rev   line source
duke@0 1 /*
acorn@4062 2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
trims@1472 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1472 20 * or visit www.oracle.com if you need additional information or have any
trims@1472 21 * questions.
duke@0 22 *
duke@0 23 */
duke@0 24
stefank@1879 25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
stefank@1879 26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
stefank@1879 27
stefank@1879 28 #include "interpreter/bytecodes.hpp"
stefank@1879 29 #include "memory/universe.hpp"
coleenp@3602 30 #include "oops/method.hpp"
stefank@1879 31 #include "oops/oop.hpp"
stefank@1879 32 #include "runtime/orderAccess.hpp"
stefank@1879 33
duke@0 34 class BytecodeStream;
acorn@4062 35 class KlassSizeStats;
duke@0 36
duke@0 37 // The MethodData object collects counts and other profile information
duke@0 38 // during zeroth-tier (interpretive) and first-tier execution.
duke@0 39 // The profile is used later by compilation heuristics. Some heuristics
duke@0 40 // enable use of aggressive (or "heroic") optimizations. An aggressive
duke@0 41 // optimization often has a down-side, a corner case that it handles
duke@0 42 // poorly, but which is thought to be rare. The profile provides
duke@0 43 // evidence of this rarity for a given method or even BCI. It allows
duke@0 44 // the compiler to back out of the optimization at places where it
duke@0 45 // has historically been a poor choice. Other heuristics try to use
duke@0 46 // specific information gathered about types observed at a given site.
duke@0 47 //
duke@0 48 // All data in the profile is approximate. It is expected to be accurate
duke@0 49 // on the whole, but the system expects occasional inaccuraces, due to
duke@0 50 // counter overflow, multiprocessor races during data collection, space
duke@0 51 // limitations, missing MDO blocks, etc. Bad or missing data will degrade
duke@0 52 // optimization quality but will not affect correctness. Also, each MDO
duke@0 53 // is marked with its birth-date ("creation_mileage") which can be used
duke@0 54 // to assess the quality ("maturity") of its data.
duke@0 55 //
duke@0 56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
duke@0 57 // state. Also, certain recorded per-BCI events are given one-bit counters
duke@0 58 // which overflow to a saturated state which applied to all counters at
duke@0 59 // that BCI. In other words, there is a small lattice which approximates
duke@0 60 // the ideal of an infinite-precision counter for each event at each BCI,
duke@0 61 // and the lattice quickly "bottoms out" in a state where all counters
duke@0 62 // are taken to be indefinitely large.
duke@0 63 //
duke@0 64 // The reader will find many data races in profile gathering code, starting
duke@0 65 // with invocation counter incrementation. None of these races harm correct
duke@0 66 // execution of the compiled code.
duke@0 67
ysr@941 68 // forward decl
ysr@941 69 class ProfileData;
ysr@941 70
duke@0 71 // DataLayout
duke@0 72 //
duke@0 73 // Overlay for generic profiling data.
duke@0 74 class DataLayout VALUE_OBJ_CLASS_SPEC {
twisti@5291 75 friend class VMStructs;
twisti@5291 76
duke@0 77 private:
duke@0 78 // Every data layout begins with a header. This header
duke@0 79 // contains a tag, which is used to indicate the size/layout
duke@0 80 // of the data, 4 bits of flags, which can be used in any way,
duke@0 81 // 4 bits of trap history (none/one reason/many reasons),
duke@0 82 // and a bci, which is used to tie this piece of data to a
duke@0 83 // specific bci in the bytecodes.
duke@0 84 union {
duke@0 85 intptr_t _bits;
duke@0 86 struct {
duke@0 87 u1 _tag;
duke@0 88 u1 _flags;
duke@0 89 u2 _bci;
duke@0 90 } _struct;
duke@0 91 } _header;
duke@0 92
duke@0 93 // The data layout has an arbitrary number of cells, each sized
duke@0 94 // to accomodate a pointer or an integer.
duke@0 95 intptr_t _cells[1];
duke@0 96
duke@0 97 // Some types of data layouts need a length field.
duke@0 98 static bool needs_array_len(u1 tag);
duke@0 99
duke@0 100 public:
duke@0 101 enum {
duke@0 102 counter_increment = 1
duke@0 103 };
duke@0 104
duke@0 105 enum {
duke@0 106 cell_size = sizeof(intptr_t)
duke@0 107 };
duke@0 108
duke@0 109 // Tag values
duke@0 110 enum {
duke@0 111 no_tag,
duke@0 112 bit_data_tag,
duke@0 113 counter_data_tag,
duke@0 114 jump_data_tag,
duke@0 115 receiver_type_data_tag,
duke@0 116 virtual_call_data_tag,
duke@0 117 ret_data_tag,
duke@0 118 branch_data_tag,
kvn@45 119 multi_branch_data_tag,
roland@5479 120 arg_info_data_tag,
roland@5479 121 call_type_data_tag,
roland@5552 122 virtual_call_type_data_tag,
roland@6054 123 parameters_type_data_tag,
roland@6054 124 speculative_trap_data_tag
duke@0 125 };
duke@0 126
duke@0 127 enum {
duke@0 128 // The _struct._flags word is formatted as [trap_state:4 | flags:4].
duke@0 129 // The trap state breaks down further as [recompile:1 | reason:3].
duke@0 130 // This further breakdown is defined in deoptimization.cpp.
duke@0 131 // See Deoptimization::trap_state_reason for an assert that
duke@0 132 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
duke@0 133 //
duke@0 134 // The trap_state is collected only if ProfileTraps is true.
duke@0 135 trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
duke@0 136 trap_shift = BitsPerByte - trap_bits,
duke@0 137 trap_mask = right_n_bits(trap_bits),
duke@0 138 trap_mask_in_place = (trap_mask << trap_shift),
duke@0 139 flag_limit = trap_shift,
duke@0 140 flag_mask = right_n_bits(flag_limit),
duke@0 141 first_flag = 0
duke@0 142 };
duke@0 143
duke@0 144 // Size computation
duke@0 145 static int header_size_in_bytes() {
duke@0 146 return cell_size;
duke@0 147 }
duke@0 148 static int header_size_in_cells() {
duke@0 149 return 1;
duke@0 150 }
duke@0 151
duke@0 152 static int compute_size_in_bytes(int cell_count) {
duke@0 153 return header_size_in_bytes() + cell_count * cell_size;
duke@0 154 }
duke@0 155
duke@0 156 // Initialization
duke@0 157 void initialize(u1 tag, u2 bci, int cell_count);
duke@0 158
duke@0 159 // Accessors
duke@0 160 u1 tag() {
duke@0 161 return _header._struct._tag;
duke@0 162 }
duke@0 163
duke@0 164 // Return a few bits of trap state. Range is [0..trap_mask].
duke@0 165 // The state tells if traps with zero, one, or many reasons have occurred.
duke@0 166 // It also tells whether zero or many recompilations have occurred.
duke@0 167 // The associated trap histogram in the MDO itself tells whether
duke@0 168 // traps are common or not. If a BCI shows that a trap X has
duke@0 169 // occurred, and the MDO shows N occurrences of X, we make the
duke@0 170 // simplifying assumption that all N occurrences can be blamed
duke@0 171 // on that BCI.
roland@5479 172 int trap_state() const {
duke@0 173 return ((_header._struct._flags >> trap_shift) & trap_mask);
duke@0 174 }
duke@0 175
duke@0 176 void set_trap_state(int new_state) {
duke@0 177 assert(ProfileTraps, "used only under +ProfileTraps");
duke@0 178 uint old_flags = (_header._struct._flags & flag_mask);
duke@0 179 _header._struct._flags = (new_state << trap_shift) | old_flags;
duke@0 180 }
duke@0 181
roland@5479 182 u1 flags() const {
duke@0 183 return _header._struct._flags;
duke@0 184 }
duke@0 185
roland@5479 186 u2 bci() const {
duke@0 187 return _header._struct._bci;
duke@0 188 }
duke@0 189
duke@0 190 void set_header(intptr_t value) {
duke@0 191 _header._bits = value;
duke@0 192 }
duke@0 193 intptr_t header() {
duke@0 194 return _header._bits;
duke@0 195 }
duke@0 196 void set_cell_at(int index, intptr_t value) {
duke@0 197 _cells[index] = value;
duke@0 198 }
duke@0 199 void release_set_cell_at(int index, intptr_t value) {
duke@0 200 OrderAccess::release_store_ptr(&_cells[index], value);
duke@0 201 }
roland@5479 202 intptr_t cell_at(int index) const {
duke@0 203 return _cells[index];
duke@0 204 }
duke@0 205
duke@0 206 void set_flag_at(int flag_number) {
duke@0 207 assert(flag_number < flag_limit, "oob");
duke@0 208 _header._struct._flags |= (0x1 << flag_number);
duke@0 209 }
roland@5479 210 bool flag_at(int flag_number) const {
duke@0 211 assert(flag_number < flag_limit, "oob");
duke@0 212 return (_header._struct._flags & (0x1 << flag_number)) != 0;
duke@0 213 }
duke@0 214
duke@0 215 // Low-level support for code generation.
duke@0 216 static ByteSize header_offset() {
duke@0 217 return byte_offset_of(DataLayout, _header);
duke@0 218 }
duke@0 219 static ByteSize tag_offset() {
duke@0 220 return byte_offset_of(DataLayout, _header._struct._tag);
duke@0 221 }
duke@0 222 static ByteSize flags_offset() {
duke@0 223 return byte_offset_of(DataLayout, _header._struct._flags);
duke@0 224 }
duke@0 225 static ByteSize bci_offset() {
duke@0 226 return byte_offset_of(DataLayout, _header._struct._bci);
duke@0 227 }
duke@0 228 static ByteSize cell_offset(int index) {
coleenp@2180 229 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
duke@0 230 }
goetz@5974 231 #ifdef CC_INTERP
goetz@5974 232 static int cell_offset_in_bytes(int index) {
goetz@5974 233 return (int)offset_of(DataLayout, _cells[index]);
goetz@5974 234 }
goetz@5974 235 #endif // CC_INTERP
duke@0 236 // Return a value which, when or-ed as a byte into _flags, sets the flag.
duke@0 237 static int flag_number_to_byte_constant(int flag_number) {
duke@0 238 assert(0 <= flag_number && flag_number < flag_limit, "oob");
duke@0 239 DataLayout temp; temp.set_header(0);
duke@0 240 temp.set_flag_at(flag_number);
duke@0 241 return temp._header._struct._flags;
duke@0 242 }
duke@0 243 // Return a value which, when or-ed as a word into _header, sets the flag.
duke@0 244 static intptr_t flag_mask_to_header_mask(int byte_constant) {
duke@0 245 DataLayout temp; temp.set_header(0);
duke@0 246 temp._header._struct._flags = byte_constant;
duke@0 247 return temp._header._bits;
duke@0 248 }
ysr@941 249
coleenp@3602 250 ProfileData* data_in();
coleenp@3602 251
ysr@941 252 // GC support
coleenp@3602 253 void clean_weak_klass_links(BoolObjectClosure* cl);
roland@6247 254
roland@6247 255 // Redefinition support
roland@6247 256 void clean_weak_method_links();
duke@0 257 };
duke@0 258
duke@0 259
duke@0 260 // ProfileData class hierarchy
duke@0 261 class ProfileData;
duke@0 262 class BitData;
duke@0 263 class CounterData;
duke@0 264 class ReceiverTypeData;
duke@0 265 class VirtualCallData;
roland@5479 266 class VirtualCallTypeData;
duke@0 267 class RetData;
roland@5479 268 class CallTypeData;
duke@0 269 class JumpData;
duke@0 270 class BranchData;
duke@0 271 class ArrayData;
duke@0 272 class MultiBranchData;
kvn@45 273 class ArgInfoData;
roland@5552 274 class ParametersTypeData;
roland@6054 275 class SpeculativeTrapData;
duke@0 276
duke@0 277 // ProfileData
duke@0 278 //
duke@0 279 // A ProfileData object is created to refer to a section of profiling
duke@0 280 // data in a structured way.
duke@0 281 class ProfileData : public ResourceObj {
roland@5479 282 friend class TypeEntries;
roland@5486 283 friend class ReturnTypeEntry;
roland@5479 284 friend class TypeStackSlotEntries;
duke@0 285 private:
duke@0 286 enum {
duke@0 287 tab_width_one = 16,
duke@0 288 tab_width_two = 36
duke@0 289 };
duke@0 290
duke@0 291 // This is a pointer to a section of profiling data.
duke@0 292 DataLayout* _data;
duke@0 293
roland@6054 294 char* print_data_on_helper(const MethodData* md) const;
roland@6054 295
duke@0 296 protected:
duke@0 297 DataLayout* data() { return _data; }
roland@5479 298 const DataLayout* data() const { return _data; }
duke@0 299
duke@0 300 enum {
duke@0 301 cell_size = DataLayout::cell_size
duke@0 302 };
duke@0 303
duke@0 304 public:
duke@0 305 // How many cells are in this?
roland@5479 306 virtual int cell_count() const {
duke@0 307 ShouldNotReachHere();
duke@0 308 return -1;
duke@0 309 }
duke@0 310
duke@0 311 // Return the size of this data.
duke@0 312 int size_in_bytes() {
duke@0 313 return DataLayout::compute_size_in_bytes(cell_count());
duke@0 314 }
duke@0 315
duke@0 316 protected:
duke@0 317 // Low-level accessors for underlying data
duke@0 318 void set_intptr_at(int index, intptr_t value) {
duke@0 319 assert(0 <= index && index < cell_count(), "oob");
duke@0 320 data()->set_cell_at(index, value);
duke@0 321 }
duke@0 322 void release_set_intptr_at(int index, intptr_t value) {
duke@0 323 assert(0 <= index && index < cell_count(), "oob");
duke@0 324 data()->release_set_cell_at(index, value);
duke@0 325 }
roland@5479 326 intptr_t intptr_at(int index) const {
duke@0 327 assert(0 <= index && index < cell_count(), "oob");
duke@0 328 return data()->cell_at(index);
duke@0 329 }
duke@0 330 void set_uint_at(int index, uint value) {
duke@0 331 set_intptr_at(index, (intptr_t) value);
duke@0 332 }
duke@0 333 void release_set_uint_at(int index, uint value) {
duke@0 334 release_set_intptr_at(index, (intptr_t) value);
duke@0 335 }
roland@5479 336 uint uint_at(int index) const {
duke@0 337 return (uint)intptr_at(index);
duke@0 338 }
duke@0 339 void set_int_at(int index, int value) {
duke@0 340 set_intptr_at(index, (intptr_t) value);
duke@0 341 }
duke@0 342 void release_set_int_at(int index, int value) {
duke@0 343 release_set_intptr_at(index, (intptr_t) value);
duke@0 344 }
roland@5479 345 int int_at(int index) const {
duke@0 346 return (int)intptr_at(index);
duke@0 347 }
roland@5479 348 int int_at_unchecked(int index) const {
duke@0 349 return (int)data()->cell_at(index);
duke@0 350 }
duke@0 351 void set_oop_at(int index, oop value) {
hseigel@5349 352 set_intptr_at(index, cast_from_oop<intptr_t>(value));
duke@0 353 }
roland@5479 354 oop oop_at(int index) const {
hseigel@5349 355 return cast_to_oop(intptr_at(index));
duke@0 356 }
duke@0 357
duke@0 358 void set_flag_at(int flag_number) {
duke@0 359 data()->set_flag_at(flag_number);
duke@0 360 }
roland@5479 361 bool flag_at(int flag_number) const {
duke@0 362 return data()->flag_at(flag_number);
duke@0 363 }
duke@0 364
duke@0 365 // two convenient imports for use by subclasses:
duke@0 366 static ByteSize cell_offset(int index) {
duke@0 367 return DataLayout::cell_offset(index);
duke@0 368 }
duke@0 369 static int flag_number_to_byte_constant(int flag_number) {
duke@0 370 return DataLayout::flag_number_to_byte_constant(flag_number);
duke@0 371 }
duke@0 372
duke@0 373 ProfileData(DataLayout* data) {
duke@0 374 _data = data;
duke@0 375 }
duke@0 376
goetz@5974 377 #ifdef CC_INTERP
goetz@5974 378 // Static low level accessors for DataLayout with ProfileData's semantics.
goetz@5974 379
goetz@5974 380 static int cell_offset_in_bytes(int index) {
goetz@5974 381 return DataLayout::cell_offset_in_bytes(index);
goetz@5974 382 }
goetz@5974 383
goetz@5974 384 static void increment_uint_at_no_overflow(DataLayout* layout, int index,
goetz@5974 385 int inc = DataLayout::counter_increment) {
goetz@5974 386 uint count = ((uint)layout->cell_at(index)) + inc;
goetz@5974 387 if (count == 0) return;
goetz@5974 388 layout->set_cell_at(index, (intptr_t) count);
goetz@5974 389 }
goetz@5974 390
goetz@5974 391 static int int_at(DataLayout* layout, int index) {
goetz@5974 392 return (int)layout->cell_at(index);
goetz@5974 393 }
goetz@5974 394
goetz@5974 395 static int uint_at(DataLayout* layout, int index) {
goetz@5974 396 return (uint)layout->cell_at(index);
goetz@5974 397 }
goetz@5974 398
goetz@5974 399 static oop oop_at(DataLayout* layout, int index) {
simonis@5987 400 return cast_to_oop(layout->cell_at(index));
goetz@5974 401 }
goetz@5974 402
goetz@5974 403 static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
goetz@5974 404 layout->set_cell_at(index, (intptr_t) value);
goetz@5974 405 }
goetz@5974 406
goetz@5974 407 static void set_flag_at(DataLayout* layout, int flag_number) {
goetz@5974 408 layout->set_flag_at(flag_number);
goetz@5974 409 }
goetz@5974 410 #endif // CC_INTERP
goetz@5974 411
duke@0 412 public:
duke@0 413 // Constructor for invalid ProfileData.
duke@0 414 ProfileData();
duke@0 415
roland@5479 416 u2 bci() const {
duke@0 417 return data()->bci();
duke@0 418 }
duke@0 419
duke@0 420 address dp() {
duke@0 421 return (address)_data;
duke@0 422 }
duke@0 423
roland@5479 424 int trap_state() const {
duke@0 425 return data()->trap_state();
duke@0 426 }
duke@0 427 void set_trap_state(int new_state) {
duke@0 428 data()->set_trap_state(new_state);
duke@0 429 }
duke@0 430
duke@0 431 // Type checking
roland@5479 432 virtual bool is_BitData() const { return false; }
roland@5479 433 virtual bool is_CounterData() const { return false; }
roland@5479 434 virtual bool is_JumpData() const { return false; }
roland@5479 435 virtual bool is_ReceiverTypeData()const { return false; }
roland@5479 436 virtual bool is_VirtualCallData() const { return false; }
roland@5479 437 virtual bool is_RetData() const { return false; }
roland@5479 438 virtual bool is_BranchData() const { return false; }
roland@5479 439 virtual bool is_ArrayData() const { return false; }
roland@5479 440 virtual bool is_MultiBranchData() const { return false; }
roland@5479 441 virtual bool is_ArgInfoData() const { return false; }
roland@5479 442 virtual bool is_CallTypeData() const { return false; }
roland@5479 443 virtual bool is_VirtualCallTypeData()const { return false; }
roland@5552 444 virtual bool is_ParametersTypeData() const { return false; }
roland@6054 445 virtual bool is_SpeculativeTrapData()const { return false; }
kvn@45 446
duke@0 447
roland@5479 448 BitData* as_BitData() const {
duke@0 449 assert(is_BitData(), "wrong type");
duke@0 450 return is_BitData() ? (BitData*) this : NULL;
duke@0 451 }
roland@5479 452 CounterData* as_CounterData() const {
duke@0 453 assert(is_CounterData(), "wrong type");
duke@0 454 return is_CounterData() ? (CounterData*) this : NULL;
duke@0 455 }
roland@5479 456 JumpData* as_JumpData() const {
duke@0 457 assert(is_JumpData(), "wrong type");
duke@0 458 return is_JumpData() ? (JumpData*) this : NULL;
duke@0 459 }
roland@5479 460 ReceiverTypeData* as_ReceiverTypeData() const {
duke@0 461 assert(is_ReceiverTypeData(), "wrong type");
duke@0 462 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
duke@0 463 }
roland@5479 464 VirtualCallData* as_VirtualCallData() const {
duke@0 465 assert(is_VirtualCallData(), "wrong type");
duke@0 466 return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
duke@0 467 }
roland@5479 468 RetData* as_RetData() const {
duke@0 469 assert(is_RetData(), "wrong type");
duke@0 470 return is_RetData() ? (RetData*) this : NULL;
duke@0 471 }
roland@5479 472 BranchData* as_BranchData() const {
duke@0 473 assert(is_BranchData(), "wrong type");
duke@0 474 return is_BranchData() ? (BranchData*) this : NULL;
duke@0 475 }
roland@5479 476 ArrayData* as_ArrayData() const {
duke@0 477 assert(is_ArrayData(), "wrong type");
duke@0 478 return is_ArrayData() ? (ArrayData*) this : NULL;
duke@0 479 }
roland@5479 480 MultiBranchData* as_MultiBranchData() const {
duke@0 481 assert(is_MultiBranchData(), "wrong type");
duke@0 482 return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
duke@0 483 }
roland@5479 484 ArgInfoData* as_ArgInfoData() const {
kvn@45 485 assert(is_ArgInfoData(), "wrong type");
kvn@45 486 return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
kvn@45 487 }
roland@5479 488 CallTypeData* as_CallTypeData() const {
roland@5479 489 assert(is_CallTypeData(), "wrong type");
roland@5479 490 return is_CallTypeData() ? (CallTypeData*)this : NULL;
roland@5479 491 }
roland@5479 492 VirtualCallTypeData* as_VirtualCallTypeData() const {
roland@5479 493 assert(is_VirtualCallTypeData(), "wrong type");
roland@5479 494 return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
roland@5479 495 }
roland@5552 496 ParametersTypeData* as_ParametersTypeData() const {
roland@5552 497 assert(is_ParametersTypeData(), "wrong type");
roland@5552 498 return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
roland@5552 499 }
roland@6054 500 SpeculativeTrapData* as_SpeculativeTrapData() const {
roland@6054 501 assert(is_SpeculativeTrapData(), "wrong type");
roland@6054 502 return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
roland@6054 503 }
duke@0 504
duke@0 505
duke@0 506 // Subclass specific initialization
coleenp@3602 507 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
duke@0 508
duke@0 509 // GC support
coleenp@3602 510 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
duke@0 511
roland@6247 512 // Redefinition support
roland@6247 513 virtual void clean_weak_method_links() {}
roland@6247 514
duke@0 515 // CI translation: ProfileData can represent both MethodDataOop data
duke@0 516 // as well as CIMethodData data. This function is provided for translating
duke@0 517 // an oop in a ProfileData to the ci equivalent. Generally speaking,
duke@0 518 // most ProfileData don't require any translation, so we provide the null
duke@0 519 // translation here, and the required translators are in the ci subclasses.
roland@5479 520 virtual void translate_from(const ProfileData* data) {}
duke@0 521
roland@6054 522 virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
duke@0 523 ShouldNotReachHere();
duke@0 524 }
duke@0 525
roland@6054 526 void print_data_on(outputStream* st, const MethodData* md) const;
roland@6054 527
roland@6054 528 void print_shared(outputStream* st, const char* name, const char* extra) const;
roland@5479 529 void tab(outputStream* st, bool first = false) const;
duke@0 530 };
duke@0 531
duke@0 532 // BitData
duke@0 533 //
duke@0 534 // A BitData holds a flag or two in its header.
duke@0 535 class BitData : public ProfileData {
duke@0 536 protected:
duke@0 537 enum {
duke@0 538 // null_seen:
duke@0 539 // saw a null operand (cast/aastore/instanceof)
duke@0 540 null_seen_flag = DataLayout::first_flag + 0
duke@0 541 };
duke@0 542 enum { bit_cell_count = 0 }; // no additional data fields needed.
duke@0 543 public:
duke@0 544 BitData(DataLayout* layout) : ProfileData(layout) {
duke@0 545 }
duke@0 546
roland@5479 547 virtual bool is_BitData() const { return true; }
duke@0 548
duke@0 549 static int static_cell_count() {
duke@0 550 return bit_cell_count;
duke@0 551 }
duke@0 552
roland@5479 553 virtual int cell_count() const {
duke@0 554 return static_cell_count();
duke@0 555 }
duke@0 556
duke@0 557 // Accessor
duke@0 558
duke@0 559 // The null_seen flag bit is specially known to the interpreter.
duke@0 560 // Consulting it allows the compiler to avoid setting up null_check traps.
duke@0 561 bool null_seen() { return flag_at(null_seen_flag); }
duke@0 562 void set_null_seen() { set_flag_at(null_seen_flag); }
duke@0 563
duke@0 564
duke@0 565 // Code generation support
duke@0 566 static int null_seen_byte_constant() {
duke@0 567 return flag_number_to_byte_constant(null_seen_flag);
duke@0 568 }
duke@0 569
duke@0 570 static ByteSize bit_data_size() {
duke@0 571 return cell_offset(bit_cell_count);
duke@0 572 }
duke@0 573
goetz@5974 574 #ifdef CC_INTERP
goetz@5974 575 static int bit_data_size_in_bytes() {
goetz@5974 576 return cell_offset_in_bytes(bit_cell_count);
goetz@5974 577 }
goetz@5974 578
goetz@5974 579 static void set_null_seen(DataLayout* layout) {
goetz@5974 580 set_flag_at(layout, null_seen_flag);
goetz@5974 581 }
goetz@5974 582
goetz@5974 583 static DataLayout* advance(DataLayout* layout) {
goetz@5974 584 return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
goetz@5974 585 }
goetz@5974 586 #endif // CC_INTERP
goetz@5974 587
roland@6054 588 void print_data_on(outputStream* st, const char* extra = NULL) const;
duke@0 589 };
duke@0 590
duke@0 591 // CounterData
duke@0 592 //
duke@0 593 // A CounterData corresponds to a simple counter.
duke@0 594 class CounterData : public BitData {
duke@0 595 protected:
duke@0 596 enum {
duke@0 597 count_off,
duke@0 598 counter_cell_count
duke@0 599 };
duke@0 600 public:
duke@0 601 CounterData(DataLayout* layout) : BitData(layout) {}
duke@0 602
roland@5479 603 virtual bool is_CounterData() const { return true; }
duke@0 604
duke@0 605 static int static_cell_count() {
duke@0 606 return counter_cell_count;
duke@0 607 }
duke@0 608
roland@5479 609 virtual int cell_count() const {
duke@0 610 return static_cell_count();
duke@0 611 }
duke@0 612
duke@0 613 // Direct accessor
roland@5479 614 uint count() const {
duke@0 615 return uint_at(count_off);
duke@0 616 }
duke@0 617
duke@0 618 // Code generation support
duke@0 619 static ByteSize count_offset() {
duke@0 620 return cell_offset(count_off);
duke@0 621 }
duke@0 622 static ByteSize counter_data_size() {
duke@0 623 return cell_offset(counter_cell_count);
duke@0 624 }
duke@0 625
kvn@1251 626 void set_count(uint count) {
kvn@1251 627 set_uint_at(count_off, count);
kvn@1251 628 }
kvn@1251 629
goetz@5974 630 #ifdef CC_INTERP
goetz@5974 631 static int counter_data_size_in_bytes() {
goetz@5974 632 return cell_offset_in_bytes(counter_cell_count);
goetz@5974 633 }
goetz@5974 634
goetz@5974 635 static void increment_count_no_overflow(DataLayout* layout) {
goetz@5974 636 increment_uint_at_no_overflow(layout, count_off);
goetz@5974 637 }
goetz@5974 638
goetz@5974 639 // Support counter decrementation at checkcast / subtype check failed.
goetz@5974 640 static void decrement_count(DataLayout* layout) {
goetz@5974 641 increment_uint_at_no_overflow(layout, count_off, -1);
goetz@5974 642 }
goetz@5974 643
goetz@5974 644 static DataLayout* advance(DataLayout* layout) {
goetz@5974 645 return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
goetz@5974 646 }
goetz@5974 647 #endif // CC_INTERP
goetz@5974 648
roland@6054 649 void print_data_on(outputStream* st, const char* extra = NULL) const;
duke@0 650 };
duke@0 651
duke@0 652 // JumpData
duke@0 653 //
duke@0 654 // A JumpData is used to access profiling information for a direct
duke@0 655 // branch. It is a counter, used for counting the number of branches,
duke@0 656 // plus a data displacement, used for realigning the data pointer to
duke@0 657 // the corresponding target bci.
duke@0 658 class JumpData : public ProfileData {
duke@0 659 protected:
duke@0 660 enum {
duke@0 661 taken_off_set,
duke@0 662 displacement_off_set,
duke@0 663 jump_cell_count
duke@0 664 };
duke@0 665
duke@0 666 void set_displacement(int displacement) {
duke@0 667 set_int_at(displacement_off_set, displacement);
duke@0 668 }
duke@0 669
duke@0 670 public:
duke@0 671 JumpData(DataLayout* layout) : ProfileData(layout) {
duke@0 672 assert(layout->tag() == DataLayout::jump_data_tag ||
duke@0 673 layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@0 674 }
duke@0 675
roland@5479 676 virtual bool is_JumpData() const { return true; }
duke@0 677
duke@0 678 static int static_cell_count() {
duke@0 679 return jump_cell_count;
duke@0 680 }
duke@0 681
roland@5479 682 virtual int cell_count() const {
duke@0 683 return static_cell_count();
duke@0 684 }
duke@0 685
duke@0 686 // Direct accessor
roland@5479 687 uint taken() const {
duke@0 688 return uint_at(taken_off_set);
duke@0 689 }
never@2670 690
never@2670 691 void set_taken(uint cnt) {
never@2670 692 set_uint_at(taken_off_set, cnt);
never@2670 693 }
never@2670 694
duke@0 695 // Saturating counter
duke@0 696 uint inc_taken() {
duke@0 697 uint cnt = taken() + 1;
duke@0 698 // Did we wrap? Will compiler screw us??
duke@0 699 if (cnt == 0) cnt--;
duke@0 700 set_uint_at(taken_off_set, cnt);
duke@0 701 return cnt;
duke@0 702 }
duke@0 703
roland@5479 704 int displacement() const {
duke@0 705 return int_at(displacement_off_set);
duke@0 706 }
duke@0 707
duke@0 708 // Code generation support
duke@0 709 static ByteSize taken_offset() {
duke@0 710 return cell_offset(taken_off_set);
duke@0 711 }
duke@0 712
duke@0 713 static ByteSize displacement_offset() {
duke@0 714 return cell_offset(displacement_off_set);
duke@0 715 }
duke@0 716
goetz@5974 717 #ifdef CC_INTERP
goetz@5974 718 static void increment_taken_count_no_overflow(DataLayout* layout) {
goetz@5974 719 increment_uint_at_no_overflow(layout, taken_off_set);
goetz@5974 720 }
goetz@5974 721
goetz@5974 722 static DataLayout* advance_taken(DataLayout* layout) {
goetz@5974 723 return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
goetz@5974 724 }
goetz@5974 725
goetz@5974 726 static uint taken_count(DataLayout* layout) {
goetz@5974 727 return (uint) uint_at(layout, taken_off_set);
goetz@5974 728 }
goetz@5974 729 #endif // CC_INTERP
goetz@5974 730
duke@0 731 // Specific initialization.
coleenp@3602 732 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 733
roland@6054 734 void print_data_on(outputStream* st, const char* extra = NULL) const;
roland@5479 735 };
roland@5479 736
roland@5479 737 // Entries in a ProfileData object to record types: it can either be
roland@5479 738 // none (no profile), unknown (conflicting profile data) or a klass if
roland@5479 739 // a single one is seen. Whether a null reference was seen is also
roland@5479 740 // recorded. No counter is associated with the type and a single type
roland@5479 741 // is tracked (unlike VirtualCallData).
roland@5479 742 class TypeEntries {
roland@5479 743
roland@5479 744 public:
roland@5479 745
roland@5479 746 // A single cell is used to record information for a type:
roland@5479 747 // - the cell is initialized to 0
roland@5479 748 // - when a type is discovered it is stored in the cell
roland@5479 749 // - bit zero of the cell is used to record whether a null reference
roland@5479 750 // was encountered or not
roland@5479 751 // - bit 1 is set to record a conflict in the type information
roland@5479 752
roland@5479 753 enum {
roland@5479 754 null_seen = 1,
roland@5479 755 type_mask = ~null_seen,
roland@5479 756 type_unknown = 2,
roland@5479 757 status_bits = null_seen | type_unknown,
roland@5479 758 type_klass_mask = ~status_bits
roland@5479 759 };
roland@5479 760
roland@5479 761 // what to initialize a cell to
roland@5479 762 static intptr_t type_none() {
roland@5479 763 return 0;
roland@5479 764 }
roland@5479 765
roland@5479 766 // null seen = bit 0 set?
roland@5479 767 static bool was_null_seen(intptr_t v) {
roland@5479 768 return (v & null_seen) != 0;
roland@5479 769 }
roland@5479 770
roland@5479 771 // conflicting type information = bit 1 set?
roland@5479 772 static bool is_type_unknown(intptr_t v) {
roland@5479 773 return (v & type_unknown) != 0;
roland@5479 774 }
roland@5479 775
roland@5479 776 // not type information yet = all bits cleared, ignoring bit 0?
roland@5479 777 static bool is_type_none(intptr_t v) {
roland@5479 778 return (v & type_mask) == 0;
roland@5479 779 }
roland@5479 780
roland@5479 781 // recorded type: cell without bit 0 and 1
roland@5479 782 static intptr_t klass_part(intptr_t v) {
roland@5479 783 intptr_t r = v & type_klass_mask;
roland@5479 784 return r;
roland@5479 785 }
roland@5479 786
roland@5479 787 // type recorded
roland@5479 788 static Klass* valid_klass(intptr_t k) {
roland@5479 789 if (!is_type_none(k) &&
roland@5479 790 !is_type_unknown(k)) {
roland@5670 791 Klass* res = (Klass*)klass_part(k);
roland@5670 792 assert(res != NULL, "invalid");
roland@5670 793 return res;
roland@5479 794 } else {
roland@5479 795 return NULL;
roland@5479 796 }
roland@5479 797 }
roland@5479 798
roland@5479 799 static intptr_t with_status(intptr_t k, intptr_t in) {
roland@5479 800 return k | (in & status_bits);
roland@5479 801 }
roland@5479 802
roland@5479 803 static intptr_t with_status(Klass* k, intptr_t in) {
roland@5479 804 return with_status((intptr_t)k, in);
roland@5479 805 }
roland@5479 806
roland@5479 807 static void print_klass(outputStream* st, intptr_t k);
roland@5479 808
roland@5479 809 // GC support
roland@5479 810 static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
roland@5479 811
roland@5479 812 protected:
roland@5479 813 // ProfileData object these entries are part of
roland@5479 814 ProfileData* _pd;
roland@5479 815 // offset within the ProfileData object where the entries start
roland@5479 816 const int _base_off;
roland@5479 817
roland@5479 818 TypeEntries(int base_off)
roland@5479 819 : _base_off(base_off), _pd(NULL) {}
roland@5479 820
roland@5479 821 void set_intptr_at(int index, intptr_t value) {
roland@5479 822 _pd->set_intptr_at(index, value);
roland@5479 823 }
roland@5479 824
roland@5479 825 intptr_t intptr_at(int index) const {
roland@5479 826 return _pd->intptr_at(index);
roland@5479 827 }
roland@5479 828
roland@5479 829 public:
roland@5479 830 void set_profile_data(ProfileData* pd) {
roland@5479 831 _pd = pd;
roland@5479 832 }
roland@5479 833 };
roland@5479 834
roland@5479 835 // Type entries used for arguments passed at a call and parameters on
roland@5479 836 // method entry. 2 cells per entry: one for the type encoded as in
roland@5479 837 // TypeEntries and one initialized with the stack slot where the
roland@5479 838 // profiled object is to be found so that the interpreter can locate
roland@5479 839 // it quickly.
roland@5479 840 class TypeStackSlotEntries : public TypeEntries {
roland@5479 841
roland@5479 842 private:
roland@5479 843 enum {
roland@5479 844 stack_slot_entry,
roland@5479 845 type_entry,
roland@5479 846 per_arg_cell_count
roland@5479 847 };
roland@5479 848
roland@5479 849 // offset of cell for stack slot for entry i within ProfileData object
roland@5486 850 int stack_slot_offset(int i) const {
roland@5479 851 return _base_off + stack_slot_local_offset(i);
roland@5479 852 }
roland@5479 853
roland@5479 854 protected:
roland@5486 855 const int _number_of_entries;
roland@5479 856
roland@5479 857 // offset of cell for type for entry i within ProfileData object
roland@5486 858 int type_offset(int i) const {
roland@5479 859 return _base_off + type_local_offset(i);
roland@5479 860 }
roland@5479 861
roland@5479 862 public:
roland@5479 863
roland@5486 864 TypeStackSlotEntries(int base_off, int nb_entries)
roland@5486 865 : TypeEntries(base_off), _number_of_entries(nb_entries) {}
roland@5479 866
roland@5552 867 static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
roland@5479 868
roland@5552 869 void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
roland@5479 870
roland@5479 871 // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
roland@5479 872 static int stack_slot_local_offset(int i) {
roland@5486 873 return i * per_arg_cell_count + stack_slot_entry;
roland@5479 874 }
roland@5479 875
roland@5479 876 // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
roland@5479 877 static int type_local_offset(int i) {
roland@5486 878 return i * per_arg_cell_count + type_entry;
roland@5479 879 }
roland@5479 880
roland@5479 881 // stack slot for entry i
roland@5479 882 uint stack_slot(int i) const {
roland@5486 883 assert(i >= 0 && i < _number_of_entries, "oob");
roland@5486 884 return _pd->uint_at(stack_slot_offset(i));
roland@5479 885 }
roland@5479 886
roland@5479 887 // set stack slot for entry i
roland@5479 888 void set_stack_slot(int i, uint num) {
roland@5486 889 assert(i >= 0 && i < _number_of_entries, "oob");
roland@5486 890 _pd->set_uint_at(stack_slot_offset(i), num);
roland@5479 891 }
roland@5479 892
roland@5479 893 // type for entry i
roland@5479 894 intptr_t type(int i) const {
roland@5486 895 assert(i >= 0 && i < _number_of_entries, "oob");
roland@5486 896 return _pd->intptr_at(type_offset(i));
roland@5479 897 }
roland@5479 898
roland@5479 899 // set type for entry i
roland@5479 900 void set_type(int i, intptr_t k) {
roland@5486 901 assert(i >= 0 && i < _number_of_entries, "oob");
roland@5486 902 _pd->set_intptr_at(type_offset(i), k);
roland@5479 903 }
roland@5479 904
roland@5479 905 static ByteSize per_arg_size() {
roland@5479 906 return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
roland@5479 907 }
roland@5479 908
roland@5479 909 static int per_arg_count() {
roland@5479 910 return per_arg_cell_count ;
roland@5479 911 }
roland@5479 912
roland@5486 913 // GC support
roland@5486 914 void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
roland@5479 915
roland@5486 916 void print_data_on(outputStream* st) const;
roland@5486 917 };
roland@5479 918
roland@5486 919 // Type entry used for return from a call. A single cell to record the
roland@5486 920 // type.
roland@5486 921 class ReturnTypeEntry : public TypeEntries {
roland@5479 922
roland@5486 923 private:
roland@5486 924 enum {
roland@5486 925 cell_count = 1
roland@5486 926 };
roland@5486 927
roland@5486 928 public:
roland@5486 929 ReturnTypeEntry(int base_off)
roland@5486 930 : TypeEntries(base_off) {}
roland@5486 931
roland@5486 932 void post_initialize() {
roland@5486 933 set_type(type_none());
roland@5486 934 }
roland@5486 935
roland@5486 936 intptr_t type() const {
roland@5486 937 return _pd->intptr_at(_base_off);
roland@5486 938 }
roland@5486 939
roland@5486 940 void set_type(intptr_t k) {
roland@5486 941 _pd->set_intptr_at(_base_off, k);
roland@5486 942 }
roland@5486 943
roland@5486 944 static int static_cell_count() {
roland@5486 945 return cell_count;
roland@5486 946 }
roland@5486 947
roland@5486 948 static ByteSize size() {
roland@5486 949 return in_ByteSize(cell_count * DataLayout::cell_size);
roland@5486 950 }
roland@5486 951
roland@5486 952 ByteSize type_offset() {
roland@5486 953 return DataLayout::cell_offset(_base_off);
roland@5486 954 }
roland@5479 955
roland@5479 956 // GC support
roland@5479 957 void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
roland@5479 958
roland@5479 959 void print_data_on(outputStream* st) const;
roland@5479 960 };
roland@5479 961
roland@5486 962 // Entries to collect type information at a call: contains arguments
roland@5486 963 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
roland@5486 964 // number of cells. Because the number of cells for the return type is
roland@5486 965 // smaller than the number of cells for the type of an arguments, the
roland@5486 966 // number of cells is used to tell how many arguments are profiled and
roland@5486 967 // whether a return value is profiled. See has_arguments() and
roland@5486 968 // has_return().
roland@5486 969 class TypeEntriesAtCall {
roland@5486 970 private:
roland@5486 971 static int stack_slot_local_offset(int i) {
roland@5486 972 return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
roland@5486 973 }
roland@5486 974
roland@5486 975 static int argument_type_local_offset(int i) {
roland@5486 976 return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
roland@5486 977 }
roland@5486 978
roland@5486 979 public:
roland@5486 980
roland@5486 981 static int header_cell_count() {
roland@5486 982 return 1;
roland@5486 983 }
roland@5486 984
roland@5486 985 static int cell_count_local_offset() {
roland@5486 986 return 0;
roland@5486 987 }
roland@5486 988
roland@5486 989 static int compute_cell_count(BytecodeStream* stream);
roland@5486 990
roland@5486 991 static void initialize(DataLayout* dl, int base, int cell_count) {
roland@5486 992 int off = base + cell_count_local_offset();
roland@5486 993 dl->set_cell_at(off, cell_count - base - header_cell_count());
roland@5486 994 }
roland@5486 995
roland@5486 996 static bool arguments_profiling_enabled();
roland@5486 997 static bool return_profiling_enabled();
roland@5486 998
roland@5486 999 // Code generation support
roland@5486 1000 static ByteSize cell_count_offset() {
roland@5486 1001 return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
roland@5486 1002 }
roland@5486 1003
roland@5486 1004 static ByteSize args_data_offset() {
roland@5486 1005 return in_ByteSize(header_cell_count() * DataLayout::cell_size);
roland@5486 1006 }
roland@5486 1007
roland@5486 1008 static ByteSize stack_slot_offset(int i) {
roland@5486 1009 return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
roland@5486 1010 }
roland@5486 1011
roland@5486 1012 static ByteSize argument_type_offset(int i) {
roland@5486 1013 return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
roland@5486 1014 }
roland@6320 1015
roland@6320 1016 static ByteSize return_only_size() {
roland@6320 1017 return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
roland@6320 1018 }
roland@6320 1019
roland@5486 1020 };
roland@5486 1021
roland@5479 1022 // CallTypeData
roland@5479 1023 //
roland@5479 1024 // A CallTypeData is used to access profiling information about a non
roland@5486 1025 // virtual call for which we collect type information about arguments
roland@5486 1026 // and return value.
roland@5479 1027 class CallTypeData : public CounterData {
roland@5479 1028 private:
roland@5486 1029 // entries for arguments if any
roland@5479 1030 TypeStackSlotEntries _args;
roland@5486 1031 // entry for return type if any
roland@5486 1032 ReturnTypeEntry _ret;
roland@5486 1033
roland@5486 1034 int cell_count_global_offset() const {
roland@5486 1035 return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
roland@5486 1036 }
roland@5486 1037
roland@5486 1038 // number of cells not counting the header
roland@5486 1039 int cell_count_no_header() const {
roland@5486 1040 return uint_at(cell_count_global_offset());
roland@5486 1041 }
roland@5486 1042
roland@5486 1043 void check_number_of_arguments(int total) {
roland@5486 1044 assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
roland@5486 1045 }
roland@5486 1046
roland@5479 1047 public:
roland@5479 1048 CallTypeData(DataLayout* layout) :
roland@5486 1049 CounterData(layout),
roland@5486 1050 _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
roland@5486 1051 _ret(cell_count() - ReturnTypeEntry::static_cell_count())
roland@5486 1052 {
roland@5479 1053 assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
roland@5479 1054 // Some compilers (VC++) don't want this passed in member initialization list
roland@5479 1055 _args.set_profile_data(this);
roland@5486 1056 _ret.set_profile_data(this);
roland@5479 1057 }
roland@5479 1058
roland@5486 1059 const TypeStackSlotEntries* args() const {
roland@5486 1060 assert(has_arguments(), "no profiling of arguments");
roland@5486 1061 return &_args;
roland@5486 1062 }
roland@5486 1063
roland@5486 1064 const ReturnTypeEntry* ret() const {
roland@5486 1065 assert(has_return(), "no profiling of return value");
roland@5486 1066 return &_ret;
roland@5486 1067 }
roland@5479 1068
roland@5479 1069 virtual bool is_CallTypeData() const { return true; }
roland@5479 1070
roland@5479 1071 static int static_cell_count() {
roland@5479 1072 return -1;
roland@5479 1073 }
roland@5479 1074
roland@5479 1075 static int compute_cell_count(BytecodeStream* stream) {
roland@5486 1076 return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
roland@5479 1077 }
roland@5479 1078
roland@5479 1079 static void initialize(DataLayout* dl, int cell_count) {
roland@5486 1080 TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
roland@5479 1081 }
roland@5479 1082
roland@5486 1083 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
roland@5486 1084
roland@5486 1085 virtual int cell_count() const {
roland@5486 1086 return CounterData::static_cell_count() +
roland@5486 1087 TypeEntriesAtCall::header_cell_count() +
roland@5486 1088 int_at_unchecked(cell_count_global_offset());
roland@5479 1089 }
roland@5479 1090
roland@5486 1091 int number_of_arguments() const {
roland@5486 1092 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
roland@5479 1093 }
roland@5479 1094
roland@5479 1095 void set_argument_type(int i, Klass* k) {
roland@5486 1096 assert(has_arguments(), "no arguments!");
roland@5479 1097 intptr_t current = _args.type(i);
roland@5479 1098 _args.set_type(i, TypeEntries::with_status(k, current));
roland@5479 1099 }
roland@5479 1100
roland@5486 1101 void set_return_type(Klass* k) {
roland@5486 1102 assert(has_return(), "no return!");
roland@5486 1103 intptr_t current = _ret.type();
roland@5486 1104 _ret.set_type(TypeEntries::with_status(k, current));
roland@5486 1105 }
roland@5486 1106
roland@5486 1107 // An entry for a return value takes less space than an entry for an
roland@5552 1108 // argument so if the number of cells exceeds the number of cells
roland@5552 1109 // needed for an argument, this object contains type information for
roland@5552 1110 // at least one argument.
roland@5552 1111 bool has_arguments() const {
roland@5552 1112 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
roland@5552 1113 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
roland@5552 1114 return res;
roland@5552 1115 }
roland@5552 1116
roland@5552 1117 // An entry for a return value takes less space than an entry for an
roland@5486 1118 // argument, so if the remainder of the number of cells divided by
roland@5486 1119 // the number of cells for an argument is not null, a return value
roland@5486 1120 // is profiled in this object.
roland@5486 1121 bool has_return() const {
roland@5486 1122 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
roland@5486 1123 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
roland@5486 1124 return res;
roland@5486 1125 }
roland@5486 1126
roland@5479 1127 // Code generation support
roland@5479 1128 static ByteSize args_data_offset() {
roland@5486 1129 return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
roland@5479 1130 }
roland@5479 1131
roland@5479 1132 // GC support
roland@5479 1133 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
roland@5486 1134 if (has_arguments()) {
roland@5486 1135 _args.clean_weak_klass_links(is_alive_closure);
roland@5486 1136 }
roland@5486 1137 if (has_return()) {
roland@5486 1138 _ret.clean_weak_klass_links(is_alive_closure);
roland@5486 1139 }
roland@5479 1140 }
roland@5479 1141
roland@6054 1142 virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
duke@0 1143 };
duke@0 1144
duke@0 1145 // ReceiverTypeData
duke@0 1146 //
duke@0 1147 // A ReceiverTypeData is used to access profiling information about a
duke@0 1148 // dynamic type check. It consists of a counter which counts the total times
coleenp@3602 1149 // that the check is reached, and a series of (Klass*, count) pairs
duke@0 1150 // which are used to store a type profile for the receiver of the check.
duke@0 1151 class ReceiverTypeData : public CounterData {
duke@0 1152 protected:
duke@0 1153 enum {
duke@0 1154 receiver0_offset = counter_cell_count,
duke@0 1155 count0_offset,
duke@0 1156 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
duke@0 1157 };
duke@0 1158
duke@0 1159 public:
duke@0 1160 ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
duke@0 1161 assert(layout->tag() == DataLayout::receiver_type_data_tag ||
roland@5479 1162 layout->tag() == DataLayout::virtual_call_data_tag ||
roland@5479 1163 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
duke@0 1164 }
duke@0 1165
roland@5479 1166 virtual bool is_ReceiverTypeData() const { return true; }
duke@0 1167
duke@0 1168 static int static_cell_count() {
duke@0 1169 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
duke@0 1170 }
duke@0 1171
roland@5479 1172 virtual int cell_count() const {
duke@0 1173 return static_cell_count();
duke@0 1174 }
duke@0 1175
duke@0 1176 // Direct accessors
duke@0 1177 static uint row_limit() {
duke@0 1178 return TypeProfileWidth;
duke@0 1179 }
duke@0 1180 static int receiver_cell_index(uint row) {
duke@0 1181 return receiver0_offset + row * receiver_type_row_cell_count;
duke@0 1182 }
duke@0 1183 static int receiver_count_cell_index(uint row) {
duke@0 1184 return count0_offset + row * receiver_type_row_cell_count;
duke@0 1185 }
duke@0 1186
roland@5479 1187 Klass* receiver(uint row) const {
duke@0 1188 assert(row < row_limit(), "oob");
duke@0 1189
coleenp@3602 1190 Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
coleenp@3602 1191 assert(recv == NULL || recv->is_klass(), "wrong type");
duke@0 1192 return recv;
duke@0 1193 }
duke@0 1194
coleenp@3602 1195 void set_receiver(uint row, Klass* k) {
ysr@941 1196 assert((uint)row < row_limit(), "oob");
coleenp@3602 1197 set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
ysr@941 1198 }
ysr@941 1199
roland@5479 1200 uint receiver_count(uint row) const {
duke@0 1201 assert(row < row_limit(), "oob");
duke@0 1202 return uint_at(receiver_count_cell_index(row));
duke@0 1203 }
duke@0 1204
ysr@941 1205 void set_receiver_count(uint row, uint count) {
ysr@941 1206 assert(row < row_limit(), "oob");
ysr@941 1207 set_uint_at(receiver_count_cell_index(row), count);
ysr@941 1208 }
ysr@941 1209
ysr@941 1210 void clear_row(uint row) {
ysr@941 1211 assert(row < row_limit(), "oob");
kvn@1251 1212 // Clear total count - indicator of polymorphic call site.
kvn@1251 1213 // The site may look like as monomorphic after that but
kvn@1251 1214 // it allow to have more accurate profiling information because
kvn@1251 1215 // there was execution phase change since klasses were unloaded.
kvn@1251 1216 // If the site is still polymorphic then MDO will be updated
kvn@1251 1217 // to reflect it. But it could be the case that the site becomes
kvn@1251 1218 // only bimorphic. Then keeping total count not 0 will be wrong.
kvn@1251 1219 // Even if we use monomorphic (when it is not) for compilation
kvn@1251 1220 // we will only have trap, deoptimization and recompile again
kvn@1251 1221 // with updated MDO after executing method in Interpreter.
kvn@1251 1222 // An additional receiver will be recorded in the cleaned row
kvn@1251 1223 // during next call execution.
kvn@1251 1224 //
kvn@1251 1225 // Note: our profiling logic works with empty rows in any slot.
kvn@1251 1226 // We do sorting a profiling info (ciCallProfile) for compilation.
kvn@1251 1227 //
kvn@1251 1228 set_count(0);
ysr@941 1229 set_receiver(row, NULL);
ysr@941 1230 set_receiver_count(row, 0);
ysr@941 1231 }
ysr@941 1232
duke@0 1233 // Code generation support
duke@0 1234 static ByteSize receiver_offset(uint row) {
duke@0 1235 return cell_offset(receiver_cell_index(row));
duke@0 1236 }
duke@0 1237 static ByteSize receiver_count_offset(uint row) {
duke@0 1238 return cell_offset(receiver_count_cell_index(row));
duke@0 1239 }
duke@0 1240 static ByteSize receiver_type_data_size() {
duke@0 1241 return cell_offset(static_cell_count());
duke@0 1242 }
duke@0 1243
duke@0 1244 // GC support
coleenp@3602 1245 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
duke@0 1246
goetz@5974 1247 #ifdef CC_INTERP
goetz@5974 1248 static int receiver_type_data_size_in_bytes() {
goetz@5974 1249 return cell_offset_in_bytes(static_cell_count());
goetz@5974 1250 }
goetz@5974 1251
goetz@5974 1252 static Klass *receiver_unchecked(DataLayout* layout, uint row) {
simonis@5987 1253 Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
simonis@5987 1254 return recv;
goetz@5974 1255 }
goetz@5974 1256
goetz@5974 1257 static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
goetz@5974 1258 const int num_rows = row_limit();
goetz@5974 1259 // Receiver already exists?
goetz@5974 1260 for (int row = 0; row < num_rows; row++) {
goetz@5974 1261 if (receiver_unchecked(layout, row) == rcvr) {
goetz@5974 1262 increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
goetz@5974 1263 return;
goetz@5974 1264 }
goetz@5974 1265 }
goetz@5974 1266 // New receiver, find a free slot.
goetz@5974 1267 for (int row = 0; row < num_rows; row++) {
goetz@5974 1268 if (receiver_unchecked(layout, row) == NULL) {
goetz@5974 1269 set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
goetz@5974 1270 increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
goetz@5974 1271 return;
goetz@5974 1272 }
goetz@5974 1273 }
goetz@5974 1274 // Receiver did not match any saved receiver and there is no empty row for it.
goetz@5974 1275 // Increment total counter to indicate polymorphic case.
goetz@5974 1276 increment_count_no_overflow(layout);
goetz@5974 1277 }
goetz@5974 1278
goetz@5974 1279 static DataLayout* advance(DataLayout* layout) {
goetz@5974 1280 return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
goetz@5974 1281 }
goetz@5974 1282 #endif // CC_INTERP
goetz@5974 1283
roland@5479 1284 void print_receiver_data_on(outputStream* st) const;
roland@6054 1285 void print_data_on(outputStream* st, const char* extra = NULL) const;
duke@0 1286 };
duke@0 1287
duke@0 1288 // VirtualCallData
duke@0 1289 //
duke@0 1290 // A VirtualCallData is used to access profiling information about a
duke@0 1291 // virtual call. For now, it has nothing more than a ReceiverTypeData.
duke@0 1292 class VirtualCallData : public ReceiverTypeData {
duke@0 1293 public:
duke@0 1294 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
roland@5479 1295 assert(layout->tag() == DataLayout::virtual_call_data_tag ||
roland@5479 1296 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
duke@0 1297 }
duke@0 1298
roland@5479 1299 virtual bool is_VirtualCallData() const { return true; }
duke@0 1300
duke@0 1301 static int static_cell_count() {
duke@0 1302 // At this point we could add more profile state, e.g., for arguments.
duke@0 1303 // But for now it's the same size as the base record type.
duke@0 1304 return ReceiverTypeData::static_cell_count();
duke@0 1305 }
duke@0 1306
roland@5479 1307 virtual int cell_count() const {
duke@0 1308 return static_cell_count();
duke@0 1309 }
duke@0 1310
duke@0 1311 // Direct accessors
duke@0 1312 static ByteSize virtual_call_data_size() {
duke@0 1313 return cell_offset(static_cell_count());
duke@0 1314 }
duke@0 1315
goetz@5974 1316 #ifdef CC_INTERP
goetz@5974 1317 static int virtual_call_data_size_in_bytes() {
goetz@5974 1318 return cell_offset_in_bytes(static_cell_count());
goetz@5974 1319 }
goetz@5974 1320
goetz@5974 1321 static DataLayout* advance(DataLayout* layout) {
goetz@5974 1322 return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
goetz@5974 1323 }
goetz@5974 1324 #endif // CC_INTERP
goetz@5974 1325
roland@6054 1326 void print_data_on(outputStream* st, const char* extra = NULL) const;
roland@5479 1327 };
roland@5479 1328
roland@5479 1329 // VirtualCallTypeData
roland@5479 1330 //
roland@5479 1331 // A VirtualCallTypeData is used to access profiling information about
roland@5479 1332 // a virtual call for which we collect type information about
roland@5486 1333 // arguments and return value.
roland@5479 1334 class VirtualCallTypeData : public VirtualCallData {
roland@5479 1335 private:
roland@5486 1336 // entries for arguments if any
roland@5479 1337 TypeStackSlotEntries _args;
roland@5486 1338 // entry for return type if any
roland@5486 1339 ReturnTypeEntry _ret;
roland@5486 1340
roland@5486 1341 int cell_count_global_offset() const {
roland@5486 1342 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
roland@5486 1343 }
roland@5486 1344
roland@5486 1345 // number of cells not counting the header
roland@5486 1346 int cell_count_no_header() const {
roland@5486 1347 return uint_at(cell_count_global_offset());
roland@5486 1348 }
roland@5486 1349
roland@5486 1350 void check_number_of_arguments(int total) {
roland@5486 1351 assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
roland@5486 1352 }
roland@5486 1353
roland@5479 1354 public:
roland@5479 1355 VirtualCallTypeData(DataLayout* layout) :
roland@5486 1356 VirtualCallData(layout),
roland@5486 1357 _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
roland@5486 1358 _ret(cell_count() - ReturnTypeEntry::static_cell_count())
roland@5486 1359 {
roland@5479 1360 assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
roland@5479 1361 // Some compilers (VC++) don't want this passed in member initialization list
roland@5479 1362 _args.set_profile_data(this);
roland@5486 1363 _ret.set_profile_data(this);
roland@5479 1364 }
roland@5479 1365
roland@5486 1366 const TypeStackSlotEntries* args() const {
roland@5486 1367 assert(has_arguments(), "no profiling of arguments");
roland@5486 1368 return &_args;
roland@5486 1369 }
roland@5486 1370
roland@5486 1371 const ReturnTypeEntry* ret() const {
roland@5486 1372 assert(has_return(), "no profiling of return value");
roland@5486 1373 return &_ret;
roland@5486 1374 }
roland@5479 1375
roland@5479 1376 virtual bool is_VirtualCallTypeData() const { return true; }
roland@5479 1377
roland@5479 1378 static int static_cell_count() {
roland@5479 1379 return -1;
roland@5479 1380 }
roland@5479 1381
roland@5479 1382 static int compute_cell_count(BytecodeStream* stream) {
roland@5486 1383 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
roland@5479 1384 }
roland@5479 1385
roland@5479 1386 static void initialize(DataLayout* dl, int cell_count) {
roland@5486 1387 TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
roland@5479 1388 }
roland@5479 1389
roland@5486 1390 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
roland@5486 1391
roland@5486 1392 virtual int cell_count() const {
roland@5486 1393 return VirtualCallData::static_cell_count() +
roland@5486 1394 TypeEntriesAtCall::header_cell_count() +
roland@5486 1395 int_at_unchecked(cell_count_global_offset());
roland@5479 1396 }
roland@5479 1397
roland@5486 1398 int number_of_arguments() const {
roland@5486 1399 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
roland@5479 1400 }
roland@5479 1401
roland@5479 1402 void set_argument_type(int i, Klass* k) {
roland@5486 1403 assert(has_arguments(), "no arguments!");
roland@5479 1404 intptr_t current = _args.type(i);
roland@5479 1405 _args.set_type(i, TypeEntries::with_status(k, current));
roland@5479 1406 }
roland@5479 1407
roland@5486 1408 void set_return_type(Klass* k) {
roland@5486 1409 assert(has_return(), "no return!");
roland@5486 1410 intptr_t current = _ret.type();
roland@5486 1411 _ret.set_type(TypeEntries::with_status(k, current));
roland@5486 1412 }
roland@5486 1413
roland@5486 1414 // An entry for a return value takes less space than an entry for an
roland@5486 1415 // argument, so if the remainder of the number of cells divided by
roland@5486 1416 // the number of cells for an argument is not null, a return value
roland@5486 1417 // is profiled in this object.
roland@5486 1418 bool has_return() const {
roland@5486 1419 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
roland@5486 1420 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
roland@5486 1421 return res;
roland@5486 1422 }
roland@5486 1423
roland@5552 1424 // An entry for a return value takes less space than an entry for an
roland@5552 1425 // argument so if the number of cells exceeds the number of cells
roland@5552 1426 // needed for an argument, this object contains type information for
roland@5552 1427 // at least one argument.
roland@5552 1428 bool has_arguments() const {
roland@5552 1429 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
roland@5552 1430 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
roland@5552 1431 return res;
roland@5552 1432 }
roland@5552 1433
roland@5479 1434 // Code generation support
roland@5479 1435 static ByteSize args_data_offset() {
roland@5486 1436 return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
roland@5479 1437 }
roland@5479 1438
roland@5479 1439 // GC support
roland@5479 1440 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
roland@5479 1441 ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
roland@5486 1442 if (has_arguments()) {
roland@5486 1443 _args.clean_weak_klass_links(is_alive_closure);
roland@5486 1444 }
roland@5486 1445 if (has_return()) {
roland@5486 1446 _ret.clean_weak_klass_links(is_alive_closure);
roland@5486 1447 }
roland@5479 1448 }
roland@5479 1449
roland@6054 1450 virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
duke@0 1451 };
duke@0 1452
duke@0 1453 // RetData
duke@0 1454 //
duke@0 1455 // A RetData is used to access profiling information for a ret bytecode.
duke@0 1456 // It is composed of a count of the number of times that the ret has
duke@0 1457 // been executed, followed by a series of triples of the form
duke@0 1458 // (bci, count, di) which count the number of times that some bci was the
duke@0 1459 // target of the ret and cache a corresponding data displacement.
duke@0 1460 class RetData : public CounterData {
duke@0 1461 protected:
duke@0 1462 enum {
duke@0 1463 bci0_offset = counter_cell_count,
duke@0 1464 count0_offset,
duke@0 1465 displacement0_offset,
duke@0 1466 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
duke@0 1467 };
duke@0 1468
duke@0 1469 void set_bci(uint row, int bci) {
duke@0 1470 assert((uint)row < row_limit(), "oob");
duke@0 1471 set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@0 1472 }
duke@0 1473 void release_set_bci(uint row, int bci) {
duke@0 1474 assert((uint)row < row_limit(), "oob");
duke@0 1475 // 'release' when setting the bci acts as a valid flag for other
duke@0 1476 // threads wrt bci_count and bci_displacement.
duke@0 1477 release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@0 1478 }
duke@0 1479 void set_bci_count(uint row, uint count) {
duke@0 1480 assert((uint)row < row_limit(), "oob");
duke@0 1481 set_uint_at(count0_offset + row * ret_row_cell_count, count);
duke@0 1482 }
duke@0 1483 void set_bci_displacement(uint row, int disp) {
duke@0 1484 set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
duke@0 1485 }
duke@0 1486
duke@0 1487 public:
duke@0 1488 RetData(DataLayout* layout) : CounterData(layout) {
duke@0 1489 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
duke@0 1490 }
duke@0 1491
roland@5479 1492 virtual bool is_RetData() const { return true; }
duke@0 1493
duke@0 1494 enum {
duke@0 1495 no_bci = -1 // value of bci when bci1/2 are not in use.
duke@0 1496 };
duke@0 1497
duke@0 1498 static int static_cell_count() {
duke@0 1499 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
duke@0 1500 }
duke@0 1501
roland@5479 1502 virtual int cell_count() const {
duke@0 1503 return static_cell_count();
duke@0 1504 }
duke@0 1505
duke@0 1506 static uint row_limit() {
duke@0 1507 return BciProfileWidth;
duke@0 1508 }
duke@0 1509 static int bci_cell_index(uint row) {
duke@0 1510 return bci0_offset + row * ret_row_cell_count;
duke@0 1511 }
duke@0 1512 static int bci_count_cell_index(uint row) {
duke@0 1513 return count0_offset + row * ret_row_cell_count;
duke@0 1514 }
duke@0 1515 static int bci_displacement_cell_index(uint row) {
duke@0 1516 return displacement0_offset + row * ret_row_cell_count;
duke@0 1517 }
duke@0 1518
duke@0 1519 // Direct accessors
roland@5479 1520 int bci(uint row) const {
duke@0 1521 return int_at(bci_cell_index(row));
duke@0 1522 }
roland@5479 1523 uint bci_count(uint row) const {
duke@0 1524 return uint_at(bci_count_cell_index(row));
duke@0 1525 }
roland@5479 1526 int bci_displacement(uint row) const {
duke@0 1527 return int_at(bci_displacement_cell_index(row));
duke@0 1528 }
duke@0 1529
duke@0 1530 // Interpreter Runtime support
coleenp@3602 1531 address fixup_ret(int return_bci, MethodData* mdo);
duke@0 1532
duke@0 1533 // Code generation support
duke@0 1534 static ByteSize bci_offset(uint row) {
duke@0 1535 return cell_offset(bci_cell_index(row));
duke@0 1536 }
duke@0 1537 static ByteSize bci_count_offset(uint row) {
duke@0 1538 return cell_offset(bci_count_cell_index(row));
duke@0 1539 }
duke@0 1540 static ByteSize bci_displacement_offset(uint row) {
duke@0 1541 return cell_offset(bci_displacement_cell_index(row));
duke@0 1542 }
duke@0 1543
goetz@5974 1544 #ifdef CC_INTERP
goetz@5974 1545 static DataLayout* advance(MethodData *md, int bci);
goetz@5974 1546 #endif // CC_INTERP
goetz@5974 1547
duke@0 1548 // Specific initialization.
coleenp@3602 1549 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 1550
roland@6054 1551 void print_data_on(outputStream* st, const char* extra = NULL) const;
duke@0 1552 };
duke@0 1553
duke@0 1554 // BranchData
duke@0 1555 //
duke@0 1556 // A BranchData is used to access profiling data for a two-way branch.
duke@0 1557 // It consists of taken and not_taken counts as well as a data displacement
duke@0 1558 // for the taken case.
duke@0 1559 class BranchData : public JumpData {
duke@0 1560 protected:
duke@0 1561 enum {
duke@0 1562 not_taken_off_set = jump_cell_count,
duke@0 1563 branch_cell_count
duke@0 1564 };
duke@0 1565
duke@0 1566 void set_displacement(int displacement) {
duke@0 1567 set_int_at(displacement_off_set, displacement);
duke@0 1568 }
duke@0 1569
duke@0 1570 public:
duke@0 1571 BranchData(DataLayout* layout) : JumpData(layout) {
duke@0 1572 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@0 1573 }
duke@0 1574
roland@5479 1575 virtual bool is_BranchData() const { return true; }
duke@0 1576
duke@0 1577 static int static_cell_count() {
duke@0 1578 return branch_cell_count;
duke@0 1579 }
duke@0 1580
roland@5479 1581 virtual int cell_count() const {
duke@0 1582 return static_cell_count();
duke@0 1583 }
duke@0 1584
duke@0 1585 // Direct accessor
roland@5479 1586 uint not_taken() const {
duke@0 1587 return uint_at(not_taken_off_set);
duke@0 1588 }
duke@0 1589
never@2670 1590 void set_not_taken(uint cnt) {
never@2670 1591 set_uint_at(not_taken_off_set, cnt);
never@2670 1592 }
never@2670 1593
duke@0 1594 uint inc_not_taken() {
duke@0 1595 uint cnt = not_taken() + 1;
duke@0 1596 // Did we wrap? Will compiler screw us??
duke@0 1597 if (cnt == 0) cnt--;
duke@0 1598 set_uint_at(not_taken_off_set, cnt);
duke@0 1599 return cnt;
duke@0 1600 }
duke@0 1601
duke@0 1602 // Code generation support
duke@0 1603 static ByteSize not_taken_offset() {
duke@0 1604 return cell_offset(not_taken_off_set);
duke@0 1605 }
duke@0 1606 static ByteSize branch_data_size() {
duke@0 1607 return cell_offset(branch_cell_count);
duke@0 1608 }
duke@0 1609
goetz@5974 1610 #ifdef CC_INTERP
goetz@5974 1611 static int branch_data_size_in_bytes() {
goetz@5974 1612 return cell_offset_in_bytes(branch_cell_count);
goetz@5974 1613 }
goetz@5974 1614
goetz@5974 1615 static void increment_not_taken_count_no_overflow(DataLayout* layout) {
goetz@5974 1616 increment_uint_at_no_overflow(layout, not_taken_off_set);
goetz@5974 1617 }
goetz@5974 1618
goetz@5974 1619 static DataLayout* advance_not_taken(DataLayout* layout) {
goetz@5974 1620 return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
goetz@5974 1621 }
goetz@5974 1622 #endif // CC_INTERP
goetz@5974 1623
duke@0 1624 // Specific initialization.
coleenp@3602 1625 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 1626
roland@6054 1627 void print_data_on(outputStream* st, const char* extra = NULL) const;
duke@0 1628 };
duke@0 1629
duke@0 1630 // ArrayData
duke@0 1631 //
duke@0 1632 // A ArrayData is a base class for accessing profiling data which does
duke@0 1633 // not have a statically known size. It consists of an array length
duke@0 1634 // and an array start.
duke@0 1635 class ArrayData : public ProfileData {
duke@0 1636 protected:
duke@0 1637 friend class DataLayout;
duke@0 1638
duke@0 1639 enum {
duke@0 1640 array_len_off_set,
duke@0 1641 array_start_off_set
duke@0 1642 };
duke@0 1643
roland@5479 1644 uint array_uint_at(int index) const {
duke@0 1645 int aindex = index + array_start_off_set;
duke@0 1646 return uint_at(aindex);
duke@0 1647 }
roland@5479 1648 int array_int_at(int index) const {
duke@0 1649 int aindex = index + array_start_off_set;
duke@0 1650 return int_at(aindex);
duke@0 1651 }
roland@5479 1652 oop array_oop_at(int index) const {
duke@0 1653 int aindex = index + array_start_off_set;
duke@0 1654 return oop_at(aindex);
duke@0 1655 }
duke@0 1656 void array_set_int_at(int index, int value) {
duke@0 1657 int aindex = index + array_start_off_set;
duke@0 1658 set_int_at(aindex, value);
duke@0 1659 }
duke@0 1660
goetz@5974 1661 #ifdef CC_INTERP
goetz@5974 1662 // Static low level accessors for DataLayout with ArrayData's semantics.
goetz@5974 1663
goetz@5974 1664 static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
goetz@5974 1665 int aindex = index + array_start_off_set;
goetz@5974 1666 increment_uint_at_no_overflow(layout, aindex);
goetz@5974 1667 }
goetz@5974 1668
goetz@5974 1669 static int array_int_at(DataLayout* layout, int index) {
goetz@5974 1670 int aindex = index + array_start_off_set;
goetz@5974 1671 return int_at(layout, aindex);
goetz@5974 1672 }
goetz@5974 1673 #endif // CC_INTERP
goetz@5974 1674
duke@0 1675 // Code generation support for subclasses.
duke@0 1676 static ByteSize array_element_offset(int index) {
duke@0 1677 return cell_offset(array_start_off_set + index);
duke@0 1678 }
duke@0 1679
duke@0 1680 public:
duke@0 1681 ArrayData(DataLayout* layout) : ProfileData(layout) {}
duke@0 1682
roland@5479 1683 virtual bool is_ArrayData() const { return true; }
duke@0 1684
duke@0 1685 static int static_cell_count() {
duke@0 1686 return -1;
duke@0 1687 }
duke@0 1688
roland@5479 1689 int array_len() const {
duke@0 1690 return int_at_unchecked(array_len_off_set);
duke@0 1691 }
duke@0 1692
roland@5479 1693 virtual int cell_count() const {
duke@0 1694 return array_len() + 1;
duke@0 1695 }
duke@0 1696
duke@0 1697 // Code generation support
duke@0 1698 static ByteSize array_len_offset() {
duke@0 1699 return cell_offset(array_len_off_set);
duke@0 1700 }
duke@0 1701 static ByteSize array_start_offset() {
duke@0 1702 return cell_offset(array_start_off_set);
duke@0 1703 }
duke@0 1704 };
duke@0 1705
duke@0 1706 // MultiBranchData
duke@0 1707 //
duke@0 1708 // A MultiBranchData is used to access profiling information for
duke@0 1709 // a multi-way branch (*switch bytecodes). It consists of a series
duke@0 1710 // of (count, displacement) pairs, which count the number of times each
duke@0 1711 // case was taken and specify the data displacment for each branch target.
duke@0 1712 class MultiBranchData : public ArrayData {
duke@0 1713 protected:
duke@0 1714 enum {
duke@0 1715 default_count_off_set,
duke@0 1716 default_disaplacement_off_set,
duke@0 1717 case_array_start
duke@0 1718 };
duke@0 1719 enum {
duke@0 1720 relative_count_off_set,
duke@0 1721 relative_displacement_off_set,
duke@0 1722 per_case_cell_count
duke@0 1723 };
duke@0 1724
duke@0 1725 void set_default_displacement(int displacement) {
duke@0 1726 array_set_int_at(default_disaplacement_off_set, displacement);
duke@0 1727 }
duke@0 1728 void set_displacement_at(int index, int displacement) {
duke@0 1729 array_set_int_at(case_array_start +
duke@0 1730 index * per_case_cell_count +
duke@0 1731 relative_displacement_off_set,
duke@0 1732 displacement);
duke@0 1733 }
duke@0 1734
duke@0 1735 public:
duke@0 1736 MultiBranchData(DataLayout* layout) : ArrayData(layout) {
duke@0 1737 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
duke@0 1738 }
duke@0 1739
roland@5479 1740 virtual bool is_MultiBranchData() const { return true; }
duke@0 1741
duke@0 1742 static int compute_cell_count(BytecodeStream* stream);
duke@0 1743
roland@5479 1744 int number_of_cases() const {
duke@0 1745 int alen = array_len() - 2; // get rid of default case here.
duke@0 1746 assert(alen % per_case_cell_count == 0, "must be even");
duke@0 1747 return (alen / per_case_cell_count);
duke@0 1748 }
duke@0 1749
roland@5479 1750 uint default_count() const {
duke@0 1751 return array_uint_at(default_count_off_set);
duke@0 1752 }
roland@5479 1753 int default_displacement() const {
duke@0 1754 return array_int_at(default_disaplacement_off_set);
duke@0 1755 }
duke@0 1756
roland@5479 1757 uint count_at(int index) const {
duke@0 1758 return array_uint_at(case_array_start +
duke@0 1759 index * per_case_cell_count +
duke@0 1760 relative_count_off_set);
duke@0 1761 }
roland@5479 1762 int displacement_at(int index) const {
duke@0 1763 return array_int_at(case_array_start +
duke@0 1764 index * per_case_cell_count +
duke@0 1765 relative_displacement_off_set);
duke@0 1766 }
duke@0 1767
duke@0 1768 // Code generation support
duke@0 1769 static ByteSize default_count_offset() {
duke@0 1770 return array_element_offset(default_count_off_set);
duke@0 1771 }
duke@0 1772 static ByteSize default_displacement_offset() {
duke@0 1773 return array_element_offset(default_disaplacement_off_set);
duke@0 1774 }
duke@0 1775 static ByteSize case_count_offset(int index) {
duke@0 1776 return case_array_offset() +
duke@0 1777 (per_case_size() * index) +
duke@0 1778 relative_count_offset();
duke@0 1779 }
duke@0 1780 static ByteSize case_array_offset() {
duke@0 1781 return array_element_offset(case_array_start);
duke@0 1782 }
duke@0 1783 static ByteSize per_case_size() {
duke@0 1784 return in_ByteSize(per_case_cell_count) * cell_size;
duke@0 1785 }
duke@0 1786 static ByteSize relative_count_offset() {
duke@0 1787 return in_ByteSize(relative_count_off_set) * cell_size;
duke@0 1788 }
duke@0 1789 static ByteSize relative_displacement_offset() {
duke@0 1790 return in_ByteSize(relative_displacement_off_set) * cell_size;
duke@0 1791 }
duke@0 1792
goetz@5974 1793 #ifdef CC_INTERP
goetz@5974 1794 static void increment_count_no_overflow(DataLayout* layout, int index) {
goetz@5974 1795 if (index == -1) {
goetz@5974 1796 increment_array_uint_at_no_overflow(layout, default_count_off_set);
goetz@5974 1797 } else {
goetz@5974 1798 increment_array_uint_at_no_overflow(layout, case_array_start +
goetz@5974 1799 index * per_case_cell_count +
goetz@5974 1800 relative_count_off_set);
goetz@5974 1801 }
goetz@5974 1802 }
goetz@5974 1803
goetz@5974 1804 static DataLayout* advance(DataLayout* layout, int index) {
goetz@5974 1805 if (index == -1) {
goetz@5974 1806 return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
goetz@5974 1807 } else {
goetz@5974 1808 return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
goetz@5974 1809 index * per_case_cell_count +
goetz@5974 1810 relative_displacement_off_set));
goetz@5974 1811 }
goetz@5974 1812 }
goetz@5974 1813 #endif // CC_INTERP
goetz@5974 1814
duke@0 1815 // Specific initialization.
coleenp@3602 1816 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 1817
roland@6054 1818 void print_data_on(outputStream* st, const char* extra = NULL) const;
duke@0 1819 };
duke@0 1820
kvn@45 1821 class ArgInfoData : public ArrayData {
kvn@45 1822
kvn@45 1823 public:
kvn@45 1824 ArgInfoData(DataLayout* layout) : ArrayData(layout) {
kvn@45 1825 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
kvn@45 1826 }
kvn@45 1827
roland@5479 1828 virtual bool is_ArgInfoData() const { return true; }
kvn@45 1829
kvn@45 1830
roland@5479 1831 int number_of_args() const {
kvn@45 1832 return array_len();
kvn@45 1833 }
kvn@45 1834
roland@5479 1835 uint arg_modified(int arg) const {
kvn@45 1836 return array_uint_at(arg);
kvn@45 1837 }
kvn@45 1838
kvn@45 1839 void set_arg_modified(int arg, uint val) {
kvn@45 1840 array_set_int_at(arg, val);
kvn@45 1841 }
kvn@45 1842
roland@6054 1843 void print_data_on(outputStream* st, const char* extra = NULL) const;
kvn@45 1844 };
kvn@45 1845
roland@5552 1846 // ParametersTypeData
roland@5552 1847 //
roland@5552 1848 // A ParametersTypeData is used to access profiling information about
roland@5552 1849 // types of parameters to a method
roland@5552 1850 class ParametersTypeData : public ArrayData {
roland@5552 1851
roland@5552 1852 private:
roland@5552 1853 TypeStackSlotEntries _parameters;
roland@5552 1854
roland@5552 1855 static int stack_slot_local_offset(int i) {
roland@5552 1856 assert_profiling_enabled();
roland@5552 1857 return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
roland@5552 1858 }
roland@5552 1859
roland@5552 1860 static int type_local_offset(int i) {
roland@5552 1861 assert_profiling_enabled();
roland@5552 1862 return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
roland@5552 1863 }
roland@5552 1864
roland@5552 1865 static bool profiling_enabled();
roland@5552 1866 static void assert_profiling_enabled() {
roland@5552 1867 assert(profiling_enabled(), "method parameters profiling should be on");
roland@5552 1868 }
roland@5552 1869
roland@5552 1870 public:
roland@5552 1871 ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
roland@5552 1872 assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
roland@5552 1873 // Some compilers (VC++) don't want this passed in member initialization list
roland@5552 1874 _parameters.set_profile_data(this);
roland@5552 1875 }
roland@5552 1876
roland@5552 1877 static int compute_cell_count(Method* m);
roland@5552 1878
roland@5552 1879 virtual bool is_ParametersTypeData() const { return true; }
roland@5552 1880
roland@5552 1881 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
roland@5552 1882
roland@5552 1883 int number_of_parameters() const {
roland@5552 1884 return array_len() / TypeStackSlotEntries::per_arg_count();
roland@5552 1885 }
roland@5552 1886
roland@5552 1887 const TypeStackSlotEntries* parameters() const { return &_parameters; }
roland@5552 1888
roland@5552 1889 uint stack_slot(int i) const {
roland@5552 1890 return _parameters.stack_slot(i);
roland@5552 1891 }
roland@5552 1892
roland@5552 1893 void set_type(int i, Klass* k) {
roland@5552 1894 intptr_t current = _parameters.type(i);
roland@5552 1895 _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
roland@5552 1896 }
roland@5552 1897
roland@5552 1898 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
roland@5552 1899 _parameters.clean_weak_klass_links(is_alive_closure);
roland@5552 1900 }
roland@5552 1901
roland@6054 1902 virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
roland@5552 1903
roland@5552 1904 static ByteSize stack_slot_offset(int i) {
roland@5552 1905 return cell_offset(stack_slot_local_offset(i));
roland@5552 1906 }
roland@5552 1907
roland@5552 1908 static ByteSize type_offset(int i) {
roland@5552 1909 return cell_offset(type_local_offset(i));
roland@5552 1910 }
roland@5552 1911 };
roland@5552 1912
roland@6054 1913 // SpeculativeTrapData
roland@6054 1914 //
roland@6054 1915 // A SpeculativeTrapData is used to record traps due to type
roland@6054 1916 // speculation. It records the root of the compilation: that type
roland@6054 1917 // speculation is wrong in the context of one compilation (for
roland@6054 1918 // method1) doesn't mean it's wrong in the context of another one (for
roland@6054 1919 // method2). Type speculation could have more/different data in the
roland@6054 1920 // context of the compilation of method2 and it's worthwhile to try an
roland@6054 1921 // optimization that failed for compilation of method1 in the context
roland@6054 1922 // of compilation of method2.
roland@6054 1923 // Space for SpeculativeTrapData entries is allocated from the extra
roland@6054 1924 // data space in the MDO. If we run out of space, the trap data for
roland@6054 1925 // the ProfileData at that bci is updated.
roland@6054 1926 class SpeculativeTrapData : public ProfileData {
roland@6054 1927 protected:
roland@6054 1928 enum {
roland@6054 1929 method_offset,
roland@6054 1930 speculative_trap_cell_count
roland@6054 1931 };
roland@6054 1932 public:
roland@6054 1933 SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
roland@6054 1934 assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
roland@6054 1935 }
roland@6054 1936
roland@6054 1937 virtual bool is_SpeculativeTrapData() const { return true; }
roland@6054 1938
roland@6054 1939 static int static_cell_count() {
roland@6054 1940 return speculative_trap_cell_count;
roland@6054 1941 }
roland@6054 1942
roland@6054 1943 virtual int cell_count() const {
roland@6054 1944 return static_cell_count();
roland@6054 1945 }
roland@6054 1946
roland@6054 1947 // Direct accessor
roland@6054 1948 Method* method() const {
roland@6054 1949 return (Method*)intptr_at(method_offset);
roland@6054 1950 }
roland@6054 1951
roland@6054 1952 void set_method(Method* m) {
roland@6054 1953 set_intptr_at(method_offset, (intptr_t)m);
roland@6054 1954 }
roland@6054 1955
roland@6054 1956 virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
roland@6054 1957 };
roland@6054 1958
coleenp@3602 1959 // MethodData*
duke@0 1960 //
coleenp@3602 1961 // A MethodData* holds information which has been collected about
duke@0 1962 // a method. Its layout looks like this:
duke@0 1963 //
duke@0 1964 // -----------------------------
duke@0 1965 // | header |
duke@0 1966 // | klass |
duke@0 1967 // -----------------------------
duke@0 1968 // | method |
coleenp@3602 1969 // | size of the MethodData* |
duke@0 1970 // -----------------------------
duke@0 1971 // | Data entries... |
duke@0 1972 // | (variable size) |
duke@0 1973 // | |
duke@0 1974 // . .
duke@0 1975 // . .
duke@0 1976 // . .
duke@0 1977 // | |
duke@0 1978 // -----------------------------
duke@0 1979 //
duke@0 1980 // The data entry area is a heterogeneous array of DataLayouts. Each
duke@0 1981 // DataLayout in the array corresponds to a specific bytecode in the
duke@0 1982 // method. The entries in the array are sorted by the corresponding
duke@0 1983 // bytecode. Access to the data is via resource-allocated ProfileData,
duke@0 1984 // which point to the underlying blocks of DataLayout structures.
duke@0 1985 //
duke@0 1986 // During interpretation, if profiling in enabled, the interpreter
duke@0 1987 // maintains a method data pointer (mdp), which points at the entry
duke@0 1988 // in the array corresponding to the current bci. In the course of
duke@0 1989 // intepretation, when a bytecode is encountered that has profile data
duke@0 1990 // associated with it, the entry pointed to by mdp is updated, then the
duke@0 1991 // mdp is adjusted to point to the next appropriate DataLayout. If mdp
duke@0 1992 // is NULL to begin with, the interpreter assumes that the current method
duke@0 1993 // is not (yet) being profiled.
duke@0 1994 //
coleenp@3602 1995 // In MethodData* parlance, "dp" is a "data pointer", the actual address
duke@0 1996 // of a DataLayout element. A "di" is a "data index", the offset in bytes
duke@0 1997 // from the base of the data entry array. A "displacement" is the byte offset
duke@0 1998 // in certain ProfileData objects that indicate the amount the mdp must be
duke@0 1999 // adjusted in the event of a change in control flow.
duke@0 2000 //
duke@0 2001
goetz@5974 2002 CC_INTERP_ONLY(class BytecodeInterpreter;)
roland@6247 2003 class CleanExtraDataClosure;
goetz@5974 2004
coleenp@3602 2005 class MethodData : public Metadata {
duke@0 2006 friend class VMStructs;
goetz@5974 2007 CC_INTERP_ONLY(friend class BytecodeInterpreter;)
duke@0 2008 private:
duke@0 2009 friend class ProfileData;
duke@0 2010
coleenp@3602 2011 // Back pointer to the Method*
coleenp@3602 2012 Method* _method;
duke@0 2013
duke@0 2014 // Size of this oop in bytes
duke@0 2015 int _size;
duke@0 2016
duke@0 2017 // Cached hint for bci_to_dp and bci_to_data
duke@0 2018 int _hint_di;
duke@0 2019
roland@6098 2020 Mutex _extra_data_lock;
roland@6098 2021
coleenp@3602 2022 MethodData(methodHandle method, int size, TRAPS);
coleenp@3602 2023 public:
coleenp@3602 2024 static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
roland@6098 2025 MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
coleenp@3602 2026
coleenp@3602 2027 bool is_methodData() const volatile { return true; }
coleenp@3602 2028
duke@0 2029 // Whole-method sticky bits and flags
duke@0 2030 enum {
roland@6216 2031 _trap_hist_limit = 20, // decoupled from Deoptimization::Reason_LIMIT
duke@0 2032 _trap_hist_mask = max_jubyte,
duke@0 2033 _extra_data_count = 4 // extra DataLayout headers, for trap history
duke@0 2034 }; // Public flag values
duke@0 2035 private:
duke@0 2036 uint _nof_decompiles; // count of all nmethod removals
duke@0 2037 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits
duke@0 2038 uint _nof_overflow_traps; // trap count, excluding _trap_hist
duke@0 2039 union {
duke@0 2040 intptr_t _align;
duke@0 2041 u1 _array[_trap_hist_limit];
duke@0 2042 } _trap_hist;
duke@0 2043
duke@0 2044 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@0 2045 intx _eflags; // flags on escape information
duke@0 2046 intx _arg_local; // bit set of non-escaping arguments
duke@0 2047 intx _arg_stack; // bit set of stack-allocatable arguments
duke@0 2048 intx _arg_returned; // bit set of returned arguments
duke@0 2049
iveresov@1703 2050 int _creation_mileage; // method mileage at MDO creation
iveresov@1703 2051
iveresov@1703 2052 // How many invocations has this MDO seen?
iveresov@1703 2053 // These counters are used to determine the exact age of MDO.
iveresov@1703 2054 // We need those because in tiered a method can be concurrently
iveresov@1703 2055 // executed at different levels.
iveresov@1703 2056 InvocationCounter _invocation_counter;
iveresov@1703 2057 // Same for backedges.
iveresov@1703 2058 InvocationCounter _backedge_counter;
iveresov@2124 2059 // Counter values at the time profiling started.
iveresov@2124 2060 int _invocation_counter_start;
iveresov@2124 2061 int _backedge_counter_start;
iveresov@6430 2062 uint _tenure_traps;
kvn@6182 2063
kvn@6182 2064 #if INCLUDE_RTM_OPT
kvn@6182 2065 // State of RTM code generation during compilation of the method
kvn@6182 2066 int _rtm_state;
kvn@6182 2067 #endif
kvn@6182 2068
iveresov@1703 2069 // Number of loops and blocks is computed when compiling the first
iveresov@1703 2070 // time with C1. It is used to determine if method is trivial.
iveresov@1703 2071 short _num_loops;
iveresov@1703 2072 short _num_blocks;
iveresov@1703 2073 // Highest compile level this method has ever seen.
iveresov@1703 2074 u1 _highest_comp_level;
iveresov@1703 2075 // Same for OSR level
iveresov@1703 2076 u1 _highest_osr_comp_level;
iveresov@1703 2077 // Does this method contain anything worth profiling?
iveresov@1703 2078 bool _would_profile;
duke@0 2079
duke@0 2080 // Size of _data array in bytes. (Excludes header and extra_data fields.)
duke@0 2081 int _data_size;
duke@0 2082
roland@5552 2083 // data index for the area dedicated to parameters. -1 if no
roland@5552 2084 // parameter profiling.
roland@5552 2085 int _parameters_type_data_di;
roland@5552 2086
duke@0 2087 // Beginning of the data entries
duke@0 2088 intptr_t _data[1];
duke@0 2089
duke@0 2090 // Helper for size computation
duke@0 2091 static int compute_data_size(BytecodeStream* stream);
duke@0 2092 static int bytecode_cell_count(Bytecodes::Code code);
roland@6054 2093 static bool is_speculative_trap_bytecode(Bytecodes::Code code);
duke@0 2094 enum { no_profile_data = -1, variable_cell_count = -2 };
duke@0 2095
duke@0 2096 // Helper for initialization
coleenp@3602 2097 DataLayout* data_layout_at(int data_index) const {
duke@0 2098 assert(data_index % sizeof(intptr_t) == 0, "unaligned");
duke@0 2099 return (DataLayout*) (((address)_data) + data_index);
duke@0 2100 }
duke@0 2101
duke@0 2102 // Initialize an individual data segment. Returns the size of
duke@0 2103 // the segment in bytes.
duke@0 2104 int initialize_data(BytecodeStream* stream, int data_index);
duke@0 2105
duke@0 2106 // Helper for data_at
coleenp@3602 2107 DataLayout* limit_data_position() const {
duke@0 2108 return (DataLayout*)((address)data_base() + _data_size);
duke@0 2109 }
coleenp@3602 2110 bool out_of_bounds(int data_index) const {
duke@0 2111 return data_index >= data_size();
duke@0 2112 }
duke@0 2113
duke@0 2114 // Give each of the data entries a chance to perform specific
duke@0 2115 // data initialization.
duke@0 2116 void post_initialize(BytecodeStream* stream);
duke@0 2117
duke@0 2118 // hint accessors
duke@0 2119 int hint_di() const { return _hint_di; }
duke@0 2120 void set_hint_di(int di) {
duke@0 2121 assert(!out_of_bounds(di), "hint_di out of bounds");
duke@0 2122 _hint_di = di;
duke@0 2123 }
duke@0 2124 ProfileData* data_before(int bci) {
duke@0 2125 // avoid SEGV on this edge case
duke@0 2126 if (data_size() == 0)
duke@0 2127 return NULL;
duke@0 2128 int hint = hint_di();
duke@0 2129 if (data_layout_at(hint)->bci() <= bci)
duke@0 2130 return data_at(hint);
duke@0 2131 return first_data();
duke@0 2132 }
duke@0 2133
duke@0 2134 // What is the index of the first data entry?
coleenp@3602 2135 int first_di() const { return 0; }
duke@0 2136
roland@6098 2137 ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
duke@0 2138 // Find or create an extra ProfileData:
roland@6054 2139 ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
duke@0 2140
kvn@45 2141 // return the argument info cell
kvn@45 2142 ArgInfoData *arg_info();
kvn@45 2143
roland@5479 2144 enum {
roland@5479 2145 no_type_profile = 0,
roland@5479 2146 type_profile_jsr292 = 1,
roland@5479 2147 type_profile_all = 2
roland@5479 2148 };
roland@5479 2149
roland@5479 2150 static bool profile_jsr292(methodHandle m, int bci);
roland@5479 2151 static int profile_arguments_flag();
roland@5479 2152 static bool profile_all_arguments();
roland@5479 2153 static bool profile_arguments_for_invoke(methodHandle m, int bci);
roland@5486 2154 static int profile_return_flag();
roland@5486 2155 static bool profile_all_return();
roland@5486 2156 static bool profile_return_for_invoke(methodHandle m, int bci);
roland@5552 2157 static int profile_parameters_flag();
roland@5552 2158 static bool profile_parameters_jsr292_only();
roland@5552 2159 static bool profile_all_parameters();
roland@5479 2160
roland@6247 2161 void clean_extra_data(CleanExtraDataClosure* cl);
roland@6054 2162 void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
roland@6247 2163 void verify_extra_data_clean(CleanExtraDataClosure* cl);
roland@6054 2164
duke@0 2165 public:
duke@0 2166 static int header_size() {
coleenp@3602 2167 return sizeof(MethodData)/wordSize;
duke@0 2168 }
duke@0 2169
coleenp@3602 2170 // Compute the size of a MethodData* before it is created.
duke@0 2171 static int compute_allocation_size_in_bytes(methodHandle method);
duke@0 2172 static int compute_allocation_size_in_words(methodHandle method);
roland@6054 2173 static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
duke@0 2174
duke@0 2175 // Determine if a given bytecode can have profile information.
duke@0 2176 static bool bytecode_has_profile(Bytecodes::Code code) {
duke@0 2177 return bytecode_cell_count(code) != no_profile_data;
duke@0 2178 }
duke@0 2179
iignatyev@4473 2180 // reset into original state
iignatyev@4473 2181 void init();
duke@0 2182
duke@0 2183 // My size
coleenp@3602 2184 int size_in_bytes() const { return _size; }
coleenp@3602 2185 int size() const { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
acorn@4062 2186 #if INCLUDE_SERVICES
acorn@4062 2187 void collect_statistics(KlassSizeStats *sz) const;
acorn@4062 2188 #endif
duke@0 2189
duke@0 2190 int creation_mileage() const { return _creation_mileage; }
duke@0 2191 void set_creation_mileage(int x) { _creation_mileage = x; }
iveresov@1703 2192
iveresov@1703 2193 int invocation_count() {
iveresov@1703 2194 if (invocation_counter()->carry()) {
iveresov@1703 2195 return InvocationCounter::count_limit;
iveresov@1703 2196 }
iveresov@1703 2197 return invocation_counter()->count();
iveresov@1703 2198 }
iveresov@1703 2199 int backedge_count() {
iveresov@1703 2200 if (backedge_counter()->carry()) {
iveresov@1703 2201 return InvocationCounter::count_limit;
iveresov@1703 2202 }
iveresov@1703 2203 return backedge_counter()->count();
iveresov@1703 2204 }
iveresov@1703 2205
iveresov@2124 2206 int invocation_count_start() {
iveresov@2124 2207 if (invocation_counter()->carry()) {
iveresov@2124 2208 return 0;
iveresov@2124 2209 }
iveresov@2124 2210 return _invocation_counter_start;
iveresov@2124 2211 }
iveresov@2124 2212
iveresov@2124 2213 int backedge_count_start() {
iveresov@2124 2214 if (backedge_counter()->carry()) {
iveresov@2124 2215 return 0;
iveresov@2124 2216 }
iveresov@2124 2217 return _backedge_counter_start;
iveresov@2124 2218 }
iveresov@2124 2219
iveresov@2124 2220 int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
iveresov@2124 2221 int backedge_count_delta() { return backedge_count() - backedge_count_start(); }
iveresov@2124 2222
iveresov@2124 2223 void reset_start_counters() {
iveresov@2124 2224 _invocation_counter_start = invocation_count();
iveresov@2124 2225 _backedge_counter_start = backedge_count();
iveresov@2124 2226 }
iveresov@2124 2227
iveresov@1703 2228 InvocationCounter* invocation_counter() { return &_invocation_counter; }
iveresov@1703 2229 InvocationCounter* backedge_counter() { return &_backedge_counter; }
iveresov@1703 2230
kvn@6182 2231 #if INCLUDE_RTM_OPT
kvn@6182 2232 int rtm_state() const {
kvn@6182 2233 return _rtm_state;
kvn@6182 2234 }
kvn@6182 2235 void set_rtm_state(RTMState rstate) {
kvn@6182 2236 _rtm_state = (int)rstate;
kvn@6182 2237 }
kvn@6182 2238 void atomic_set_rtm_state(RTMState rstate) {
kvn@6182 2239 Atomic::store((int)rstate, &_rtm_state);
kvn@6182 2240 }
kvn@6182 2241
kvn@6182 2242 static int rtm_state_offset_in_bytes() {
kvn@6182 2243 return offset_of(MethodData, _rtm_state);
kvn@6182 2244 }
kvn@6182 2245 #endif
kvn@6182 2246
iveresov@1703 2247 void set_would_profile(bool p) { _would_profile = p; }
iveresov@1703 2248 bool would_profile() const { return _would_profile; }
iveresov@1703 2249
minqi@4662 2250 int highest_comp_level() const { return _highest_comp_level; }
iveresov@1703 2251 void set_highest_comp_level(int level) { _highest_comp_level = level; }
minqi@4662 2252 int highest_osr_comp_level() const { return _highest_osr_comp_level; }
iveresov@1703 2253 void set_highest_osr_comp_level(int level) { _highest_osr_comp_level = level; }
iveresov@1703 2254
iveresov@1703 2255 int num_loops() const { return _num_loops; }
iveresov@1703 2256 void set_num_loops(int n) { _num_loops = n; }
iveresov@1703 2257 int num_blocks() const { return _num_blocks; }
iveresov@1703 2258 void set_num_blocks(int n) { _num_blocks = n; }
iveresov@1703 2259
duke@0 2260 bool is_mature() const; // consult mileage and ProfileMaturityPercentage
coleenp@3602 2261 static int mileage_of(Method* m);
duke@0 2262
duke@0 2263 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@0 2264 enum EscapeFlag {
duke@0 2265 estimated = 1 << 0,
kvn@78 2266 return_local = 1 << 1,
kvn@78 2267 return_allocated = 1 << 2,
kvn@78 2268 allocated_escapes = 1 << 3,
kvn@78 2269 unknown_modified = 1 << 4
duke@0 2270 };
duke@0 2271
duke@0 2272 intx eflags() { return _eflags; }
duke@0 2273 intx arg_local() { return _arg_local; }
duke@0 2274 intx arg_stack() { return _arg_stack; }
duke@0 2275 intx arg_returned() { return _arg_returned; }
kvn@45 2276 uint arg_modified(int a) { ArgInfoData *aid = arg_info();
iignatyev@4473 2277 assert(aid != NULL, "arg_info must be not null");
kvn@45 2278 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@45 2279 return aid->arg_modified(a); }
duke@0 2280
duke@0 2281 void set_eflags(intx v) { _eflags = v; }
duke@0 2282 void set_arg_local(intx v) { _arg_local = v; }
duke@0 2283 void set_arg_stack(intx v) { _arg_stack = v; }
duke@0 2284 void set_arg_returned(intx v) { _arg_returned = v; }
kvn@45 2285 void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info();
iignatyev@4473 2286 assert(aid != NULL, "arg_info must be not null");
kvn@45 2287 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@45 2288 aid->set_arg_modified(a, v); }
duke@0 2289
duke@0 2290 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
duke@0 2291
duke@0 2292 // Location and size of data area
duke@0 2293 address data_base() const {
duke@0 2294 return (address) _data;
duke@0 2295 }
coleenp@3602 2296 int data_size() const {
duke@0 2297 return _data_size;
duke@0 2298 }
duke@0 2299
duke@0 2300 // Accessors
coleenp@3602 2301 Method* method() const { return _method; }
duke@0 2302
duke@0 2303 // Get the data at an arbitrary (sort of) data index.
coleenp@3602 2304 ProfileData* data_at(int data_index) const;
duke@0 2305
duke@0 2306 // Walk through the data in order.
coleenp@3602 2307 ProfileData* first_data() const { return data_at(first_di()); }
coleenp@3602 2308 ProfileData* next_data(ProfileData* current) const;
coleenp@3602 2309 bool is_valid(ProfileData* current) const { return current != NULL; }
duke@0 2310
duke@0 2311 // Convert a dp (data pointer) to a di (data index).
coleenp@3602 2312 int dp_to_di(address dp) const {
duke@0 2313 return dp - ((address)_data);
duke@0 2314 }
duke@0 2315
duke@0 2316 address di_to_dp(int di) {
duke@0 2317 return (address)data_layout_at(di);
duke@0 2318 }
duke@0 2319
duke@0 2320 // bci to di/dp conversion.
duke@0 2321 address bci_to_dp(int bci);
duke@0 2322 int bci_to_di(int bci) {
duke@0 2323 return dp_to_di(bci_to_dp(bci));
duke@0 2324 }
duke@0 2325
duke@0 2326 // Get the data at an arbitrary bci, or NULL if there is none.
duke@0 2327 ProfileData* bci_to_data(int bci);
duke@0 2328
duke@0 2329 // Same, but try to create an extra_data record if one is needed:
roland@6054 2330 ProfileData* allocate_bci_to_data(int bci, Method* m) {
roland@6054 2331 ProfileData* data = NULL;
roland@6054 2332 // If m not NULL, try to allocate a SpeculativeTrapData entry
roland@6054 2333 if (m == NULL) {
roland@6054 2334 data = bci_to_data(bci);
roland@6054 2335 }
roland@6054 2336 if (data != NULL) {
roland@6054 2337 return data;
roland@6054 2338 }
roland@6054 2339 data = bci_to_extra_data(bci, m, true);
roland@6054 2340 if (data != NULL) {
roland@6054 2341 return data;
roland@6054 2342 }
roland@6054 2343 // If SpeculativeTrapData allocation fails try to allocate a
roland@6054 2344 // regular entry
roland@6054 2345 data = bci_to_data(bci);
roland@6054 2346 if (data != NULL) {
roland@6054 2347 return data;
roland@6054 2348 }
roland@6054 2349 return bci_to_extra_data(bci, NULL, true);
duke@0 2350 }
duke@0 2351
duke@0 2352 // Add a handful of extra data records, for trap tracking.
coleenp@3602 2353 DataLayout* extra_data_base() const { return limit_data_position(); }
coleenp@3602 2354 DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
coleenp@3602 2355 int extra_data_size() const { return (address)extra_data_limit()
duke@0 2356 - (address)extra_data_base(); }
roland@6054 2357 static DataLayout* next_extra(DataLayout* dp);
duke@0 2358
duke@0 2359 // Return (uint)-1 for overflow.
duke@0 2360 uint trap_count(int reason) const {
duke@0 2361 assert((uint)reason < _trap_hist_limit, "oob");
duke@0 2362 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
duke@0 2363 }
duke@0 2364 // For loops:
duke@0 2365 static uint trap_reason_limit() { return _trap_hist_limit; }
duke@0 2366 static uint trap_count_limit() { return _trap_hist_mask; }
duke@0 2367 uint inc_trap_count(int reason) {
duke@0 2368 // Count another trap, anywhere in this method.
duke@0 2369 assert(reason >= 0, "must be single trap");
duke@0 2370 if ((uint)reason < _trap_hist_limit) {
duke@0 2371 uint cnt1 = 1 + _trap_hist._array[reason];
duke@0 2372 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow...
duke@0 2373 _trap_hist._array[reason] = cnt1;
duke@0 2374 return cnt1;
duke@0 2375 } else {
duke@0 2376 return _trap_hist_mask + (++_nof_overflow_traps);
duke@0 2377 }
duke@0 2378 } else {
duke@0 2379 // Could not represent the count in the histogram.
duke@0 2380 return (++_nof_overflow_traps);
duke@0 2381 }
duke@0 2382 }
duke@0 2383
duke@0 2384 uint overflow_trap_count() const {
duke@0 2385 return _nof_overflow_traps;
duke@0 2386 }
duke@0 2387 uint overflow_recompile_count() const {
duke@0 2388 return _nof_overflow_recompiles;
duke@0 2389 }
duke@0 2390 void inc_overflow_recompile_count() {
duke@0 2391 _nof_overflow_recompiles += 1;
duke@0 2392 }
duke@0 2393 uint decompile_count() const {
duke@0 2394 return _nof_decompiles;
duke@0 2395 }
duke@0 2396 void inc_decompile_count() {
duke@0 2397 _nof_decompiles += 1;
kvn@1206 2398 if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
vlivanov@4104 2399 method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
kvn@1206 2400 }
duke@0 2401 }
iveresov@6430 2402 uint tenure_traps() const {
iveresov@6430 2403 return _tenure_traps;
iveresov@6430 2404 }
iveresov@6430 2405 void inc_tenure_traps() {
iveresov@6430 2406 _tenure_traps += 1;
iveresov@6430 2407 }
duke@0 2408
roland@5552 2409 // Return pointer to area dedicated to parameters in MDO
roland@5552 2410 ParametersTypeData* parameters_type_data() const {
roland@5552 2411 return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
roland@5552 2412 }
roland@5552 2413
roland@5552 2414 int parameters_type_data_di() const {
roland@5552 2415 assert(_parameters_type_data_di != -1, "no args type data");
roland@5552 2416 return _parameters_type_data_di;
roland@5552 2417 }
roland@5552 2418
duke@0 2419 // Support for code generation
duke@0 2420 static ByteSize data_offset() {
coleenp@3602 2421 return byte_offset_of(MethodData, _data[0]);
duke@0 2422 }
duke@0 2423
iveresov@1703 2424 static ByteSize invocation_counter_offset() {
coleenp@3602 2425 return byte_offset_of(MethodData, _invocation_counter);
iveresov@1703 2426 }
iveresov@1703 2427 static ByteSize backedge_counter_offset() {
coleenp@3602 2428 return byte_offset_of(MethodData, _backedge_counter);
iveresov@1703 2429 }
iveresov@1703 2430
roland@5552 2431 static ByteSize parameters_type_data_di_offset() {
roland@5552 2432 return byte_offset_of(MethodData, _parameters_type_data_di);
roland@5552 2433 }
roland@5552 2434
coleenp@3602 2435 // Deallocation support - no pointer fields to deallocate
coleenp@3602 2436 void deallocate_contents(ClassLoaderData* loader_data) {}
coleenp@3602 2437
duke@0 2438 // GC support
coleenp@3602 2439 void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
coleenp@3602 2440
coleenp@3602 2441 // Printing
coleenp@3602 2442 void print_on (outputStream* st) const;
coleenp@3602 2443 void print_value_on(outputStream* st) const;
duke@0 2444
duke@0 2445 // printing support for method data
coleenp@3602 2446 void print_data_on(outputStream* st) const;
duke@0 2447
coleenp@3602 2448 const char* internal_name() const { return "{method data}"; }
coleenp@3602 2449
duke@0 2450 // verification
coleenp@3602 2451 void verify_on(outputStream* st);
duke@0 2452 void verify_data_on(outputStream* st);
roland@5479 2453
roland@5552 2454 static bool profile_parameters_for_method(methodHandle m);
roland@5479 2455 static bool profile_arguments();
roland@6320 2456 static bool profile_arguments_jsr292_only();
roland@5486 2457 static bool profile_return();
roland@5552 2458 static bool profile_parameters();
roland@5486 2459 static bool profile_return_jsr292_only();
roland@6054 2460
roland@6054 2461 void clean_method_data(BoolObjectClosure* is_alive);
roland@6247 2462
roland@6247 2463 void clean_weak_method_links();
duke@0 2464 };
stefank@1879 2465
stefank@1879 2466 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP