annotate src/share/vm/oops/methodData.hpp @ 5974:abe03600372a

8024468: PPC64 (part 201): cppInterpreter: implement bytecode profiling Summary: Implement profiling for c2 jit compilation. Also enable new cppInterpreter features. Reviewed-by: kvn
author goetz
date Sun, 15 Sep 2013 15:28:58 +0200
parents 92ef81e2f571
children 2b8e28fdf503
rev   line source
duke@0 1 /*
acorn@4062 2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
trims@1472 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1472 20 * or visit www.oracle.com if you need additional information or have any
trims@1472 21 * questions.
duke@0 22 *
duke@0 23 */
duke@0 24
stefank@1879 25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
stefank@1879 26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
stefank@1879 27
stefank@1879 28 #include "interpreter/bytecodes.hpp"
stefank@1879 29 #include "memory/universe.hpp"
coleenp@3602 30 #include "oops/method.hpp"
stefank@1879 31 #include "oops/oop.hpp"
stefank@1879 32 #include "runtime/orderAccess.hpp"
stefank@1879 33
duke@0 34 class BytecodeStream;
acorn@4062 35 class KlassSizeStats;
duke@0 36
duke@0 37 // The MethodData object collects counts and other profile information
duke@0 38 // during zeroth-tier (interpretive) and first-tier execution.
duke@0 39 // The profile is used later by compilation heuristics. Some heuristics
duke@0 40 // enable use of aggressive (or "heroic") optimizations. An aggressive
duke@0 41 // optimization often has a down-side, a corner case that it handles
duke@0 42 // poorly, but which is thought to be rare. The profile provides
duke@0 43 // evidence of this rarity for a given method or even BCI. It allows
duke@0 44 // the compiler to back out of the optimization at places where it
duke@0 45 // has historically been a poor choice. Other heuristics try to use
duke@0 46 // specific information gathered about types observed at a given site.
duke@0 47 //
duke@0 48 // All data in the profile is approximate. It is expected to be accurate
duke@0 49 // on the whole, but the system expects occasional inaccuraces, due to
duke@0 50 // counter overflow, multiprocessor races during data collection, space
duke@0 51 // limitations, missing MDO blocks, etc. Bad or missing data will degrade
duke@0 52 // optimization quality but will not affect correctness. Also, each MDO
duke@0 53 // is marked with its birth-date ("creation_mileage") which can be used
duke@0 54 // to assess the quality ("maturity") of its data.
duke@0 55 //
duke@0 56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
duke@0 57 // state. Also, certain recorded per-BCI events are given one-bit counters
duke@0 58 // which overflow to a saturated state which applied to all counters at
duke@0 59 // that BCI. In other words, there is a small lattice which approximates
duke@0 60 // the ideal of an infinite-precision counter for each event at each BCI,
duke@0 61 // and the lattice quickly "bottoms out" in a state where all counters
duke@0 62 // are taken to be indefinitely large.
duke@0 63 //
duke@0 64 // The reader will find many data races in profile gathering code, starting
duke@0 65 // with invocation counter incrementation. None of these races harm correct
duke@0 66 // execution of the compiled code.
duke@0 67
ysr@941 68 // forward decl
ysr@941 69 class ProfileData;
ysr@941 70
duke@0 71 // DataLayout
duke@0 72 //
duke@0 73 // Overlay for generic profiling data.
duke@0 74 class DataLayout VALUE_OBJ_CLASS_SPEC {
duke@0 75 private:
duke@0 76 // Every data layout begins with a header. This header
duke@0 77 // contains a tag, which is used to indicate the size/layout
duke@0 78 // of the data, 4 bits of flags, which can be used in any way,
duke@0 79 // 4 bits of trap history (none/one reason/many reasons),
duke@0 80 // and a bci, which is used to tie this piece of data to a
duke@0 81 // specific bci in the bytecodes.
duke@0 82 union {
duke@0 83 intptr_t _bits;
duke@0 84 struct {
duke@0 85 u1 _tag;
duke@0 86 u1 _flags;
duke@0 87 u2 _bci;
duke@0 88 } _struct;
duke@0 89 } _header;
duke@0 90
duke@0 91 // The data layout has an arbitrary number of cells, each sized
duke@0 92 // to accomodate a pointer or an integer.
duke@0 93 intptr_t _cells[1];
duke@0 94
duke@0 95 // Some types of data layouts need a length field.
duke@0 96 static bool needs_array_len(u1 tag);
duke@0 97
duke@0 98 public:
duke@0 99 enum {
duke@0 100 counter_increment = 1
duke@0 101 };
duke@0 102
duke@0 103 enum {
duke@0 104 cell_size = sizeof(intptr_t)
duke@0 105 };
duke@0 106
duke@0 107 // Tag values
duke@0 108 enum {
duke@0 109 no_tag,
duke@0 110 bit_data_tag,
duke@0 111 counter_data_tag,
duke@0 112 jump_data_tag,
duke@0 113 receiver_type_data_tag,
duke@0 114 virtual_call_data_tag,
duke@0 115 ret_data_tag,
duke@0 116 branch_data_tag,
kvn@45 117 multi_branch_data_tag,
kvn@45 118 arg_info_data_tag
duke@0 119 };
duke@0 120
duke@0 121 enum {
duke@0 122 // The _struct._flags word is formatted as [trap_state:4 | flags:4].
duke@0 123 // The trap state breaks down further as [recompile:1 | reason:3].
duke@0 124 // This further breakdown is defined in deoptimization.cpp.
duke@0 125 // See Deoptimization::trap_state_reason for an assert that
duke@0 126 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
duke@0 127 //
duke@0 128 // The trap_state is collected only if ProfileTraps is true.
duke@0 129 trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
duke@0 130 trap_shift = BitsPerByte - trap_bits,
duke@0 131 trap_mask = right_n_bits(trap_bits),
duke@0 132 trap_mask_in_place = (trap_mask << trap_shift),
duke@0 133 flag_limit = trap_shift,
duke@0 134 flag_mask = right_n_bits(flag_limit),
duke@0 135 first_flag = 0
duke@0 136 };
duke@0 137
duke@0 138 // Size computation
duke@0 139 static int header_size_in_bytes() {
duke@0 140 return cell_size;
duke@0 141 }
duke@0 142 static int header_size_in_cells() {
duke@0 143 return 1;
duke@0 144 }
duke@0 145
duke@0 146 static int compute_size_in_bytes(int cell_count) {
duke@0 147 return header_size_in_bytes() + cell_count * cell_size;
duke@0 148 }
duke@0 149
duke@0 150 // Initialization
duke@0 151 void initialize(u1 tag, u2 bci, int cell_count);
duke@0 152
duke@0 153 // Accessors
duke@0 154 u1 tag() {
duke@0 155 return _header._struct._tag;
duke@0 156 }
duke@0 157
duke@0 158 // Return a few bits of trap state. Range is [0..trap_mask].
duke@0 159 // The state tells if traps with zero, one, or many reasons have occurred.
duke@0 160 // It also tells whether zero or many recompilations have occurred.
duke@0 161 // The associated trap histogram in the MDO itself tells whether
duke@0 162 // traps are common or not. If a BCI shows that a trap X has
duke@0 163 // occurred, and the MDO shows N occurrences of X, we make the
duke@0 164 // simplifying assumption that all N occurrences can be blamed
duke@0 165 // on that BCI.
duke@0 166 int trap_state() {
duke@0 167 return ((_header._struct._flags >> trap_shift) & trap_mask);
duke@0 168 }
duke@0 169
duke@0 170 void set_trap_state(int new_state) {
duke@0 171 assert(ProfileTraps, "used only under +ProfileTraps");
duke@0 172 uint old_flags = (_header._struct._flags & flag_mask);
duke@0 173 _header._struct._flags = (new_state << trap_shift) | old_flags;
duke@0 174 }
duke@0 175
duke@0 176 u1 flags() {
duke@0 177 return _header._struct._flags;
duke@0 178 }
duke@0 179
duke@0 180 u2 bci() {
duke@0 181 return _header._struct._bci;
duke@0 182 }
duke@0 183
duke@0 184 void set_header(intptr_t value) {
duke@0 185 _header._bits = value;
duke@0 186 }
duke@0 187 void release_set_header(intptr_t value) {
duke@0 188 OrderAccess::release_store_ptr(&_header._bits, value);
duke@0 189 }
duke@0 190 intptr_t header() {
duke@0 191 return _header._bits;
duke@0 192 }
duke@0 193 void set_cell_at(int index, intptr_t value) {
duke@0 194 _cells[index] = value;
duke@0 195 }
duke@0 196 void release_set_cell_at(int index, intptr_t value) {
duke@0 197 OrderAccess::release_store_ptr(&_cells[index], value);
duke@0 198 }
duke@0 199 intptr_t cell_at(int index) {
duke@0 200 return _cells[index];
duke@0 201 }
duke@0 202
duke@0 203 void set_flag_at(int flag_number) {
duke@0 204 assert(flag_number < flag_limit, "oob");
duke@0 205 _header._struct._flags |= (0x1 << flag_number);
duke@0 206 }
duke@0 207 bool flag_at(int flag_number) {
duke@0 208 assert(flag_number < flag_limit, "oob");
duke@0 209 return (_header._struct._flags & (0x1 << flag_number)) != 0;
duke@0 210 }
duke@0 211
duke@0 212 // Low-level support for code generation.
duke@0 213 static ByteSize header_offset() {
duke@0 214 return byte_offset_of(DataLayout, _header);
duke@0 215 }
duke@0 216 static ByteSize tag_offset() {
duke@0 217 return byte_offset_of(DataLayout, _header._struct._tag);
duke@0 218 }
duke@0 219 static ByteSize flags_offset() {
duke@0 220 return byte_offset_of(DataLayout, _header._struct._flags);
duke@0 221 }
duke@0 222 static ByteSize bci_offset() {
duke@0 223 return byte_offset_of(DataLayout, _header._struct._bci);
duke@0 224 }
duke@0 225 static ByteSize cell_offset(int index) {
coleenp@2180 226 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
duke@0 227 }
goetz@5974 228 #ifdef CC_INTERP
goetz@5974 229 static int cell_offset_in_bytes(int index) {
goetz@5974 230 return (int)offset_of(DataLayout, _cells[index]);
goetz@5974 231 }
goetz@5974 232 #endif // CC_INTERP
duke@0 233 // Return a value which, when or-ed as a byte into _flags, sets the flag.
duke@0 234 static int flag_number_to_byte_constant(int flag_number) {
duke@0 235 assert(0 <= flag_number && flag_number < flag_limit, "oob");
duke@0 236 DataLayout temp; temp.set_header(0);
duke@0 237 temp.set_flag_at(flag_number);
duke@0 238 return temp._header._struct._flags;
duke@0 239 }
duke@0 240 // Return a value which, when or-ed as a word into _header, sets the flag.
duke@0 241 static intptr_t flag_mask_to_header_mask(int byte_constant) {
duke@0 242 DataLayout temp; temp.set_header(0);
duke@0 243 temp._header._struct._flags = byte_constant;
duke@0 244 return temp._header._bits;
duke@0 245 }
ysr@941 246
coleenp@3602 247 ProfileData* data_in();
coleenp@3602 248
ysr@941 249 // GC support
coleenp@3602 250 void clean_weak_klass_links(BoolObjectClosure* cl);
duke@0 251 };
duke@0 252
duke@0 253
duke@0 254 // ProfileData class hierarchy
duke@0 255 class ProfileData;
duke@0 256 class BitData;
duke@0 257 class CounterData;
duke@0 258 class ReceiverTypeData;
duke@0 259 class VirtualCallData;
duke@0 260 class RetData;
duke@0 261 class JumpData;
duke@0 262 class BranchData;
duke@0 263 class ArrayData;
duke@0 264 class MultiBranchData;
kvn@45 265 class ArgInfoData;
duke@0 266
duke@0 267
duke@0 268 // ProfileData
duke@0 269 //
duke@0 270 // A ProfileData object is created to refer to a section of profiling
duke@0 271 // data in a structured way.
duke@0 272 class ProfileData : public ResourceObj {
duke@0 273 private:
duke@0 274 #ifndef PRODUCT
duke@0 275 enum {
duke@0 276 tab_width_one = 16,
duke@0 277 tab_width_two = 36
duke@0 278 };
duke@0 279 #endif // !PRODUCT
duke@0 280
duke@0 281 // This is a pointer to a section of profiling data.
duke@0 282 DataLayout* _data;
duke@0 283
duke@0 284 protected:
duke@0 285 DataLayout* data() { return _data; }
duke@0 286
duke@0 287 enum {
duke@0 288 cell_size = DataLayout::cell_size
duke@0 289 };
duke@0 290
duke@0 291 public:
duke@0 292 // How many cells are in this?
duke@0 293 virtual int cell_count() {
duke@0 294 ShouldNotReachHere();
duke@0 295 return -1;
duke@0 296 }
duke@0 297
duke@0 298 // Return the size of this data.
duke@0 299 int size_in_bytes() {
duke@0 300 return DataLayout::compute_size_in_bytes(cell_count());
duke@0 301 }
duke@0 302
duke@0 303 protected:
duke@0 304 // Low-level accessors for underlying data
duke@0 305 void set_intptr_at(int index, intptr_t value) {
duke@0 306 assert(0 <= index && index < cell_count(), "oob");
duke@0 307 data()->set_cell_at(index, value);
duke@0 308 }
duke@0 309 void release_set_intptr_at(int index, intptr_t value) {
duke@0 310 assert(0 <= index && index < cell_count(), "oob");
duke@0 311 data()->release_set_cell_at(index, value);
duke@0 312 }
duke@0 313 intptr_t intptr_at(int index) {
duke@0 314 assert(0 <= index && index < cell_count(), "oob");
duke@0 315 return data()->cell_at(index);
duke@0 316 }
duke@0 317 void set_uint_at(int index, uint value) {
duke@0 318 set_intptr_at(index, (intptr_t) value);
duke@0 319 }
duke@0 320 void release_set_uint_at(int index, uint value) {
duke@0 321 release_set_intptr_at(index, (intptr_t) value);
duke@0 322 }
duke@0 323 uint uint_at(int index) {
duke@0 324 return (uint)intptr_at(index);
duke@0 325 }
duke@0 326 void set_int_at(int index, int value) {
duke@0 327 set_intptr_at(index, (intptr_t) value);
duke@0 328 }
duke@0 329 void release_set_int_at(int index, int value) {
duke@0 330 release_set_intptr_at(index, (intptr_t) value);
duke@0 331 }
duke@0 332 int int_at(int index) {
duke@0 333 return (int)intptr_at(index);
duke@0 334 }
duke@0 335 int int_at_unchecked(int index) {
duke@0 336 return (int)data()->cell_at(index);
duke@0 337 }
duke@0 338 void set_oop_at(int index, oop value) {
duke@0 339 set_intptr_at(index, (intptr_t) value);
duke@0 340 }
duke@0 341 oop oop_at(int index) {
duke@0 342 return (oop)intptr_at(index);
duke@0 343 }
duke@0 344
duke@0 345 void set_flag_at(int flag_number) {
duke@0 346 data()->set_flag_at(flag_number);
duke@0 347 }
duke@0 348 bool flag_at(int flag_number) {
duke@0 349 return data()->flag_at(flag_number);
duke@0 350 }
duke@0 351
duke@0 352 // two convenient imports for use by subclasses:
duke@0 353 static ByteSize cell_offset(int index) {
duke@0 354 return DataLayout::cell_offset(index);
duke@0 355 }
duke@0 356 static int flag_number_to_byte_constant(int flag_number) {
duke@0 357 return DataLayout::flag_number_to_byte_constant(flag_number);
duke@0 358 }
duke@0 359
duke@0 360 ProfileData(DataLayout* data) {
duke@0 361 _data = data;
duke@0 362 }
duke@0 363
goetz@5974 364 #ifdef CC_INTERP
goetz@5974 365 // Static low level accessors for DataLayout with ProfileData's semantics.
goetz@5974 366
goetz@5974 367 static int cell_offset_in_bytes(int index) {
goetz@5974 368 return DataLayout::cell_offset_in_bytes(index);
goetz@5974 369 }
goetz@5974 370
goetz@5974 371 static void increment_uint_at_no_overflow(DataLayout* layout, int index,
goetz@5974 372 int inc = DataLayout::counter_increment) {
goetz@5974 373 uint count = ((uint)layout->cell_at(index)) + inc;
goetz@5974 374 if (count == 0) return;
goetz@5974 375 layout->set_cell_at(index, (intptr_t) count);
goetz@5974 376 }
goetz@5974 377
goetz@5974 378 static int int_at(DataLayout* layout, int index) {
goetz@5974 379 return (int)layout->cell_at(index);
goetz@5974 380 }
goetz@5974 381
goetz@5974 382 static int uint_at(DataLayout* layout, int index) {
goetz@5974 383 return (uint)layout->cell_at(index);
goetz@5974 384 }
goetz@5974 385
goetz@5974 386 static oop oop_at(DataLayout* layout, int index) {
goetz@5974 387 return (oop)layout->cell_at(index);
goetz@5974 388 }
goetz@5974 389
goetz@5974 390 static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
goetz@5974 391 layout->set_cell_at(index, (intptr_t) value);
goetz@5974 392 }
goetz@5974 393
goetz@5974 394 static void set_flag_at(DataLayout* layout, int flag_number) {
goetz@5974 395 layout->set_flag_at(flag_number);
goetz@5974 396 }
goetz@5974 397 #endif // CC_INTERP
goetz@5974 398
duke@0 399 public:
duke@0 400 // Constructor for invalid ProfileData.
duke@0 401 ProfileData();
duke@0 402
duke@0 403 u2 bci() {
duke@0 404 return data()->bci();
duke@0 405 }
duke@0 406
duke@0 407 address dp() {
duke@0 408 return (address)_data;
duke@0 409 }
duke@0 410
duke@0 411 int trap_state() {
duke@0 412 return data()->trap_state();
duke@0 413 }
duke@0 414 void set_trap_state(int new_state) {
duke@0 415 data()->set_trap_state(new_state);
duke@0 416 }
duke@0 417
duke@0 418 // Type checking
duke@0 419 virtual bool is_BitData() { return false; }
duke@0 420 virtual bool is_CounterData() { return false; }
duke@0 421 virtual bool is_JumpData() { return false; }
duke@0 422 virtual bool is_ReceiverTypeData(){ return false; }
duke@0 423 virtual bool is_VirtualCallData() { return false; }
duke@0 424 virtual bool is_RetData() { return false; }
duke@0 425 virtual bool is_BranchData() { return false; }
duke@0 426 virtual bool is_ArrayData() { return false; }
duke@0 427 virtual bool is_MultiBranchData() { return false; }
kvn@45 428 virtual bool is_ArgInfoData() { return false; }
kvn@45 429
duke@0 430
duke@0 431 BitData* as_BitData() {
duke@0 432 assert(is_BitData(), "wrong type");
duke@0 433 return is_BitData() ? (BitData*) this : NULL;
duke@0 434 }
duke@0 435 CounterData* as_CounterData() {
duke@0 436 assert(is_CounterData(), "wrong type");
duke@0 437 return is_CounterData() ? (CounterData*) this : NULL;
duke@0 438 }
duke@0 439 JumpData* as_JumpData() {
duke@0 440 assert(is_JumpData(), "wrong type");
duke@0 441 return is_JumpData() ? (JumpData*) this : NULL;
duke@0 442 }
duke@0 443 ReceiverTypeData* as_ReceiverTypeData() {
duke@0 444 assert(is_ReceiverTypeData(), "wrong type");
duke@0 445 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
duke@0 446 }
duke@0 447 VirtualCallData* as_VirtualCallData() {
duke@0 448 assert(is_VirtualCallData(), "wrong type");
duke@0 449 return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
duke@0 450 }
duke@0 451 RetData* as_RetData() {
duke@0 452 assert(is_RetData(), "wrong type");
duke@0 453 return is_RetData() ? (RetData*) this : NULL;
duke@0 454 }
duke@0 455 BranchData* as_BranchData() {
duke@0 456 assert(is_BranchData(), "wrong type");
duke@0 457 return is_BranchData() ? (BranchData*) this : NULL;
duke@0 458 }
duke@0 459 ArrayData* as_ArrayData() {
duke@0 460 assert(is_ArrayData(), "wrong type");
duke@0 461 return is_ArrayData() ? (ArrayData*) this : NULL;
duke@0 462 }
duke@0 463 MultiBranchData* as_MultiBranchData() {
duke@0 464 assert(is_MultiBranchData(), "wrong type");
duke@0 465 return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
duke@0 466 }
kvn@45 467 ArgInfoData* as_ArgInfoData() {
kvn@45 468 assert(is_ArgInfoData(), "wrong type");
kvn@45 469 return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
kvn@45 470 }
duke@0 471
duke@0 472
duke@0 473 // Subclass specific initialization
coleenp@3602 474 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
duke@0 475
duke@0 476 // GC support
coleenp@3602 477 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
duke@0 478
duke@0 479 // CI translation: ProfileData can represent both MethodDataOop data
duke@0 480 // as well as CIMethodData data. This function is provided for translating
duke@0 481 // an oop in a ProfileData to the ci equivalent. Generally speaking,
duke@0 482 // most ProfileData don't require any translation, so we provide the null
duke@0 483 // translation here, and the required translators are in the ci subclasses.
duke@0 484 virtual void translate_from(ProfileData* data) {}
duke@0 485
duke@0 486 virtual void print_data_on(outputStream* st) {
duke@0 487 ShouldNotReachHere();
duke@0 488 }
duke@0 489
duke@0 490 #ifndef PRODUCT
duke@0 491 void print_shared(outputStream* st, const char* name);
duke@0 492 void tab(outputStream* st);
duke@0 493 #endif
duke@0 494 };
duke@0 495
duke@0 496 // BitData
duke@0 497 //
duke@0 498 // A BitData holds a flag or two in its header.
duke@0 499 class BitData : public ProfileData {
duke@0 500 protected:
duke@0 501 enum {
duke@0 502 // null_seen:
duke@0 503 // saw a null operand (cast/aastore/instanceof)
duke@0 504 null_seen_flag = DataLayout::first_flag + 0
duke@0 505 };
duke@0 506 enum { bit_cell_count = 0 }; // no additional data fields needed.
duke@0 507 public:
duke@0 508 BitData(DataLayout* layout) : ProfileData(layout) {
duke@0 509 }
duke@0 510
duke@0 511 virtual bool is_BitData() { return true; }
duke@0 512
duke@0 513 static int static_cell_count() {
duke@0 514 return bit_cell_count;
duke@0 515 }
duke@0 516
duke@0 517 virtual int cell_count() {
duke@0 518 return static_cell_count();
duke@0 519 }
duke@0 520
duke@0 521 // Accessor
duke@0 522
duke@0 523 // The null_seen flag bit is specially known to the interpreter.
duke@0 524 // Consulting it allows the compiler to avoid setting up null_check traps.
duke@0 525 bool null_seen() { return flag_at(null_seen_flag); }
duke@0 526 void set_null_seen() { set_flag_at(null_seen_flag); }
duke@0 527
duke@0 528
duke@0 529 // Code generation support
duke@0 530 static int null_seen_byte_constant() {
duke@0 531 return flag_number_to_byte_constant(null_seen_flag);
duke@0 532 }
duke@0 533
duke@0 534 static ByteSize bit_data_size() {
duke@0 535 return cell_offset(bit_cell_count);
duke@0 536 }
duke@0 537
goetz@5974 538 #ifdef CC_INTERP
goetz@5974 539 static int bit_data_size_in_bytes() {
goetz@5974 540 return cell_offset_in_bytes(bit_cell_count);
goetz@5974 541 }
goetz@5974 542
goetz@5974 543 static void set_null_seen(DataLayout* layout) {
goetz@5974 544 set_flag_at(layout, null_seen_flag);
goetz@5974 545 }
goetz@5974 546
goetz@5974 547 static DataLayout* advance(DataLayout* layout) {
goetz@5974 548 return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
goetz@5974 549 }
goetz@5974 550 #endif // CC_INTERP
goetz@5974 551
duke@0 552 #ifndef PRODUCT
duke@0 553 void print_data_on(outputStream* st);
duke@0 554 #endif
duke@0 555 };
duke@0 556
duke@0 557 // CounterData
duke@0 558 //
duke@0 559 // A CounterData corresponds to a simple counter.
duke@0 560 class CounterData : public BitData {
duke@0 561 protected:
duke@0 562 enum {
duke@0 563 count_off,
duke@0 564 counter_cell_count
duke@0 565 };
duke@0 566 public:
duke@0 567 CounterData(DataLayout* layout) : BitData(layout) {}
duke@0 568
duke@0 569 virtual bool is_CounterData() { return true; }
duke@0 570
duke@0 571 static int static_cell_count() {
duke@0 572 return counter_cell_count;
duke@0 573 }
duke@0 574
duke@0 575 virtual int cell_count() {
duke@0 576 return static_cell_count();
duke@0 577 }
duke@0 578
duke@0 579 // Direct accessor
duke@0 580 uint count() {
duke@0 581 return uint_at(count_off);
duke@0 582 }
duke@0 583
duke@0 584 // Code generation support
duke@0 585 static ByteSize count_offset() {
duke@0 586 return cell_offset(count_off);
duke@0 587 }
duke@0 588 static ByteSize counter_data_size() {
duke@0 589 return cell_offset(counter_cell_count);
duke@0 590 }
duke@0 591
kvn@1251 592 void set_count(uint count) {
kvn@1251 593 set_uint_at(count_off, count);
kvn@1251 594 }
kvn@1251 595
goetz@5974 596 #ifdef CC_INTERP
goetz@5974 597 static int counter_data_size_in_bytes() {
goetz@5974 598 return cell_offset_in_bytes(counter_cell_count);
goetz@5974 599 }
goetz@5974 600
goetz@5974 601 static void increment_count_no_overflow(DataLayout* layout) {
goetz@5974 602 increment_uint_at_no_overflow(layout, count_off);
goetz@5974 603 }
goetz@5974 604
goetz@5974 605 // Support counter decrementation at checkcast / subtype check failed.
goetz@5974 606 static void decrement_count(DataLayout* layout) {
goetz@5974 607 increment_uint_at_no_overflow(layout, count_off, -1);
goetz@5974 608 }
goetz@5974 609
goetz@5974 610 static DataLayout* advance(DataLayout* layout) {
goetz@5974 611 return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
goetz@5974 612 }
goetz@5974 613 #endif // CC_INTERP
goetz@5974 614
duke@0 615 #ifndef PRODUCT
duke@0 616 void print_data_on(outputStream* st);
duke@0 617 #endif
duke@0 618 };
duke@0 619
duke@0 620 // JumpData
duke@0 621 //
duke@0 622 // A JumpData is used to access profiling information for a direct
duke@0 623 // branch. It is a counter, used for counting the number of branches,
duke@0 624 // plus a data displacement, used for realigning the data pointer to
duke@0 625 // the corresponding target bci.
duke@0 626 class JumpData : public ProfileData {
duke@0 627 protected:
duke@0 628 enum {
duke@0 629 taken_off_set,
duke@0 630 displacement_off_set,
duke@0 631 jump_cell_count
duke@0 632 };
duke@0 633
duke@0 634 void set_displacement(int displacement) {
duke@0 635 set_int_at(displacement_off_set, displacement);
duke@0 636 }
duke@0 637
duke@0 638 public:
duke@0 639 JumpData(DataLayout* layout) : ProfileData(layout) {
duke@0 640 assert(layout->tag() == DataLayout::jump_data_tag ||
duke@0 641 layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@0 642 }
duke@0 643
duke@0 644 virtual bool is_JumpData() { return true; }
duke@0 645
duke@0 646 static int static_cell_count() {
duke@0 647 return jump_cell_count;
duke@0 648 }
duke@0 649
duke@0 650 virtual int cell_count() {
duke@0 651 return static_cell_count();
duke@0 652 }
duke@0 653
duke@0 654 // Direct accessor
duke@0 655 uint taken() {
duke@0 656 return uint_at(taken_off_set);
duke@0 657 }
never@2670 658
never@2670 659 void set_taken(uint cnt) {
never@2670 660 set_uint_at(taken_off_set, cnt);
never@2670 661 }
never@2670 662
duke@0 663 // Saturating counter
duke@0 664 uint inc_taken() {
duke@0 665 uint cnt = taken() + 1;
duke@0 666 // Did we wrap? Will compiler screw us??
duke@0 667 if (cnt == 0) cnt--;
duke@0 668 set_uint_at(taken_off_set, cnt);
duke@0 669 return cnt;
duke@0 670 }
duke@0 671
duke@0 672 int displacement() {
duke@0 673 return int_at(displacement_off_set);
duke@0 674 }
duke@0 675
duke@0 676 // Code generation support
duke@0 677 static ByteSize taken_offset() {
duke@0 678 return cell_offset(taken_off_set);
duke@0 679 }
duke@0 680
duke@0 681 static ByteSize displacement_offset() {
duke@0 682 return cell_offset(displacement_off_set);
duke@0 683 }
duke@0 684
goetz@5974 685 #ifdef CC_INTERP
goetz@5974 686 static void increment_taken_count_no_overflow(DataLayout* layout) {
goetz@5974 687 increment_uint_at_no_overflow(layout, taken_off_set);
goetz@5974 688 }
goetz@5974 689
goetz@5974 690 static DataLayout* advance_taken(DataLayout* layout) {
goetz@5974 691 return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
goetz@5974 692 }
goetz@5974 693
goetz@5974 694 static uint taken_count(DataLayout* layout) {
goetz@5974 695 return (uint) uint_at(layout, taken_off_set);
goetz@5974 696 }
goetz@5974 697 #endif // CC_INTERP
goetz@5974 698
duke@0 699 // Specific initialization.
coleenp@3602 700 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 701
duke@0 702 #ifndef PRODUCT
duke@0 703 void print_data_on(outputStream* st);
duke@0 704 #endif
duke@0 705 };
duke@0 706
duke@0 707 // ReceiverTypeData
duke@0 708 //
duke@0 709 // A ReceiverTypeData is used to access profiling information about a
duke@0 710 // dynamic type check. It consists of a counter which counts the total times
coleenp@3602 711 // that the check is reached, and a series of (Klass*, count) pairs
duke@0 712 // which are used to store a type profile for the receiver of the check.
duke@0 713 class ReceiverTypeData : public CounterData {
duke@0 714 protected:
duke@0 715 enum {
duke@0 716 receiver0_offset = counter_cell_count,
duke@0 717 count0_offset,
duke@0 718 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
duke@0 719 };
duke@0 720
duke@0 721 public:
duke@0 722 ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
duke@0 723 assert(layout->tag() == DataLayout::receiver_type_data_tag ||
duke@0 724 layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
duke@0 725 }
duke@0 726
duke@0 727 virtual bool is_ReceiverTypeData() { return true; }
duke@0 728
duke@0 729 static int static_cell_count() {
duke@0 730 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
duke@0 731 }
duke@0 732
duke@0 733 virtual int cell_count() {
duke@0 734 return static_cell_count();
duke@0 735 }
duke@0 736
duke@0 737 // Direct accessors
duke@0 738 static uint row_limit() {
duke@0 739 return TypeProfileWidth;
duke@0 740 }
duke@0 741 static int receiver_cell_index(uint row) {
duke@0 742 return receiver0_offset + row * receiver_type_row_cell_count;
duke@0 743 }
duke@0 744 static int receiver_count_cell_index(uint row) {
duke@0 745 return count0_offset + row * receiver_type_row_cell_count;
duke@0 746 }
duke@0 747
coleenp@3602 748 Klass* receiver(uint row) {
duke@0 749 assert(row < row_limit(), "oob");
duke@0 750
coleenp@3602 751 Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
coleenp@3602 752 assert(recv == NULL || recv->is_klass(), "wrong type");
duke@0 753 return recv;
duke@0 754 }
duke@0 755
coleenp@3602 756 void set_receiver(uint row, Klass* k) {
ysr@941 757 assert((uint)row < row_limit(), "oob");
coleenp@3602 758 set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
ysr@941 759 }
ysr@941 760
duke@0 761 uint receiver_count(uint row) {
duke@0 762 assert(row < row_limit(), "oob");
duke@0 763 return uint_at(receiver_count_cell_index(row));
duke@0 764 }
duke@0 765
ysr@941 766 void set_receiver_count(uint row, uint count) {
ysr@941 767 assert(row < row_limit(), "oob");
ysr@941 768 set_uint_at(receiver_count_cell_index(row), count);
ysr@941 769 }
ysr@941 770
ysr@941 771 void clear_row(uint row) {
ysr@941 772 assert(row < row_limit(), "oob");
kvn@1251 773 // Clear total count - indicator of polymorphic call site.
kvn@1251 774 // The site may look like as monomorphic after that but
kvn@1251 775 // it allow to have more accurate profiling information because
kvn@1251 776 // there was execution phase change since klasses were unloaded.
kvn@1251 777 // If the site is still polymorphic then MDO will be updated
kvn@1251 778 // to reflect it. But it could be the case that the site becomes
kvn@1251 779 // only bimorphic. Then keeping total count not 0 will be wrong.
kvn@1251 780 // Even if we use monomorphic (when it is not) for compilation
kvn@1251 781 // we will only have trap, deoptimization and recompile again
kvn@1251 782 // with updated MDO after executing method in Interpreter.
kvn@1251 783 // An additional receiver will be recorded in the cleaned row
kvn@1251 784 // during next call execution.
kvn@1251 785 //
kvn@1251 786 // Note: our profiling logic works with empty rows in any slot.
kvn@1251 787 // We do sorting a profiling info (ciCallProfile) for compilation.
kvn@1251 788 //
kvn@1251 789 set_count(0);
ysr@941 790 set_receiver(row, NULL);
ysr@941 791 set_receiver_count(row, 0);
ysr@941 792 }
ysr@941 793
duke@0 794 // Code generation support
duke@0 795 static ByteSize receiver_offset(uint row) {
duke@0 796 return cell_offset(receiver_cell_index(row));
duke@0 797 }
duke@0 798 static ByteSize receiver_count_offset(uint row) {
duke@0 799 return cell_offset(receiver_count_cell_index(row));
duke@0 800 }
duke@0 801 static ByteSize receiver_type_data_size() {
duke@0 802 return cell_offset(static_cell_count());
duke@0 803 }
duke@0 804
duke@0 805 // GC support
coleenp@3602 806 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
duke@0 807
goetz@5974 808 #ifdef CC_INTERP
goetz@5974 809 static int receiver_type_data_size_in_bytes() {
goetz@5974 810 return cell_offset_in_bytes(static_cell_count());
goetz@5974 811 }
goetz@5974 812
goetz@5974 813 static Klass *receiver_unchecked(DataLayout* layout, uint row) {
goetz@5974 814 oop recv = oop_at(layout, receiver_cell_index(row));
goetz@5974 815 return (Klass *)recv;
goetz@5974 816 }
goetz@5974 817
goetz@5974 818 static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
goetz@5974 819 const int num_rows = row_limit();
goetz@5974 820 // Receiver already exists?
goetz@5974 821 for (int row = 0; row < num_rows; row++) {
goetz@5974 822 if (receiver_unchecked(layout, row) == rcvr) {
goetz@5974 823 increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
goetz@5974 824 return;
goetz@5974 825 }
goetz@5974 826 }
goetz@5974 827 // New receiver, find a free slot.
goetz@5974 828 for (int row = 0; row < num_rows; row++) {
goetz@5974 829 if (receiver_unchecked(layout, row) == NULL) {
goetz@5974 830 set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
goetz@5974 831 increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
goetz@5974 832 return;
goetz@5974 833 }
goetz@5974 834 }
goetz@5974 835 // Receiver did not match any saved receiver and there is no empty row for it.
goetz@5974 836 // Increment total counter to indicate polymorphic case.
goetz@5974 837 increment_count_no_overflow(layout);
goetz@5974 838 }
goetz@5974 839
goetz@5974 840 static DataLayout* advance(DataLayout* layout) {
goetz@5974 841 return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
goetz@5974 842 }
goetz@5974 843 #endif // CC_INTERP
goetz@5974 844
duke@0 845 #ifndef PRODUCT
duke@0 846 void print_receiver_data_on(outputStream* st);
duke@0 847 void print_data_on(outputStream* st);
duke@0 848 #endif
duke@0 849 };
duke@0 850
duke@0 851 // VirtualCallData
duke@0 852 //
duke@0 853 // A VirtualCallData is used to access profiling information about a
duke@0 854 // virtual call. For now, it has nothing more than a ReceiverTypeData.
duke@0 855 class VirtualCallData : public ReceiverTypeData {
duke@0 856 public:
duke@0 857 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
duke@0 858 assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
duke@0 859 }
duke@0 860
duke@0 861 virtual bool is_VirtualCallData() { return true; }
duke@0 862
duke@0 863 static int static_cell_count() {
duke@0 864 // At this point we could add more profile state, e.g., for arguments.
duke@0 865 // But for now it's the same size as the base record type.
duke@0 866 return ReceiverTypeData::static_cell_count();
duke@0 867 }
duke@0 868
duke@0 869 virtual int cell_count() {
duke@0 870 return static_cell_count();
duke@0 871 }
duke@0 872
duke@0 873 // Direct accessors
duke@0 874 static ByteSize virtual_call_data_size() {
duke@0 875 return cell_offset(static_cell_count());
duke@0 876 }
duke@0 877
goetz@5974 878 #ifdef CC_INTERP
goetz@5974 879 static int virtual_call_data_size_in_bytes() {
goetz@5974 880 return cell_offset_in_bytes(static_cell_count());
goetz@5974 881 }
goetz@5974 882
goetz@5974 883 static DataLayout* advance(DataLayout* layout) {
goetz@5974 884 return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
goetz@5974 885 }
goetz@5974 886 #endif // CC_INTERP
goetz@5974 887
duke@0 888 #ifndef PRODUCT
duke@0 889 void print_data_on(outputStream* st);
duke@0 890 #endif
duke@0 891 };
duke@0 892
duke@0 893 // RetData
duke@0 894 //
duke@0 895 // A RetData is used to access profiling information for a ret bytecode.
duke@0 896 // It is composed of a count of the number of times that the ret has
duke@0 897 // been executed, followed by a series of triples of the form
duke@0 898 // (bci, count, di) which count the number of times that some bci was the
duke@0 899 // target of the ret and cache a corresponding data displacement.
duke@0 900 class RetData : public CounterData {
duke@0 901 protected:
duke@0 902 enum {
duke@0 903 bci0_offset = counter_cell_count,
duke@0 904 count0_offset,
duke@0 905 displacement0_offset,
duke@0 906 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
duke@0 907 };
duke@0 908
duke@0 909 void set_bci(uint row, int bci) {
duke@0 910 assert((uint)row < row_limit(), "oob");
duke@0 911 set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@0 912 }
duke@0 913 void release_set_bci(uint row, int bci) {
duke@0 914 assert((uint)row < row_limit(), "oob");
duke@0 915 // 'release' when setting the bci acts as a valid flag for other
duke@0 916 // threads wrt bci_count and bci_displacement.
duke@0 917 release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@0 918 }
duke@0 919 void set_bci_count(uint row, uint count) {
duke@0 920 assert((uint)row < row_limit(), "oob");
duke@0 921 set_uint_at(count0_offset + row * ret_row_cell_count, count);
duke@0 922 }
duke@0 923 void set_bci_displacement(uint row, int disp) {
duke@0 924 set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
duke@0 925 }
duke@0 926
duke@0 927 public:
duke@0 928 RetData(DataLayout* layout) : CounterData(layout) {
duke@0 929 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
duke@0 930 }
duke@0 931
duke@0 932 virtual bool is_RetData() { return true; }
duke@0 933
duke@0 934 enum {
duke@0 935 no_bci = -1 // value of bci when bci1/2 are not in use.
duke@0 936 };
duke@0 937
duke@0 938 static int static_cell_count() {
duke@0 939 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
duke@0 940 }
duke@0 941
duke@0 942 virtual int cell_count() {
duke@0 943 return static_cell_count();
duke@0 944 }
duke@0 945
duke@0 946 static uint row_limit() {
duke@0 947 return BciProfileWidth;
duke@0 948 }
duke@0 949 static int bci_cell_index(uint row) {
duke@0 950 return bci0_offset + row * ret_row_cell_count;
duke@0 951 }
duke@0 952 static int bci_count_cell_index(uint row) {
duke@0 953 return count0_offset + row * ret_row_cell_count;
duke@0 954 }
duke@0 955 static int bci_displacement_cell_index(uint row) {
duke@0 956 return displacement0_offset + row * ret_row_cell_count;
duke@0 957 }
duke@0 958
duke@0 959 // Direct accessors
duke@0 960 int bci(uint row) {
duke@0 961 return int_at(bci_cell_index(row));
duke@0 962 }
duke@0 963 uint bci_count(uint row) {
duke@0 964 return uint_at(bci_count_cell_index(row));
duke@0 965 }
duke@0 966 int bci_displacement(uint row) {
duke@0 967 return int_at(bci_displacement_cell_index(row));
duke@0 968 }
duke@0 969
duke@0 970 // Interpreter Runtime support
coleenp@3602 971 address fixup_ret(int return_bci, MethodData* mdo);
duke@0 972
duke@0 973 // Code generation support
duke@0 974 static ByteSize bci_offset(uint row) {
duke@0 975 return cell_offset(bci_cell_index(row));
duke@0 976 }
duke@0 977 static ByteSize bci_count_offset(uint row) {
duke@0 978 return cell_offset(bci_count_cell_index(row));
duke@0 979 }
duke@0 980 static ByteSize bci_displacement_offset(uint row) {
duke@0 981 return cell_offset(bci_displacement_cell_index(row));
duke@0 982 }
duke@0 983
goetz@5974 984 #ifdef CC_INTERP
goetz@5974 985 static DataLayout* advance(MethodData *md, int bci);
goetz@5974 986 #endif // CC_INTERP
goetz@5974 987
duke@0 988 // Specific initialization.
coleenp@3602 989 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 990
duke@0 991 #ifndef PRODUCT
duke@0 992 void print_data_on(outputStream* st);
duke@0 993 #endif
duke@0 994 };
duke@0 995
duke@0 996 // BranchData
duke@0 997 //
duke@0 998 // A BranchData is used to access profiling data for a two-way branch.
duke@0 999 // It consists of taken and not_taken counts as well as a data displacement
duke@0 1000 // for the taken case.
duke@0 1001 class BranchData : public JumpData {
duke@0 1002 protected:
duke@0 1003 enum {
duke@0 1004 not_taken_off_set = jump_cell_count,
duke@0 1005 branch_cell_count
duke@0 1006 };
duke@0 1007
duke@0 1008 void set_displacement(int displacement) {
duke@0 1009 set_int_at(displacement_off_set, displacement);
duke@0 1010 }
duke@0 1011
duke@0 1012 public:
duke@0 1013 BranchData(DataLayout* layout) : JumpData(layout) {
duke@0 1014 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@0 1015 }
duke@0 1016
duke@0 1017 virtual bool is_BranchData() { return true; }
duke@0 1018
duke@0 1019 static int static_cell_count() {
duke@0 1020 return branch_cell_count;
duke@0 1021 }
duke@0 1022
duke@0 1023 virtual int cell_count() {
duke@0 1024 return static_cell_count();
duke@0 1025 }
duke@0 1026
duke@0 1027 // Direct accessor
duke@0 1028 uint not_taken() {
duke@0 1029 return uint_at(not_taken_off_set);
duke@0 1030 }
duke@0 1031
never@2670 1032 void set_not_taken(uint cnt) {
never@2670 1033 set_uint_at(not_taken_off_set, cnt);
never@2670 1034 }
never@2670 1035
duke@0 1036 uint inc_not_taken() {
duke@0 1037 uint cnt = not_taken() + 1;
duke@0 1038 // Did we wrap? Will compiler screw us??
duke@0 1039 if (cnt == 0) cnt--;
duke@0 1040 set_uint_at(not_taken_off_set, cnt);
duke@0 1041 return cnt;
duke@0 1042 }
duke@0 1043
duke@0 1044 // Code generation support
duke@0 1045 static ByteSize not_taken_offset() {
duke@0 1046 return cell_offset(not_taken_off_set);
duke@0 1047 }
duke@0 1048 static ByteSize branch_data_size() {
duke@0 1049 return cell_offset(branch_cell_count);
duke@0 1050 }
duke@0 1051
goetz@5974 1052 #ifdef CC_INTERP
goetz@5974 1053 static int branch_data_size_in_bytes() {
goetz@5974 1054 return cell_offset_in_bytes(branch_cell_count);
goetz@5974 1055 }
goetz@5974 1056
goetz@5974 1057 static void increment_not_taken_count_no_overflow(DataLayout* layout) {
goetz@5974 1058 increment_uint_at_no_overflow(layout, not_taken_off_set);
goetz@5974 1059 }
goetz@5974 1060
goetz@5974 1061 static DataLayout* advance_not_taken(DataLayout* layout) {
goetz@5974 1062 return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
goetz@5974 1063 }
goetz@5974 1064 #endif // CC_INTERP
goetz@5974 1065
duke@0 1066 // Specific initialization.
coleenp@3602 1067 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 1068
duke@0 1069 #ifndef PRODUCT
duke@0 1070 void print_data_on(outputStream* st);
duke@0 1071 #endif
duke@0 1072 };
duke@0 1073
duke@0 1074 // ArrayData
duke@0 1075 //
duke@0 1076 // A ArrayData is a base class for accessing profiling data which does
duke@0 1077 // not have a statically known size. It consists of an array length
duke@0 1078 // and an array start.
duke@0 1079 class ArrayData : public ProfileData {
duke@0 1080 protected:
duke@0 1081 friend class DataLayout;
duke@0 1082
duke@0 1083 enum {
duke@0 1084 array_len_off_set,
duke@0 1085 array_start_off_set
duke@0 1086 };
duke@0 1087
duke@0 1088 uint array_uint_at(int index) {
duke@0 1089 int aindex = index + array_start_off_set;
duke@0 1090 return uint_at(aindex);
duke@0 1091 }
duke@0 1092 int array_int_at(int index) {
duke@0 1093 int aindex = index + array_start_off_set;
duke@0 1094 return int_at(aindex);
duke@0 1095 }
duke@0 1096 oop array_oop_at(int index) {
duke@0 1097 int aindex = index + array_start_off_set;
duke@0 1098 return oop_at(aindex);
duke@0 1099 }
duke@0 1100 void array_set_int_at(int index, int value) {
duke@0 1101 int aindex = index + array_start_off_set;
duke@0 1102 set_int_at(aindex, value);
duke@0 1103 }
duke@0 1104
goetz@5974 1105 #ifdef CC_INTERP
goetz@5974 1106 // Static low level accessors for DataLayout with ArrayData's semantics.
goetz@5974 1107
goetz@5974 1108 static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
goetz@5974 1109 int aindex = index + array_start_off_set;
goetz@5974 1110 increment_uint_at_no_overflow(layout, aindex);
goetz@5974 1111 }
goetz@5974 1112
goetz@5974 1113 static int array_int_at(DataLayout* layout, int index) {
goetz@5974 1114 int aindex = index + array_start_off_set;
goetz@5974 1115 return int_at(layout, aindex);
goetz@5974 1116 }
goetz@5974 1117 #endif // CC_INTERP
goetz@5974 1118
duke@0 1119 // Code generation support for subclasses.
duke@0 1120 static ByteSize array_element_offset(int index) {
duke@0 1121 return cell_offset(array_start_off_set + index);
duke@0 1122 }
duke@0 1123
duke@0 1124 public:
duke@0 1125 ArrayData(DataLayout* layout) : ProfileData(layout) {}
duke@0 1126
duke@0 1127 virtual bool is_ArrayData() { return true; }
duke@0 1128
duke@0 1129 static int static_cell_count() {
duke@0 1130 return -1;
duke@0 1131 }
duke@0 1132
duke@0 1133 int array_len() {
duke@0 1134 return int_at_unchecked(array_len_off_set);
duke@0 1135 }
duke@0 1136
duke@0 1137 virtual int cell_count() {
duke@0 1138 return array_len() + 1;
duke@0 1139 }
duke@0 1140
duke@0 1141 // Code generation support
duke@0 1142 static ByteSize array_len_offset() {
duke@0 1143 return cell_offset(array_len_off_set);
duke@0 1144 }
duke@0 1145 static ByteSize array_start_offset() {
duke@0 1146 return cell_offset(array_start_off_set);
duke@0 1147 }
duke@0 1148 };
duke@0 1149
duke@0 1150 // MultiBranchData
duke@0 1151 //
duke@0 1152 // A MultiBranchData is used to access profiling information for
duke@0 1153 // a multi-way branch (*switch bytecodes). It consists of a series
duke@0 1154 // of (count, displacement) pairs, which count the number of times each
duke@0 1155 // case was taken and specify the data displacment for each branch target.
duke@0 1156 class MultiBranchData : public ArrayData {
duke@0 1157 protected:
duke@0 1158 enum {
duke@0 1159 default_count_off_set,
duke@0 1160 default_disaplacement_off_set,
duke@0 1161 case_array_start
duke@0 1162 };
duke@0 1163 enum {
duke@0 1164 relative_count_off_set,
duke@0 1165 relative_displacement_off_set,
duke@0 1166 per_case_cell_count
duke@0 1167 };
duke@0 1168
duke@0 1169 void set_default_displacement(int displacement) {
duke@0 1170 array_set_int_at(default_disaplacement_off_set, displacement);
duke@0 1171 }
duke@0 1172 void set_displacement_at(int index, int displacement) {
duke@0 1173 array_set_int_at(case_array_start +
duke@0 1174 index * per_case_cell_count +
duke@0 1175 relative_displacement_off_set,
duke@0 1176 displacement);
duke@0 1177 }
duke@0 1178
duke@0 1179 public:
duke@0 1180 MultiBranchData(DataLayout* layout) : ArrayData(layout) {
duke@0 1181 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
duke@0 1182 }
duke@0 1183
duke@0 1184 virtual bool is_MultiBranchData() { return true; }
duke@0 1185
duke@0 1186 static int compute_cell_count(BytecodeStream* stream);
duke@0 1187
duke@0 1188 int number_of_cases() {
duke@0 1189 int alen = array_len() - 2; // get rid of default case here.
duke@0 1190 assert(alen % per_case_cell_count == 0, "must be even");
duke@0 1191 return (alen / per_case_cell_count);
duke@0 1192 }
duke@0 1193
duke@0 1194 uint default_count() {
duke@0 1195 return array_uint_at(default_count_off_set);
duke@0 1196 }
duke@0 1197 int default_displacement() {
duke@0 1198 return array_int_at(default_disaplacement_off_set);
duke@0 1199 }
duke@0 1200
duke@0 1201 uint count_at(int index) {
duke@0 1202 return array_uint_at(case_array_start +
duke@0 1203 index * per_case_cell_count +
duke@0 1204 relative_count_off_set);
duke@0 1205 }
duke@0 1206 int displacement_at(int index) {
duke@0 1207 return array_int_at(case_array_start +
duke@0 1208 index * per_case_cell_count +
duke@0 1209 relative_displacement_off_set);
duke@0 1210 }
duke@0 1211
duke@0 1212 // Code generation support
duke@0 1213 static ByteSize default_count_offset() {
duke@0 1214 return array_element_offset(default_count_off_set);
duke@0 1215 }
duke@0 1216 static ByteSize default_displacement_offset() {
duke@0 1217 return array_element_offset(default_disaplacement_off_set);
duke@0 1218 }
duke@0 1219 static ByteSize case_count_offset(int index) {
duke@0 1220 return case_array_offset() +
duke@0 1221 (per_case_size() * index) +
duke@0 1222 relative_count_offset();
duke@0 1223 }
duke@0 1224 static ByteSize case_array_offset() {
duke@0 1225 return array_element_offset(case_array_start);
duke@0 1226 }
duke@0 1227 static ByteSize per_case_size() {
duke@0 1228 return in_ByteSize(per_case_cell_count) * cell_size;
duke@0 1229 }
duke@0 1230 static ByteSize relative_count_offset() {
duke@0 1231 return in_ByteSize(relative_count_off_set) * cell_size;
duke@0 1232 }
duke@0 1233 static ByteSize relative_displacement_offset() {
duke@0 1234 return in_ByteSize(relative_displacement_off_set) * cell_size;
duke@0 1235 }
duke@0 1236
goetz@5974 1237 #ifdef CC_INTERP
goetz@5974 1238 static void increment_count_no_overflow(DataLayout* layout, int index) {
goetz@5974 1239 if (index == -1) {
goetz@5974 1240 increment_array_uint_at_no_overflow(layout, default_count_off_set);
goetz@5974 1241 } else {
goetz@5974 1242 increment_array_uint_at_no_overflow(layout, case_array_start +
goetz@5974 1243 index * per_case_cell_count +
goetz@5974 1244 relative_count_off_set);
goetz@5974 1245 }
goetz@5974 1246 }
goetz@5974 1247
goetz@5974 1248 static DataLayout* advance(DataLayout* layout, int index) {
goetz@5974 1249 if (index == -1) {
goetz@5974 1250 return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
goetz@5974 1251 } else {
goetz@5974 1252 return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
goetz@5974 1253 index * per_case_cell_count +
goetz@5974 1254 relative_displacement_off_set));
goetz@5974 1255 }
goetz@5974 1256 }
goetz@5974 1257 #endif // CC_INTERP
goetz@5974 1258
duke@0 1259 // Specific initialization.
coleenp@3602 1260 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 1261
duke@0 1262 #ifndef PRODUCT
duke@0 1263 void print_data_on(outputStream* st);
duke@0 1264 #endif
duke@0 1265 };
duke@0 1266
kvn@45 1267 class ArgInfoData : public ArrayData {
kvn@45 1268
kvn@45 1269 public:
kvn@45 1270 ArgInfoData(DataLayout* layout) : ArrayData(layout) {
kvn@45 1271 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
kvn@45 1272 }
kvn@45 1273
kvn@45 1274 virtual bool is_ArgInfoData() { return true; }
kvn@45 1275
kvn@45 1276
kvn@45 1277 int number_of_args() {
kvn@45 1278 return array_len();
kvn@45 1279 }
kvn@45 1280
kvn@45 1281 uint arg_modified(int arg) {
kvn@45 1282 return array_uint_at(arg);
kvn@45 1283 }
kvn@45 1284
kvn@45 1285 void set_arg_modified(int arg, uint val) {
kvn@45 1286 array_set_int_at(arg, val);
kvn@45 1287 }
kvn@45 1288
kvn@45 1289 #ifndef PRODUCT
kvn@45 1290 void print_data_on(outputStream* st);
kvn@45 1291 #endif
kvn@45 1292 };
kvn@45 1293
coleenp@3602 1294 // MethodData*
duke@0 1295 //
coleenp@3602 1296 // A MethodData* holds information which has been collected about
duke@0 1297 // a method. Its layout looks like this:
duke@0 1298 //
duke@0 1299 // -----------------------------
duke@0 1300 // | header |
duke@0 1301 // | klass |
duke@0 1302 // -----------------------------
duke@0 1303 // | method |
coleenp@3602 1304 // | size of the MethodData* |
duke@0 1305 // -----------------------------
duke@0 1306 // | Data entries... |
duke@0 1307 // | (variable size) |
duke@0 1308 // | |
duke@0 1309 // . .
duke@0 1310 // . .
duke@0 1311 // . .
duke@0 1312 // | |
duke@0 1313 // -----------------------------
duke@0 1314 //
duke@0 1315 // The data entry area is a heterogeneous array of DataLayouts. Each
duke@0 1316 // DataLayout in the array corresponds to a specific bytecode in the
duke@0 1317 // method. The entries in the array are sorted by the corresponding
duke@0 1318 // bytecode. Access to the data is via resource-allocated ProfileData,
duke@0 1319 // which point to the underlying blocks of DataLayout structures.
duke@0 1320 //
duke@0 1321 // During interpretation, if profiling in enabled, the interpreter
duke@0 1322 // maintains a method data pointer (mdp), which points at the entry
duke@0 1323 // in the array corresponding to the current bci. In the course of
duke@0 1324 // intepretation, when a bytecode is encountered that has profile data
duke@0 1325 // associated with it, the entry pointed to by mdp is updated, then the
duke@0 1326 // mdp is adjusted to point to the next appropriate DataLayout. If mdp
duke@0 1327 // is NULL to begin with, the interpreter assumes that the current method
duke@0 1328 // is not (yet) being profiled.
duke@0 1329 //
coleenp@3602 1330 // In MethodData* parlance, "dp" is a "data pointer", the actual address
duke@0 1331 // of a DataLayout element. A "di" is a "data index", the offset in bytes
duke@0 1332 // from the base of the data entry array. A "displacement" is the byte offset
duke@0 1333 // in certain ProfileData objects that indicate the amount the mdp must be
duke@0 1334 // adjusted in the event of a change in control flow.
duke@0 1335 //
duke@0 1336
goetz@5974 1337 CC_INTERP_ONLY(class BytecodeInterpreter;)
goetz@5974 1338
coleenp@3602 1339 class MethodData : public Metadata {
duke@0 1340 friend class VMStructs;
goetz@5974 1341 CC_INTERP_ONLY(friend class BytecodeInterpreter;)
duke@0 1342 private:
duke@0 1343 friend class ProfileData;
duke@0 1344
coleenp@3602 1345 // Back pointer to the Method*
coleenp@3602 1346 Method* _method;
duke@0 1347
duke@0 1348 // Size of this oop in bytes
duke@0 1349 int _size;
duke@0 1350
duke@0 1351 // Cached hint for bci_to_dp and bci_to_data
duke@0 1352 int _hint_di;
duke@0 1353
coleenp@3602 1354 MethodData(methodHandle method, int size, TRAPS);
coleenp@3602 1355 public:
coleenp@3602 1356 static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
coleenp@3602 1357 MethodData() {}; // For ciMethodData
coleenp@3602 1358
coleenp@3602 1359 bool is_methodData() const volatile { return true; }
coleenp@3602 1360
duke@0 1361 // Whole-method sticky bits and flags
duke@0 1362 enum {
kvn@2442 1363 _trap_hist_limit = 17, // decoupled from Deoptimization::Reason_LIMIT
duke@0 1364 _trap_hist_mask = max_jubyte,
duke@0 1365 _extra_data_count = 4 // extra DataLayout headers, for trap history
duke@0 1366 }; // Public flag values
duke@0 1367 private:
duke@0 1368 uint _nof_decompiles; // count of all nmethod removals
duke@0 1369 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits
duke@0 1370 uint _nof_overflow_traps; // trap count, excluding _trap_hist
duke@0 1371 union {
duke@0 1372 intptr_t _align;
duke@0 1373 u1 _array[_trap_hist_limit];
duke@0 1374 } _trap_hist;
duke@0 1375
duke@0 1376 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@0 1377 intx _eflags; // flags on escape information
duke@0 1378 intx _arg_local; // bit set of non-escaping arguments
duke@0 1379 intx _arg_stack; // bit set of stack-allocatable arguments
duke@0 1380 intx _arg_returned; // bit set of returned arguments
duke@0 1381
iveresov@1703 1382 int _creation_mileage; // method mileage at MDO creation
iveresov@1703 1383
iveresov@1703 1384 // How many invocations has this MDO seen?
iveresov@1703 1385 // These counters are used to determine the exact age of MDO.
iveresov@1703 1386 // We need those because in tiered a method can be concurrently
iveresov@1703 1387 // executed at different levels.
iveresov@1703 1388 InvocationCounter _invocation_counter;
iveresov@1703 1389 // Same for backedges.
iveresov@1703 1390 InvocationCounter _backedge_counter;
iveresov@2124 1391 // Counter values at the time profiling started.
iveresov@2124 1392 int _invocation_counter_start;
iveresov@2124 1393 int _backedge_counter_start;
iveresov@1703 1394 // Number of loops and blocks is computed when compiling the first
iveresov@1703 1395 // time with C1. It is used to determine if method is trivial.
iveresov@1703 1396 short _num_loops;
iveresov@1703 1397 short _num_blocks;
iveresov@1703 1398 // Highest compile level this method has ever seen.
iveresov@1703 1399 u1 _highest_comp_level;
iveresov@1703 1400 // Same for OSR level
iveresov@1703 1401 u1 _highest_osr_comp_level;
iveresov@1703 1402 // Does this method contain anything worth profiling?
iveresov@1703 1403 bool _would_profile;
duke@0 1404
duke@0 1405 // Size of _data array in bytes. (Excludes header and extra_data fields.)
duke@0 1406 int _data_size;
duke@0 1407
duke@0 1408 // Beginning of the data entries
duke@0 1409 intptr_t _data[1];
duke@0 1410
duke@0 1411 // Helper for size computation
duke@0 1412 static int compute_data_size(BytecodeStream* stream);
duke@0 1413 static int bytecode_cell_count(Bytecodes::Code code);
duke@0 1414 enum { no_profile_data = -1, variable_cell_count = -2 };
duke@0 1415
duke@0 1416 // Helper for initialization
coleenp@3602 1417 DataLayout* data_layout_at(int data_index) const {
duke@0 1418 assert(data_index % sizeof(intptr_t) == 0, "unaligned");
duke@0 1419 return (DataLayout*) (((address)_data) + data_index);
duke@0 1420 }
duke@0 1421
duke@0 1422 // Initialize an individual data segment. Returns the size of
duke@0 1423 // the segment in bytes.
duke@0 1424 int initialize_data(BytecodeStream* stream, int data_index);
duke@0 1425
duke@0 1426 // Helper for data_at
coleenp@3602 1427 DataLayout* limit_data_position() const {
duke@0 1428 return (DataLayout*)((address)data_base() + _data_size);
duke@0 1429 }
coleenp@3602 1430 bool out_of_bounds(int data_index) const {
duke@0 1431 return data_index >= data_size();
duke@0 1432 }
duke@0 1433
duke@0 1434 // Give each of the data entries a chance to perform specific
duke@0 1435 // data initialization.
duke@0 1436 void post_initialize(BytecodeStream* stream);
duke@0 1437
duke@0 1438 // hint accessors
duke@0 1439 int hint_di() const { return _hint_di; }
duke@0 1440 void set_hint_di(int di) {
duke@0 1441 assert(!out_of_bounds(di), "hint_di out of bounds");
duke@0 1442 _hint_di = di;
duke@0 1443 }
duke@0 1444 ProfileData* data_before(int bci) {
duke@0 1445 // avoid SEGV on this edge case
duke@0 1446 if (data_size() == 0)
duke@0 1447 return NULL;
duke@0 1448 int hint = hint_di();
duke@0 1449 if (data_layout_at(hint)->bci() <= bci)
duke@0 1450 return data_at(hint);
duke@0 1451 return first_data();
duke@0 1452 }
duke@0 1453
duke@0 1454 // What is the index of the first data entry?
coleenp@3602 1455 int first_di() const { return 0; }
duke@0 1456
duke@0 1457 // Find or create an extra ProfileData:
duke@0 1458 ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
duke@0 1459
kvn@45 1460 // return the argument info cell
kvn@45 1461 ArgInfoData *arg_info();
kvn@45 1462
duke@0 1463 public:
duke@0 1464 static int header_size() {
coleenp@3602 1465 return sizeof(MethodData)/wordSize;
duke@0 1466 }
duke@0 1467
coleenp@3602 1468 // Compute the size of a MethodData* before it is created.
duke@0 1469 static int compute_allocation_size_in_bytes(methodHandle method);
duke@0 1470 static int compute_allocation_size_in_words(methodHandle method);
duke@0 1471 static int compute_extra_data_count(int data_size, int empty_bc_count);
duke@0 1472
duke@0 1473 // Determine if a given bytecode can have profile information.
duke@0 1474 static bool bytecode_has_profile(Bytecodes::Code code) {
duke@0 1475 return bytecode_cell_count(code) != no_profile_data;
duke@0 1476 }
duke@0 1477
iignatyev@4473 1478 // reset into original state
iignatyev@4473 1479 void init();
duke@0 1480
duke@0 1481 // My size
coleenp@3602 1482 int size_in_bytes() const { return _size; }
coleenp@3602 1483 int size() const { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
acorn@4062 1484 #if INCLUDE_SERVICES
acorn@4062 1485 void collect_statistics(KlassSizeStats *sz) const;
acorn@4062 1486 #endif
duke@0 1487
duke@0 1488 int creation_mileage() const { return _creation_mileage; }
duke@0 1489 void set_creation_mileage(int x) { _creation_mileage = x; }
iveresov@1703 1490
iveresov@1703 1491 int invocation_count() {
iveresov@1703 1492 if (invocation_counter()->carry()) {
iveresov@1703 1493 return InvocationCounter::count_limit;
iveresov@1703 1494 }
iveresov@1703 1495 return invocation_counter()->count();
iveresov@1703 1496 }
iveresov@1703 1497 int backedge_count() {
iveresov@1703 1498 if (backedge_counter()->carry()) {
iveresov@1703 1499 return InvocationCounter::count_limit;
iveresov@1703 1500 }
iveresov@1703 1501 return backedge_counter()->count();
iveresov@1703 1502 }
iveresov@1703 1503
iveresov@2124 1504 int invocation_count_start() {
iveresov@2124 1505 if (invocation_counter()->carry()) {
iveresov@2124 1506 return 0;
iveresov@2124 1507 }
iveresov@2124 1508 return _invocation_counter_start;
iveresov@2124 1509 }
iveresov@2124 1510
iveresov@2124 1511 int backedge_count_start() {
iveresov@2124 1512 if (backedge_counter()->carry()) {
iveresov@2124 1513 return 0;
iveresov@2124 1514 }
iveresov@2124 1515 return _backedge_counter_start;
iveresov@2124 1516 }
iveresov@2124 1517
iveresov@2124 1518 int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
iveresov@2124 1519 int backedge_count_delta() { return backedge_count() - backedge_count_start(); }
iveresov@2124 1520
iveresov@2124 1521 void reset_start_counters() {
iveresov@2124 1522 _invocation_counter_start = invocation_count();
iveresov@2124 1523 _backedge_counter_start = backedge_count();
iveresov@2124 1524 }
iveresov@2124 1525
iveresov@1703 1526 InvocationCounter* invocation_counter() { return &_invocation_counter; }
iveresov@1703 1527 InvocationCounter* backedge_counter() { return &_backedge_counter; }
iveresov@1703 1528
iveresov@1703 1529 void set_would_profile(bool p) { _would_profile = p; }
iveresov@1703 1530 bool would_profile() const { return _would_profile; }
iveresov@1703 1531
minqi@4662 1532 int highest_comp_level() const { return _highest_comp_level; }
iveresov@1703 1533 void set_highest_comp_level(int level) { _highest_comp_level = level; }
minqi@4662 1534 int highest_osr_comp_level() const { return _highest_osr_comp_level; }
iveresov@1703 1535 void set_highest_osr_comp_level(int level) { _highest_osr_comp_level = level; }
iveresov@1703 1536
iveresov@1703 1537 int num_loops() const { return _num_loops; }
iveresov@1703 1538 void set_num_loops(int n) { _num_loops = n; }
iveresov@1703 1539 int num_blocks() const { return _num_blocks; }
iveresov@1703 1540 void set_num_blocks(int n) { _num_blocks = n; }
iveresov@1703 1541
duke@0 1542 bool is_mature() const; // consult mileage and ProfileMaturityPercentage
coleenp@3602 1543 static int mileage_of(Method* m);
duke@0 1544
duke@0 1545 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@0 1546 enum EscapeFlag {
duke@0 1547 estimated = 1 << 0,
kvn@78 1548 return_local = 1 << 1,
kvn@78 1549 return_allocated = 1 << 2,
kvn@78 1550 allocated_escapes = 1 << 3,
kvn@78 1551 unknown_modified = 1 << 4
duke@0 1552 };
duke@0 1553
duke@0 1554 intx eflags() { return _eflags; }
duke@0 1555 intx arg_local() { return _arg_local; }
duke@0 1556 intx arg_stack() { return _arg_stack; }
duke@0 1557 intx arg_returned() { return _arg_returned; }
kvn@45 1558 uint arg_modified(int a) { ArgInfoData *aid = arg_info();
iignatyev@4473 1559 assert(aid != NULL, "arg_info must be not null");
kvn@45 1560 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@45 1561 return aid->arg_modified(a); }
duke@0 1562
duke@0 1563 void set_eflags(intx v) { _eflags = v; }
duke@0 1564 void set_arg_local(intx v) { _arg_local = v; }
duke@0 1565 void set_arg_stack(intx v) { _arg_stack = v; }
duke@0 1566 void set_arg_returned(intx v) { _arg_returned = v; }
kvn@45 1567 void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info();
iignatyev@4473 1568 assert(aid != NULL, "arg_info must be not null");
kvn@45 1569 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@45 1570 aid->set_arg_modified(a, v); }
duke@0 1571
duke@0 1572 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
duke@0 1573
duke@0 1574 // Location and size of data area
duke@0 1575 address data_base() const {
duke@0 1576 return (address) _data;
duke@0 1577 }
coleenp@3602 1578 int data_size() const {
duke@0 1579 return _data_size;
duke@0 1580 }
duke@0 1581
duke@0 1582 // Accessors
coleenp@3602 1583 Method* method() const { return _method; }
duke@0 1584
duke@0 1585 // Get the data at an arbitrary (sort of) data index.
coleenp@3602 1586 ProfileData* data_at(int data_index) const;
duke@0 1587
duke@0 1588 // Walk through the data in order.
coleenp@3602 1589 ProfileData* first_data() const { return data_at(first_di()); }
coleenp@3602 1590 ProfileData* next_data(ProfileData* current) const;
coleenp@3602 1591 bool is_valid(ProfileData* current) const { return current != NULL; }
duke@0 1592
duke@0 1593 // Convert a dp (data pointer) to a di (data index).
coleenp@3602 1594 int dp_to_di(address dp) const {
duke@0 1595 return dp - ((address)_data);
duke@0 1596 }
duke@0 1597
duke@0 1598 address di_to_dp(int di) {
duke@0 1599 return (address)data_layout_at(di);
duke@0 1600 }
duke@0 1601
duke@0 1602 // bci to di/dp conversion.
duke@0 1603 address bci_to_dp(int bci);
duke@0 1604 int bci_to_di(int bci) {
duke@0 1605 return dp_to_di(bci_to_dp(bci));
duke@0 1606 }
duke@0 1607
duke@0 1608 // Get the data at an arbitrary bci, or NULL if there is none.
duke@0 1609 ProfileData* bci_to_data(int bci);
duke@0 1610
duke@0 1611 // Same, but try to create an extra_data record if one is needed:
duke@0 1612 ProfileData* allocate_bci_to_data(int bci) {
duke@0 1613 ProfileData* data = bci_to_data(bci);
duke@0 1614 return (data != NULL) ? data : bci_to_extra_data(bci, true);
duke@0 1615 }
duke@0 1616
duke@0 1617 // Add a handful of extra data records, for trap tracking.
coleenp@3602 1618 DataLayout* extra_data_base() const { return limit_data_position(); }
coleenp@3602 1619 DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
coleenp@3602 1620 int extra_data_size() const { return (address)extra_data_limit()
duke@0 1621 - (address)extra_data_base(); }
duke@0 1622 static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
duke@0 1623
duke@0 1624 // Return (uint)-1 for overflow.
duke@0 1625 uint trap_count(int reason) const {
duke@0 1626 assert((uint)reason < _trap_hist_limit, "oob");
duke@0 1627 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
duke@0 1628 }
duke@0 1629 // For loops:
duke@0 1630 static uint trap_reason_limit() { return _trap_hist_limit; }
duke@0 1631 static uint trap_count_limit() { return _trap_hist_mask; }
duke@0 1632 uint inc_trap_count(int reason) {
duke@0 1633 // Count another trap, anywhere in this method.
duke@0 1634 assert(reason >= 0, "must be single trap");
duke@0 1635 if ((uint)reason < _trap_hist_limit) {
duke@0 1636 uint cnt1 = 1 + _trap_hist._array[reason];
duke@0 1637 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow...
duke@0 1638 _trap_hist._array[reason] = cnt1;
duke@0 1639 return cnt1;
duke@0 1640 } else {
duke@0 1641 return _trap_hist_mask + (++_nof_overflow_traps);
duke@0 1642 }
duke@0 1643 } else {
duke@0 1644 // Could not represent the count in the histogram.
duke@0 1645 return (++_nof_overflow_traps);
duke@0 1646 }
duke@0 1647 }
duke@0 1648
duke@0 1649 uint overflow_trap_count() const {
duke@0 1650 return _nof_overflow_traps;
duke@0 1651 }
duke@0 1652 uint overflow_recompile_count() const {
duke@0 1653 return _nof_overflow_recompiles;
duke@0 1654 }
duke@0 1655 void inc_overflow_recompile_count() {
duke@0 1656 _nof_overflow_recompiles += 1;
duke@0 1657 }
duke@0 1658 uint decompile_count() const {
duke@0 1659 return _nof_decompiles;
duke@0 1660 }
duke@0 1661 void inc_decompile_count() {
duke@0 1662 _nof_decompiles += 1;
kvn@1206 1663 if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
vlivanov@4104 1664 method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
kvn@1206 1665 }
duke@0 1666 }
duke@0 1667
duke@0 1668 // Support for code generation
duke@0 1669 static ByteSize data_offset() {
coleenp@3602 1670 return byte_offset_of(MethodData, _data[0]);
duke@0 1671 }
duke@0 1672
iveresov@1703 1673 static ByteSize invocation_counter_offset() {
coleenp@3602 1674 return byte_offset_of(MethodData, _invocation_counter);
iveresov@1703 1675 }
iveresov@1703 1676 static ByteSize backedge_counter_offset() {
coleenp@3602 1677 return byte_offset_of(MethodData, _backedge_counter);
iveresov@1703 1678 }
iveresov@1703 1679
coleenp@3602 1680 // Deallocation support - no pointer fields to deallocate
coleenp@3602 1681 void deallocate_contents(ClassLoaderData* loader_data) {}
coleenp@3602 1682
duke@0 1683 // GC support
coleenp@3602 1684 void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
coleenp@3602 1685
coleenp@3602 1686 // Printing
coleenp@3602 1687 #ifndef PRODUCT
coleenp@3602 1688 void print_on (outputStream* st) const;
coleenp@3602 1689 #endif
coleenp@3602 1690 void print_value_on(outputStream* st) const;
duke@0 1691
duke@0 1692 #ifndef PRODUCT
duke@0 1693 // printing support for method data
coleenp@3602 1694 void print_data_on(outputStream* st) const;
duke@0 1695 #endif
duke@0 1696
coleenp@3602 1697 const char* internal_name() const { return "{method data}"; }
coleenp@3602 1698
duke@0 1699 // verification
coleenp@3602 1700 void verify_on(outputStream* st);
duke@0 1701 void verify_data_on(outputStream* st);
duke@0 1702 };
stefank@1879 1703
stefank@1879 1704 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP