annotate src/share/vm/utilities/globalDefinitions.hpp @ 12823:b756e7a2ec33

Added tag jdk-9+181 for changeset 4a443796f6f5
author prr
date Thu, 03 Aug 2017 18:56:57 +0000
parents d9aa9adb7dd2
children
rev   line source
duke@0 1 /*
eosterlund@12786 2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
trims@1472 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1472 20 * or visit www.oracle.com if you need additional information or have any
trims@1472 21 * questions.
duke@0 22 *
duke@0 23 */
duke@0 24
stefank@1879 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@1879 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@1879 27
dcubed@2767 28 #ifndef __STDC_FORMAT_MACROS
never@2721 29 #define __STDC_FORMAT_MACROS
dcubed@2767 30 #endif
never@2721 31
stefank@1879 32 #ifdef TARGET_COMPILER_gcc
stefank@1879 33 # include "utilities/globalDefinitions_gcc.hpp"
stefank@1879 34 #endif
stefank@1879 35 #ifdef TARGET_COMPILER_visCPP
stefank@1879 36 # include "utilities/globalDefinitions_visCPP.hpp"
stefank@1879 37 #endif
stefank@1879 38 #ifdef TARGET_COMPILER_sparcWorks
stefank@1879 39 # include "utilities/globalDefinitions_sparcWorks.hpp"
stefank@1879 40 #endif
goetz@5965 41 #ifdef TARGET_COMPILER_xlc
goetz@5965 42 # include "utilities/globalDefinitions_xlc.hpp"
goetz@5965 43 #endif
stefank@1879 44
simonis@10606 45 #ifndef NOINLINE
simonis@10606 46 #define NOINLINE
simonis@10606 47 #endif
simonis@10606 48 #ifndef ALWAYSINLINE
simonis@10606 49 #define ALWAYSINLINE inline
simonis@10606 50 #endif
drchase@6412 51 #ifndef PRAGMA_DIAG_PUSH
drchase@6412 52 #define PRAGMA_DIAG_PUSH
drchase@6412 53 #endif
drchase@6412 54 #ifndef PRAGMA_DIAG_POP
drchase@6412 55 #define PRAGMA_DIAG_POP
drchase@6412 56 #endif
drchase@6412 57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
drchase@6412 58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
drchase@6412 59 #endif
drchase@6412 60 #ifndef PRAGMA_FORMAT_IGNORED
drchase@6412 61 #define PRAGMA_FORMAT_IGNORED
drchase@6412 62 #endif
drchase@6412 63 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
drchase@6412 64 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
drchase@6412 65 #endif
drchase@6412 66 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
drchase@6412 67 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
drchase@6412 68 #endif
drchase@6412 69 #ifndef ATTRIBUTE_PRINTF
drchase@6412 70 #define ATTRIBUTE_PRINTF(fmt, vargs)
drchase@6412 71 #endif
mgerdin@7060 72 #ifndef ATTRIBUTE_SCANF
mgerdin@7060 73 #define ATTRIBUTE_SCANF(fmt, vargs)
mgerdin@7060 74 #endif
drchase@6412 75
stefank@1879 76 #include "utilities/macros.hpp"
stefank@1879 77
duke@0 78 // This file holds all globally used constants & types, class (forward)
duke@0 79 // declarations and a few frequently used utility functions.
duke@0 80
duke@0 81 //----------------------------------------------------------------------------------------------------
duke@0 82 // Constants
duke@0 83
duke@0 84 const int LogBytesPerShort = 1;
duke@0 85 const int LogBytesPerInt = 2;
duke@0 86 #ifdef _LP64
duke@0 87 const int LogBytesPerWord = 3;
duke@0 88 #else
duke@0 89 const int LogBytesPerWord = 2;
duke@0 90 #endif
duke@0 91 const int LogBytesPerLong = 3;
duke@0 92
duke@0 93 const int BytesPerShort = 1 << LogBytesPerShort;
duke@0 94 const int BytesPerInt = 1 << LogBytesPerInt;
duke@0 95 const int BytesPerWord = 1 << LogBytesPerWord;
duke@0 96 const int BytesPerLong = 1 << LogBytesPerLong;
duke@0 97
duke@0 98 const int LogBitsPerByte = 3;
duke@0 99 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@0 100 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@0 101 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@0 102 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@0 103
duke@0 104 const int BitsPerByte = 1 << LogBitsPerByte;
duke@0 105 const int BitsPerShort = 1 << LogBitsPerShort;
duke@0 106 const int BitsPerInt = 1 << LogBitsPerInt;
duke@0 107 const int BitsPerWord = 1 << LogBitsPerWord;
duke@0 108 const int BitsPerLong = 1 << LogBitsPerLong;
duke@0 109
duke@0 110 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@0 111 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@0 112
duke@0 113 const int WordsPerLong = 2; // Number of stack entries for longs
duke@0 114
coleenp@113 115 const int oopSize = sizeof(char*); // Full-width oop
coleenp@113 116 extern int heapOopSize; // Oop within a java object
duke@0 117 const int wordSize = sizeof(char*);
duke@0 118 const int longSize = sizeof(jlong);
duke@0 119 const int jintSize = sizeof(jint);
duke@0 120 const int size_tSize = sizeof(size_t);
duke@0 121
coleenp@113 122 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@0 123
coleenp@113 124 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@113 125 extern int LogBitsPerHeapOop;
coleenp@113 126 extern int BytesPerHeapOop;
coleenp@113 127 extern int BitsPerHeapOop;
duke@0 128
duke@0 129 const int BitsPerJavaInteger = 32;
twisti@559 130 const int BitsPerJavaLong = 64;
duke@0 131 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@0 132
coleenp@113 133 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@113 134 const int jintAsStringSize = 12;
coleenp@113 135
duke@0 136 // In fact this should be
duke@0 137 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@0 138 // see os::set_memory_serialize_page()
duke@0 139 #ifdef _LP64
duke@0 140 const int SerializePageShiftCount = 4;
duke@0 141 #else
duke@0 142 const int SerializePageShiftCount = 3;
duke@0 143 #endif
duke@0 144
duke@0 145 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@0 146 // pointer into the heap. We require that object sizes be measured in
duke@0 147 // units of heap words, so that that
duke@0 148 // HeapWord* hw;
duke@0 149 // hw += oop(hw)->foo();
duke@0 150 // works, where foo is a method (like size or scavenge) that returns the
duke@0 151 // object size.
duke@0 152 class HeapWord {
duke@0 153 friend class VMStructs;
jmasa@263 154 private:
duke@0 155 char* i;
jmasa@361 156 #ifndef PRODUCT
jmasa@263 157 public:
jmasa@263 158 char* value() { return i; }
jmasa@263 159 #endif
duke@0 160 };
duke@0 161
coleenp@3602 162 // Analogous opaque struct for metadata allocated from
coleenp@3602 163 // metaspaces.
coleenp@3602 164 class MetaWord {
coleenp@3602 165 private:
coleenp@3602 166 char* i;
coleenp@3602 167 };
coleenp@3602 168
duke@0 169 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@113 170 const int HeapWordSize = sizeof(HeapWord);
duke@0 171 #ifdef _LP64
coleenp@113 172 const int LogHeapWordSize = 3;
duke@0 173 #else
coleenp@113 174 const int LogHeapWordSize = 2;
duke@0 175 #endif
coleenp@113 176 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@113 177 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@0 178
duke@0 179 // The larger HeapWordSize for 64bit requires larger heaps
duke@0 180 // for the same application running in 64bit. See bug 4967770.
duke@0 181 // The minimum alignment to a heap word size is done. Other
jwilhelm@5862 182 // parts of the memory system may require additional alignment
duke@0 183 // and are responsible for those alignments.
duke@0 184 #ifdef _LP64
duke@0 185 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@0 186 #else
duke@0 187 #define ScaleForWordSize(x) (x)
duke@0 188 #endif
duke@0 189
duke@0 190 // The minimum number of native machine words necessary to contain "byte_size"
duke@0 191 // bytes.
duke@0 192 inline size_t heap_word_size(size_t byte_size) {
duke@0 193 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@0 194 }
duke@0 195
simonis@12252 196 //-------------------------------------------
simonis@12252 197 // Constant for jlong (standardized by C++11)
simonis@12252 198
simonis@12252 199 // Build a 64bit integer constant
simonis@12252 200 #define CONST64(x) (x ## LL)
simonis@12252 201 #define UCONST64(x) (x ## ULL)
simonis@12252 202
simonis@12252 203 const jlong min_jlong = CONST64(0x8000000000000000);
simonis@12252 204 const jlong max_jlong = CONST64(0x7fffffffffffffff);
simonis@12252 205
duke@0 206 const size_t K = 1024;
duke@0 207 const size_t M = K*K;
duke@0 208 const size_t G = M*K;
duke@0 209 const size_t HWperKB = K / sizeof(HeapWord);
duke@0 210
duke@0 211 // Constants for converting from a base unit to milli-base units. For
duke@0 212 // example from seconds to milliseconds and microseconds
duke@0 213
duke@0 214 const int MILLIUNITS = 1000; // milli units per base unit
duke@0 215 const int MICROUNITS = 1000000; // micro units per base unit
duke@0 216 const int NANOUNITS = 1000000000; // nano units per base unit
duke@0 217
johnc@2904 218 const jlong NANOSECS_PER_SEC = CONST64(1000000000);
johnc@2904 219 const jint NANOSECS_PER_MILLISEC = 1000000;
johnc@2904 220
duke@0 221 inline const char* proper_unit_for_byte_size(size_t s) {
brutisso@3331 222 #ifdef _LP64
brutisso@3331 223 if (s >= 10*G) {
brutisso@3331 224 return "G";
brutisso@3331 225 }
brutisso@3331 226 #endif
duke@0 227 if (s >= 10*M) {
duke@0 228 return "M";
duke@0 229 } else if (s >= 10*K) {
duke@0 230 return "K";
duke@0 231 } else {
duke@0 232 return "B";
duke@0 233 }
duke@0 234 }
duke@0 235
brutisso@3327 236 template <class T>
brutisso@3327 237 inline T byte_size_in_proper_unit(T s) {
brutisso@3331 238 #ifdef _LP64
brutisso@3331 239 if (s >= 10*G) {
brutisso@3331 240 return (T)(s/G);
brutisso@3331 241 }
brutisso@3331 242 #endif
duke@0 243 if (s >= 10*M) {
brutisso@3327 244 return (T)(s/M);
duke@0 245 } else if (s >= 10*K) {
brutisso@3327 246 return (T)(s/K);
duke@0 247 } else {
duke@0 248 return s;
duke@0 249 }
duke@0 250 }
duke@0 251
stefank@10867 252 inline const char* exact_unit_for_byte_size(size_t s) {
stefank@10867 253 #ifdef _LP64
stefank@10867 254 if (s >= G && (s % G) == 0) {
stefank@10867 255 return "G";
stefank@10867 256 }
stefank@10867 257 #endif
stefank@10867 258 if (s >= M && (s % M) == 0) {
stefank@10867 259 return "M";
stefank@10867 260 }
stefank@10867 261 if (s >= K && (s % K) == 0) {
stefank@10867 262 return "K";
stefank@10867 263 }
stefank@10867 264 return "B";
stefank@10867 265 }
stefank@10867 266
stefank@10867 267 inline size_t byte_size_in_exact_unit(size_t s) {
stefank@10867 268 #ifdef _LP64
stefank@10867 269 if (s >= G && (s % G) == 0) {
stefank@10867 270 return s / G;
stefank@10867 271 }
stefank@10867 272 #endif
stefank@10867 273 if (s >= M && (s % M) == 0) {
stefank@10867 274 return s / M;
stefank@10867 275 }
stefank@10867 276 if (s >= K && (s % K) == 0) {
stefank@10867 277 return s / K;
stefank@10867 278 }
stefank@10867 279 return s;
stefank@10867 280 }
stefank@10867 281
duke@0 282 //----------------------------------------------------------------------------------------------------
duke@0 283 // VM type definitions
duke@0 284
duke@0 285 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@0 286 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@0 287
duke@0 288 typedef intptr_t intx;
duke@0 289 typedef uintptr_t uintx;
duke@0 290
duke@0 291 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@0 292 const intx max_intx = (uintx)min_intx - 1;
duke@0 293 const uintx max_uintx = (uintx)-1;
duke@0 294
duke@0 295 // Table of values:
duke@0 296 // sizeof intx 4 8
duke@0 297 // min_intx 0x80000000 0x8000000000000000
duke@0 298 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@0 299 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@0 300
duke@0 301 typedef unsigned int uint; NEEDS_CLEANUP
duke@0 302
duke@0 303
duke@0 304 //----------------------------------------------------------------------------------------------------
duke@0 305 // Java type definitions
duke@0 306
duke@0 307 // All kinds of 'plain' byte addresses
duke@0 308 typedef signed char s_char;
duke@0 309 typedef unsigned char u_char;
duke@0 310 typedef u_char* address;
duke@0 311 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@0 312 // except for some implementations of a C++
duke@0 313 // linkage pointer to function. Should never
duke@0 314 // need one of those to be placed in this
duke@0 315 // type anyway.
duke@0 316
duke@0 317 // Utility functions to "portably" (?) bit twiddle pointers
duke@0 318 // Where portable means keep ANSI C++ compilers quiet
duke@0 319
duke@0 320 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@0 321 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@0 322
duke@0 323 // Utility functions to "portably" make cast to/from function pointers.
duke@0 324
duke@0 325 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@0 326 inline address_word castable_address(address x) { return address_word(x) ; }
duke@0 327 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@0 328
duke@0 329 // Pointer subtraction.
duke@0 330 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@0 331 // the range we might need to find differences from one end of the heap
duke@0 332 // to the other.
duke@0 333 // A typical use might be:
duke@0 334 // if (pointer_delta(end(), top()) >= size) {
duke@0 335 // // enough room for an object of size
duke@0 336 // ...
duke@0 337 // and then additions like
duke@0 338 // ... top() + size ...
duke@0 339 // are safe because we know that top() is at least size below end().
dholmes@11871 340 inline size_t pointer_delta(const volatile void* left,
dholmes@11871 341 const volatile void* right,
duke@0 342 size_t element_size) {
duke@0 343 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@0 344 }
dholmes@11871 345
duke@0 346 // A version specialized for HeapWord*'s.
duke@0 347 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@0 348 return pointer_delta(left, right, sizeof(HeapWord));
duke@0 349 }
coleenp@3602 350 // A version specialized for MetaWord*'s.
coleenp@3602 351 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
coleenp@3602 352 return pointer_delta(left, right, sizeof(MetaWord));
coleenp@3602 353 }
duke@0 354
duke@0 355 //
duke@0 356 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@0 357 // directly without at best a warning. This macro accomplishes it silently
duke@0 358 // In every case that is present at this point the value be cast is a pointer
jwilhelm@10455 359 // to a C linkage function. In some case the type used for the cast reflects
duke@0 360 // that linkage and a picky compiler would not complain. In other cases because
duke@0 361 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@0 362 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@0 363 // picky enough to catch these instances (which are few). It is possible that
duke@0 364 // using templates could fix these for all cases. This use of templates is likely
duke@0 365 // so far from the middle of the road that it is likely to be problematic in
duke@0 366 // many C++ compilers.
duke@0 367 //
dholmes@10847 368 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
duke@0 369 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@0 370
duke@0 371 // Unsigned byte types for os and stream.hpp
duke@0 372
duke@0 373 // Unsigned one, two, four and eigth byte quantities used for describing
duke@0 374 // the .class file format. See JVM book chapter 4.
duke@0 375
duke@0 376 typedef jubyte u1;
duke@0 377 typedef jushort u2;
duke@0 378 typedef juint u4;
duke@0 379 typedef julong u8;
duke@0 380
duke@0 381 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@0 382 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@0 383 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@0 384 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@0 385
phh@2992 386 typedef jbyte s1;
phh@2992 387 typedef jshort s2;
phh@2992 388 typedef jint s4;
phh@2992 389 typedef jlong s8;
phh@2992 390
kbarrett@10915 391 const jbyte min_jbyte = -(1 << 7); // smallest jbyte
kbarrett@10915 392 const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte
kbarrett@10915 393 const jshort min_jshort = -(1 << 15); // smallest jshort
kbarrett@10915 394 const jshort max_jshort = (1 << 15) - 1; // largest jshort
kbarrett@10915 395
kbarrett@10915 396 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
kbarrett@10915 397 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
kbarrett@10915 398
duke@0 399 //----------------------------------------------------------------------------------------------------
duke@0 400 // JVM spec restrictions
duke@0 401
duke@0 402 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@0 403
tschatzl@5427 404 // Default ProtectionDomainCacheSize values
tschatzl@5427 405
tschatzl@5427 406 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
duke@0 407
duke@0 408 //----------------------------------------------------------------------------------------------------
hseigel@4523 409 // Default and minimum StringTableSize values
hseigel@3842 410
hseigel@4523 411 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
tschatzl@5427 412 const int minimumStringTableSize = 1009;
hseigel@3842 413
kevinw@5415 414 const int defaultSymbolTableSize = 20011;
kevinw@5415 415 const int minimumSymbolTableSize = 1009;
kevinw@5415 416
hseigel@3842 417
hseigel@3842 418 //----------------------------------------------------------------------------------------------------
duke@0 419 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@0 420 //
duke@0 421 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@0 422
duke@0 423 #define HOTSWAP
duke@0 424
duke@0 425 //----------------------------------------------------------------------------------------------------
duke@0 426 // Object alignment, in units of HeapWords.
duke@0 427 //
duke@0 428 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@0 429 // reference fields can be naturally aligned.
duke@0 430
kvn@1491 431 extern int MinObjAlignment;
kvn@1491 432 extern int MinObjAlignmentInBytes;
kvn@1491 433 extern int MinObjAlignmentInBytesMask;
duke@0 434
kvn@1491 435 extern int LogMinObjAlignment;
kvn@1491 436 extern int LogMinObjAlignmentInBytes;
coleenp@113 437
roland@3724 438 const int LogKlassAlignmentInBytes = 3;
roland@3724 439 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
roland@3724 440 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
roland@3724 441 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
roland@3724 442
goetz@7622 443 // Maximal size of heap where unscaled compression can be used. Also upper bound
goetz@7622 444 // for heap placement: 4GB.
goetz@7622 445 const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
goetz@7622 446 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
goetz@7622 447 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
goetz@7622 448 extern uint64_t OopEncodingHeapMax;
goetz@7622 449
goetz@7622 450 // Maximal size of compressed class space. Above this limit compression is not possible.
goetz@7622 451 // Also upper bound for placement of zero based class space. (Class space is further limited
goetz@7622 452 // to be < 3G, see arguments.cpp.)
goetz@7622 453 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
roland@3724 454
duke@0 455 // Machine dependent stuff
duke@0 456
aph@7877 457 // The maximum size of the code cache. Can be overridden by targets.
aph@7877 458 #define CODE_CACHE_SIZE_LIMIT (2*G)
aph@7877 459 // Allow targets to reduce the default size of the code cache.
aph@7877 460 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
aph@7877 461
goetz@11658 462 #include CPU_HEADER(globalDefinitions)
stefank@1879 463
goetz@6006 464 // To assure the IRIW property on processors that are not multiple copy
goetz@6006 465 // atomic, sync instructions must be issued between volatile reads to
goetz@6006 466 // assure their ordering, instead of after volatile stores.
goetz@6006 467 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
goetz@6006 468 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
goetz@6006 469 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
goetz@6006 470 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
goetz@6006 471 #else
goetz@6006 472 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
goetz@6006 473 #endif
goetz@6006 474
duke@0 475 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@0 476 // Note: this value must be a power of 2
duke@0 477
duke@0 478 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@0 479
duke@0 480 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@0 481 // for use in places like enum definitions that require compile-time constant
duke@0 482 // expressions and a function for all other places so as to get type checking.
duke@0 483
duke@0 484 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@0 485
stefank@5143 486 inline bool is_size_aligned(size_t size, size_t alignment) {
stefank@5143 487 return align_size_up_(size, alignment) == size;
stefank@5143 488 }
stefank@5143 489
stefank@5143 490 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
stefank@5143 491 return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
stefank@5143 492 }
stefank@5143 493
duke@0 494 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@0 495 return align_size_up_(size, alignment);
duke@0 496 }
duke@0 497
duke@0 498 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@0 499
duke@0 500 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@0 501 return align_size_down_(size, alignment);
duke@0 502 }
duke@0 503
stefank@5080 504 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
stefank@5080 505
coleenp@10159 506 inline void* align_ptr_up(const void* ptr, size_t alignment) {
stefank@5143 507 return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
stefank@5143 508 }
stefank@5143 509
stefank@5143 510 inline void* align_ptr_down(void* ptr, size_t alignment) {
stefank@5143 511 return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
stefank@5143 512 }
stefank@5143 513
dholmes@11871 514 inline volatile void* align_ptr_down(volatile void* ptr, size_t alignment) {
dholmes@11871 515 return (volatile void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
dholmes@11871 516 }
dholmes@11871 517
coleenp@10159 518 // Align metaspace objects by rounding up to natural word boundary
duke@0 519
coleenp@10159 520 inline intptr_t align_metadata_size(intptr_t size) {
coleenp@10159 521 return align_size_up(size, 1);
coleenp@10159 522 }
duke@0 523
coleenp@10159 524 // Align objects in the Java Heap by rounding up their size, in HeapWord units.
coleenp@10159 525 // Since the size is given in words this is somewhat of a nop, but
coleenp@10159 526 // distinguishes it from align_object_size.
duke@0 527 inline intptr_t align_object_size(intptr_t size) {
duke@0 528 return align_size_up(size, MinObjAlignment);
duke@0 529 }
duke@0 530
kvn@1491 531 inline bool is_object_aligned(intptr_t addr) {
kvn@1491 532 return addr == align_object_size(addr);
kvn@1491 533 }
kvn@1491 534
duke@0 535 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@0 536
duke@0 537 inline intptr_t align_object_offset(intptr_t offset) {
duke@0 538 return align_size_up(offset, HeapWordsPerLong);
duke@0 539 }
duke@0 540
jwilhelm@5648 541 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
jwilhelm@5648 542
jwilhelm@5648 543 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
jwilhelm@5648 544 size_t aligned_size = align_size_down_(size, alignment);
jwilhelm@5648 545 return aligned_size > 0 ? aligned_size : alignment;
jwilhelm@5648 546 }
jwilhelm@5648 547
mikael@4454 548 // Clamp an address to be within a specific page
mikael@4454 549 // 1. If addr is on the page it is returned as is
mikael@4454 550 // 2. If addr is above the page_address the start of the *next* page will be returned
mikael@4454 551 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
mikael@4454 552 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
mikael@4454 553 if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
mikael@4454 554 // address is in the specified page, just return it as is
mikael@4454 555 return addr;
mikael@4454 556 } else if (addr > page_address) {
mikael@4454 557 // address is above specified page, return start of next page
mikael@4454 558 return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
mikael@4454 559 } else {
mikael@4454 560 // address is below specified page, return start of page
mikael@4454 561 return (address)align_size_down(intptr_t(page_address), page_size);
mikael@4454 562 }
mikael@4454 563 }
mikael@4454 564
mikael@4454 565
jcoomes@1585 566 // The expected size in bytes of a cache line, used to pad data structures.
dcubed@7236 567 #ifndef DEFAULT_CACHE_LINE_SIZE
dcubed@7236 568 #define DEFAULT_CACHE_LINE_SIZE 64
dcubed@7236 569 #endif
jcoomes@1585 570
duke@0 571
duke@0 572 //----------------------------------------------------------------------------------------------------
duke@0 573 // Utility macros for compilers
duke@0 574 // used to silence compiler warnings
duke@0 575
duke@0 576 #define Unused_Variable(var) var
duke@0 577
duke@0 578
duke@0 579 //----------------------------------------------------------------------------------------------------
duke@0 580 // Miscellaneous
duke@0 581
duke@0 582 // 6302670 Eliminate Hotspot __fabsf dependency
duke@0 583 // All fabs() callers should call this function instead, which will implicitly
duke@0 584 // convert the operand to double, avoiding a dependency on __fabsf which
duke@0 585 // doesn't exist in early versions of Solaris 8.
duke@0 586 inline double fabsd(double value) {
duke@0 587 return fabs(value);
duke@0 588 }
duke@0 589
tschatzl@9587 590 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
tschatzl@9587 591 // is zero, return 0.0.
tschatzl@9587 592 template<typename T>
tschatzl@9587 593 inline double percent_of(T numerator, T denominator) {
tschatzl@9587 594 return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
tschatzl@9587 595 }
tschatzl@9587 596
thartmann@6825 597 //----------------------------------------------------------------------------------------------------
thartmann@6825 598 // Special casts
thartmann@6825 599 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
thartmann@6825 600 typedef union {
thartmann@6825 601 jfloat f;
thartmann@6825 602 jint i;
thartmann@6825 603 } FloatIntConv;
thartmann@6825 604
thartmann@6825 605 typedef union {
thartmann@6825 606 jdouble d;
thartmann@6825 607 jlong l;
thartmann@6825 608 julong ul;
thartmann@6825 609 } DoubleLongConv;
thartmann@6825 610
thartmann@6825 611 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; }
thartmann@6825 612 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; }
thartmann@6825 613
thartmann@6825 614 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; }
thartmann@6825 615 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; }
thartmann@6825 616 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; }
thartmann@6825 617
duke@0 618 inline jint low (jlong value) { return jint(value); }
duke@0 619 inline jint high(jlong value) { return jint(value >> 32); }
duke@0 620
duke@0 621 // the fancy casts are a hopefully portable way
duke@0 622 // to do unsigned 32 to 64 bit type conversion
duke@0 623 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@0 624 *value |= (jlong)(julong)(juint)low; }
duke@0 625
duke@0 626 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@0 627 *value |= (jlong)high << 32; }
duke@0 628
duke@0 629 inline jlong jlong_from(jint h, jint l) {
duke@0 630 jlong result = 0; // initialization to avoid warning
duke@0 631 set_high(&result, h);
duke@0 632 set_low(&result, l);
duke@0 633 return result;
duke@0 634 }
duke@0 635
duke@0 636 union jlong_accessor {
duke@0 637 jint words[2];
duke@0 638 jlong long_value;
duke@0 639 };
duke@0 640
coleenp@113 641 void basic_types_init(); // cannot define here; uses assert
duke@0 642
duke@0 643
duke@0 644 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@0 645 enum BasicType {
roland@3724 646 T_BOOLEAN = 4,
roland@3724 647 T_CHAR = 5,
roland@3724 648 T_FLOAT = 6,
roland@3724 649 T_DOUBLE = 7,
roland@3724 650 T_BYTE = 8,
roland@3724 651 T_SHORT = 9,
roland@3724 652 T_INT = 10,
roland@3724 653 T_LONG = 11,
roland@3724 654 T_OBJECT = 12,
roland@3724 655 T_ARRAY = 13,
roland@3724 656 T_VOID = 14,
roland@3724 657 T_ADDRESS = 15,
roland@3724 658 T_NARROWOOP = 16,
roland@3724 659 T_METADATA = 17,
roland@3724 660 T_NARROWKLASS = 18,
roland@3724 661 T_CONFLICT = 19, // for stack value type with conflicting contents
roland@3724 662 T_ILLEGAL = 99
duke@0 663 };
duke@0 664
kvn@29 665 inline bool is_java_primitive(BasicType t) {
kvn@29 666 return T_BOOLEAN <= t && t <= T_LONG;
kvn@29 667 }
kvn@29 668
jrose@710 669 inline bool is_subword_type(BasicType t) {
jrose@710 670 // these guys are processed exactly like T_INT in calling sequences:
jrose@710 671 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
jrose@710 672 }
jrose@710 673
jrose@710 674 inline bool is_signed_subword_type(BasicType t) {
jrose@710 675 return (t == T_BYTE || t == T_SHORT);
jrose@710 676 }
jrose@710 677
duke@0 678 // Convert a char from a classfile signature to a BasicType
duke@0 679 inline BasicType char2type(char c) {
duke@0 680 switch( c ) {
duke@0 681 case 'B': return T_BYTE;
duke@0 682 case 'C': return T_CHAR;
duke@0 683 case 'D': return T_DOUBLE;
duke@0 684 case 'F': return T_FLOAT;
duke@0 685 case 'I': return T_INT;
duke@0 686 case 'J': return T_LONG;
duke@0 687 case 'S': return T_SHORT;
duke@0 688 case 'Z': return T_BOOLEAN;
duke@0 689 case 'V': return T_VOID;
duke@0 690 case 'L': return T_OBJECT;
duke@0 691 case '[': return T_ARRAY;
duke@0 692 }
duke@0 693 return T_ILLEGAL;
duke@0 694 }
duke@0 695
duke@0 696 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@0 697 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@0 698 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@0 699 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@0 700 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@0 701 extern BasicType name2type(const char* name);
duke@0 702
jwilhelm@10455 703 // Auxiliary math routines
duke@0 704 // least common multiple
duke@0 705 extern size_t lcm(size_t a, size_t b);
duke@0 706
duke@0 707
duke@0 708 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@0 709 enum BasicTypeSize {
roland@3724 710 T_BOOLEAN_size = 1,
roland@3724 711 T_CHAR_size = 1,
roland@3724 712 T_FLOAT_size = 1,
roland@3724 713 T_DOUBLE_size = 2,
roland@3724 714 T_BYTE_size = 1,
roland@3724 715 T_SHORT_size = 1,
roland@3724 716 T_INT_size = 1,
roland@3724 717 T_LONG_size = 2,
roland@3724 718 T_OBJECT_size = 1,
roland@3724 719 T_ARRAY_size = 1,
roland@3724 720 T_NARROWOOP_size = 1,
roland@3724 721 T_NARROWKLASS_size = 1,
roland@3724 722 T_VOID_size = 0
duke@0 723 };
duke@0 724
duke@0 725
duke@0 726 // maps a BasicType to its instance field storage type:
duke@0 727 // all sub-word integral types are widened to T_INT
duke@0 728 extern BasicType type2field[T_CONFLICT+1];
duke@0 729 extern BasicType type2wfield[T_CONFLICT+1];
duke@0 730
duke@0 731
duke@0 732 // size in bytes
duke@0 733 enum ArrayElementSize {
roland@3724 734 T_BOOLEAN_aelem_bytes = 1,
roland@3724 735 T_CHAR_aelem_bytes = 2,
roland@3724 736 T_FLOAT_aelem_bytes = 4,
roland@3724 737 T_DOUBLE_aelem_bytes = 8,
roland@3724 738 T_BYTE_aelem_bytes = 1,
roland@3724 739 T_SHORT_aelem_bytes = 2,
roland@3724 740 T_INT_aelem_bytes = 4,
roland@3724 741 T_LONG_aelem_bytes = 8,
duke@0 742 #ifdef _LP64
roland@3724 743 T_OBJECT_aelem_bytes = 8,
roland@3724 744 T_ARRAY_aelem_bytes = 8,
duke@0 745 #else
roland@3724 746 T_OBJECT_aelem_bytes = 4,
roland@3724 747 T_ARRAY_aelem_bytes = 4,
duke@0 748 #endif
roland@3724 749 T_NARROWOOP_aelem_bytes = 4,
roland@3724 750 T_NARROWKLASS_aelem_bytes = 4,
roland@3724 751 T_VOID_aelem_bytes = 0
duke@0 752 };
duke@0 753
kvn@29 754 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@29 755 #ifdef ASSERT
kvn@29 756 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@29 757 #else
never@1683 758 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
kvn@29 759 #endif
duke@0 760
duke@0 761
duke@0 762 // JavaValue serves as a container for arbitrary Java values.
duke@0 763
duke@0 764 class JavaValue {
duke@0 765
duke@0 766 public:
duke@0 767 typedef union JavaCallValue {
duke@0 768 jfloat f;
duke@0 769 jdouble d;
duke@0 770 jint i;
duke@0 771 jlong l;
duke@0 772 jobject h;
duke@0 773 } JavaCallValue;
duke@0 774
duke@0 775 private:
duke@0 776 BasicType _type;
duke@0 777 JavaCallValue _value;
duke@0 778
duke@0 779 public:
duke@0 780 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@0 781
duke@0 782 JavaValue(jfloat value) {
duke@0 783 _type = T_FLOAT;
duke@0 784 _value.f = value;
duke@0 785 }
duke@0 786
duke@0 787 JavaValue(jdouble value) {
duke@0 788 _type = T_DOUBLE;
duke@0 789 _value.d = value;
duke@0 790 }
duke@0 791
duke@0 792 jfloat get_jfloat() const { return _value.f; }
duke@0 793 jdouble get_jdouble() const { return _value.d; }
duke@0 794 jint get_jint() const { return _value.i; }
duke@0 795 jlong get_jlong() const { return _value.l; }
duke@0 796 jobject get_jobject() const { return _value.h; }
duke@0 797 JavaCallValue* get_value_addr() { return &_value; }
duke@0 798 BasicType get_type() const { return _type; }
duke@0 799
duke@0 800 void set_jfloat(jfloat f) { _value.f = f;}
duke@0 801 void set_jdouble(jdouble d) { _value.d = d;}
duke@0 802 void set_jint(jint i) { _value.i = i;}
duke@0 803 void set_jlong(jlong l) { _value.l = l;}
duke@0 804 void set_jobject(jobject h) { _value.h = h;}
duke@0 805 void set_type(BasicType t) { _type = t; }
duke@0 806
duke@0 807 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@0 808 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@0 809 jchar get_jchar() const { return (jchar) (_value.i);}
duke@0 810 jshort get_jshort() const { return (jshort) (_value.i);}
duke@0 811
duke@0 812 };
duke@0 813
duke@0 814
duke@0 815 #define STACK_BIAS 0
duke@0 816 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@0 817 // in order to extend the reach of the stack pointer.
duke@0 818 #if defined(SPARC) && defined(_LP64)
duke@0 819 #undef STACK_BIAS
duke@0 820 #define STACK_BIAS 0x7ff
duke@0 821 #endif
duke@0 822
duke@0 823
duke@0 824 // TosState describes the top-of-stack state before and after the execution of
duke@0 825 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
jwilhelm@10455 826 // registers. The TosState corresponds to the 'machine representation' of this cached
duke@0 827 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@0 828 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@0 829 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@0 830 // state when it comes to machine representation but is used separately for (oop)
duke@0 831 // type specific operations (e.g. verification code).
duke@0 832
duke@0 833 enum TosState { // describes the tos cache contents
duke@0 834 btos = 0, // byte, bool tos cached
coleenp@10885 835 ztos = 1, // byte, bool tos cached
coleenp@10885 836 ctos = 2, // char tos cached
coleenp@10885 837 stos = 3, // short tos cached
coleenp@10885 838 itos = 4, // int tos cached
coleenp@10885 839 ltos = 5, // long tos cached
coleenp@10885 840 ftos = 6, // float tos cached
coleenp@10885 841 dtos = 7, // double tos cached
coleenp@10885 842 atos = 8, // object cached
coleenp@10885 843 vtos = 9, // tos not cached
duke@0 844 number_of_states,
duke@0 845 ilgl // illegal state: should not occur
duke@0 846 };
duke@0 847
duke@0 848
duke@0 849 inline TosState as_TosState(BasicType type) {
duke@0 850 switch (type) {
duke@0 851 case T_BYTE : return btos;
coleenp@10885 852 case T_BOOLEAN: return ztos;
duke@0 853 case T_CHAR : return ctos;
duke@0 854 case T_SHORT : return stos;
duke@0 855 case T_INT : return itos;
duke@0 856 case T_LONG : return ltos;
duke@0 857 case T_FLOAT : return ftos;
duke@0 858 case T_DOUBLE : return dtos;
duke@0 859 case T_VOID : return vtos;
duke@0 860 case T_ARRAY : // fall through
duke@0 861 case T_OBJECT : return atos;
duke@0 862 }
duke@0 863 return ilgl;
duke@0 864 }
duke@0 865
jrose@726 866 inline BasicType as_BasicType(TosState state) {
jrose@726 867 switch (state) {
jrose@726 868 case btos : return T_BYTE;
coleenp@10885 869 case ztos : return T_BOOLEAN;
jrose@726 870 case ctos : return T_CHAR;
jrose@726 871 case stos : return T_SHORT;
jrose@726 872 case itos : return T_INT;
jrose@726 873 case ltos : return T_LONG;
jrose@726 874 case ftos : return T_FLOAT;
jrose@726 875 case dtos : return T_DOUBLE;
jrose@726 876 case atos : return T_OBJECT;
jrose@726 877 case vtos : return T_VOID;
jrose@726 878 }
jrose@726 879 return T_ILLEGAL;
jrose@726 880 }
jrose@726 881
duke@0 882
duke@0 883 // Helper function to convert BasicType info into TosState
duke@0 884 // Note: Cannot define here as it uses global constant at the time being.
duke@0 885 TosState as_TosState(BasicType type);
duke@0 886
duke@0 887
duke@0 888 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@0 889 // information is needed by the safepoint code.
duke@0 890 //
duke@0 891 // There are 4 essential states:
duke@0 892 //
duke@0 893 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@0 894 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@0 895 // _thread_in_vm : Executing in the vm
duke@0 896 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@0 897 //
duke@0 898 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@0 899 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@0 900 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@0 901 //
jwilhelm@10455 902 // Given a state, the xxxx_trans state can always be found by adding 1.
duke@0 903 //
duke@0 904 enum JavaThreadState {
duke@0 905 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@0 906 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@0 907 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@0 908 _thread_in_native = 4, // running in native code
duke@0 909 _thread_in_native_trans = 5, // corresponding transition state
duke@0 910 _thread_in_vm = 6, // running in VM
duke@0 911 _thread_in_vm_trans = 7, // corresponding transition state
duke@0 912 _thread_in_Java = 8, // running in Java or in stub code
duke@0 913 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@0 914 _thread_blocked = 10, // blocked in vm
duke@0 915 _thread_blocked_trans = 11, // corresponding transition state
duke@0 916 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@0 917 };
duke@0 918
duke@0 919
iignatyev@4473 920
duke@0 921 //----------------------------------------------------------------------------------------------------
duke@0 922 // 'Forward' declarations of frequently used classes
duke@0 923 // (in order to reduce interface dependencies & reduce
duke@0 924 // number of unnecessary compilations after changes)
duke@0 925
duke@0 926 class ClassFileStream;
duke@0 927
duke@0 928 class Event;
duke@0 929
duke@0 930 class Thread;
duke@0 931 class VMThread;
duke@0 932 class JavaThread;
duke@0 933 class Threads;
duke@0 934
duke@0 935 class VM_Operation;
duke@0 936 class VMOperationQueue;
duke@0 937
duke@0 938 class CodeBlob;
rbackman@11079 939 class CompiledMethod;
rbackman@11079 940 class nmethod;
rbackman@11079 941 class RuntimeBlob;
duke@0 942 class OSRAdapter;
duke@0 943 class I2CAdapter;
duke@0 944 class C2IAdapter;
duke@0 945 class CompiledIC;
duke@0 946 class relocInfo;
duke@0 947 class ScopeDesc;
duke@0 948 class PcDesc;
duke@0 949
duke@0 950 class Recompiler;
duke@0 951 class Recompilee;
duke@0 952 class RecompilationPolicy;
duke@0 953 class RFrame;
duke@0 954 class CompiledRFrame;
duke@0 955 class InterpretedRFrame;
duke@0 956
duke@0 957 class frame;
duke@0 958
duke@0 959 class vframe;
duke@0 960 class javaVFrame;
duke@0 961 class interpretedVFrame;
duke@0 962 class compiledVFrame;
duke@0 963 class deoptimizedVFrame;
duke@0 964 class externalVFrame;
duke@0 965 class entryVFrame;
duke@0 966
duke@0 967 class RegisterMap;
duke@0 968
duke@0 969 class Mutex;
duke@0 970 class Monitor;
duke@0 971 class BasicLock;
duke@0 972 class BasicObjectLock;
duke@0 973
duke@0 974 class PeriodicTask;
duke@0 975
duke@0 976 class JavaCallWrapper;
duke@0 977
duke@0 978 class oopDesc;
coleenp@3602 979 class metaDataOopDesc;
duke@0 980
duke@0 981 class NativeCall;
duke@0 982
duke@0 983 class zone;
duke@0 984
duke@0 985 class StubQueue;
duke@0 986
duke@0 987 class outputStream;
duke@0 988
duke@0 989 class ResourceArea;
duke@0 990
duke@0 991 class DebugInformationRecorder;
duke@0 992 class ScopeValue;
duke@0 993 class CompressedStream;
duke@0 994 class DebugInfoReadStream;
duke@0 995 class DebugInfoWriteStream;
duke@0 996 class LocationValue;
duke@0 997 class ConstantValue;
duke@0 998 class IllegalValue;
duke@0 999
duke@0 1000 class PrivilegedElement;
duke@0 1001 class MonitorArray;
duke@0 1002
duke@0 1003 class MonitorInfo;
duke@0 1004
duke@0 1005 class OffsetClosure;
duke@0 1006 class OopMapCache;
duke@0 1007 class InterpreterOopMap;
duke@0 1008 class OopMapCacheEntry;
duke@0 1009 class OSThread;
duke@0 1010
duke@0 1011 typedef int (*OSThreadStartFunc)(void*);
duke@0 1012
duke@0 1013 class Space;
duke@0 1014
duke@0 1015 class JavaValue;
duke@0 1016 class methodHandle;
duke@0 1017 class JavaCallArguments;
duke@0 1018
duke@0 1019 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@0 1020
duke@0 1021 extern void basic_fatal(const char* msg);
duke@0 1022
duke@0 1023
duke@0 1024 //----------------------------------------------------------------------------------------------------
duke@0 1025 // Special constants for debugging
duke@0 1026
duke@0 1027 const jint badInt = -3; // generic "bad int" value
duke@0 1028 const long badAddressVal = -2; // generic "bad address" value
duke@0 1029 const long badOopVal = -1; // generic "bad oop" value
duke@0 1030 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@0 1031 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@0 1032 const int badResourceValue = 0xAB; // value used to zap resource area
duke@0 1033 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@0 1034 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
vlivanov@10529 1035 const juint uninitMetaWordVal= 0xf7f7f7f7; // value used to zap newly allocated metachunk
goetz@7331 1036 const intptr_t badJNIHandleVal = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@0 1037 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
coleenp@3602 1038 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
duke@0 1039 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@0 1040 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@0 1041
duke@0 1042
duke@0 1043 // (These must be implemented as #defines because C++ compilers are
duke@0 1044 // not obligated to inline non-integral constants!)
duke@0 1045 #define badAddress ((address)::badAddressVal)
hseigel@5349 1046 #define badOop (cast_to_oop(::badOopVal))
duke@0 1047 #define badHeapWord (::badHeapWordVal)
hseigel@5349 1048 #define badJNIHandle (cast_to_oop(::badJNIHandleVal))
duke@0 1049
jcoomes@1311 1050 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
jcoomes@1311 1051 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
duke@0 1052
duke@0 1053 //----------------------------------------------------------------------------------------------------
duke@0 1054 // Utility functions for bitfield manipulations
duke@0 1055
duke@0 1056 const intptr_t AllBits = ~0; // all bits set in a word
duke@0 1057 const intptr_t NoBits = 0; // no bits set in a word
duke@0 1058 const jlong NoLongBits = 0; // no bits set in a long
duke@0 1059 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@0 1060
duke@0 1061 // get a word with the n.th or the right-most or left-most n bits set
duke@0 1062 // (note: #define used only so that they can be used in enum constant definitions)
stefank@10570 1063 #define nth_bit(n) (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
duke@0 1064 #define right_n_bits(n) (nth_bit(n) - 1)
stefank@10570 1065 #define left_n_bits(n) (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
duke@0 1066
duke@0 1067 // bit-operations using a mask m
duke@0 1068 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@0 1069 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@0 1070 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@0 1071 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@0 1072 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@0 1073
duke@0 1074 // bit-operations using the n.th bit
duke@0 1075 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@0 1076 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@0 1077 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@0 1078
duke@0 1079 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@0 1080 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@0 1081 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@0 1082 }
duke@0 1083
duke@0 1084
duke@0 1085 //----------------------------------------------------------------------------------------------------
duke@0 1086 // Utility functions for integers
duke@0 1087
duke@0 1088 // Avoid use of global min/max macros which may cause unwanted double
duke@0 1089 // evaluation of arguments.
duke@0 1090 #ifdef max
duke@0 1091 #undef max
duke@0 1092 #endif
duke@0 1093
duke@0 1094 #ifdef min
duke@0 1095 #undef min
duke@0 1096 #endif
duke@0 1097
eosterlund@12786 1098 // The following defines serve the purpose of preventing use of accidentally
eosterlund@12786 1099 // included min max macros from compiling, while continuing to allow innocent
eosterlund@12786 1100 // min and max identifiers in the code to compile as intended.
eosterlund@12786 1101 #define max max
eosterlund@12786 1102 #define min min
duke@0 1103
duke@0 1104 // It is necessary to use templates here. Having normal overloaded
duke@0 1105 // functions does not work because it is necessary to provide both 32-
duke@0 1106 // and 64-bit overloaded functions, which does not work, and having
duke@0 1107 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@0 1108 // will be even more error-prone than macros.
duke@0 1109 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@0 1110 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@0 1111 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@0 1112 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@0 1113 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@0 1114 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@0 1115
duke@0 1116 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@0 1117
duke@0 1118 // true if x is a power of 2, false otherwise
duke@0 1119 inline bool is_power_of_2(intptr_t x) {
duke@0 1120 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@0 1121 }
duke@0 1122
duke@0 1123 // long version of is_power_of_2
duke@0 1124 inline bool is_power_of_2_long(jlong x) {
duke@0 1125 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@0 1126 }
duke@0 1127
zmajo@7740 1128 // Returns largest i such that 2^i <= x.
zmajo@7740 1129 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
zmajo@7740 1130 // If x == 0, the function returns -1.
duke@0 1131 inline int log2_intptr(intptr_t x) {
duke@0 1132 int i = -1;
zmajo@7740 1133 uintptr_t p = 1;
duke@0 1134 while (p != 0 && p <= (uintptr_t)x) {
duke@0 1135 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@0 1136 i++; p *= 2;
duke@0 1137 }
duke@0 1138 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
zmajo@7740 1139 // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
duke@0 1140 return i;
duke@0 1141 }
duke@0 1142
duke@0 1143 //* largest i such that 2^i <= x
duke@0 1144 // A negative value of 'x' will return '63'
duke@0 1145 inline int log2_long(jlong x) {
duke@0 1146 int i = -1;
duke@0 1147 julong p = 1;
duke@0 1148 while (p != 0 && p <= (julong)x) {
duke@0 1149 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@0 1150 i++; p *= 2;
duke@0 1151 }
duke@0 1152 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@605 1153 // (if p = 0 then overflow occurred and i = 63)
duke@0 1154 return i;
duke@0 1155 }
duke@0 1156
duke@0 1157 //* the argument must be exactly a power of 2
duke@0 1158 inline int exact_log2(intptr_t x) {
duke@0 1159 #ifdef ASSERT
duke@0 1160 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@0 1161 #endif
duke@0 1162 return log2_intptr(x);
duke@0 1163 }
duke@0 1164
twisti@568 1165 //* the argument must be exactly a power of 2
twisti@568 1166 inline int exact_log2_long(jlong x) {
twisti@568 1167 #ifdef ASSERT
twisti@568 1168 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@568 1169 #endif
twisti@568 1170 return log2_long(x);
twisti@568 1171 }
twisti@568 1172
duke@0 1173
duke@0 1174 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@0 1175 inline intptr_t round_to(intptr_t x, uintx s) {
duke@0 1176 #ifdef ASSERT
duke@0 1177 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@0 1178 #endif
duke@0 1179 const uintx m = s - 1;
duke@0 1180 return mask_bits(x + m, ~m);
duke@0 1181 }
duke@0 1182
duke@0 1183 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@0 1184 inline intptr_t round_down(intptr_t x, uintx s) {
duke@0 1185 #ifdef ASSERT
duke@0 1186 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@0 1187 #endif
duke@0 1188 const uintx m = s - 1;
duke@0 1189 return mask_bits(x, ~m);
duke@0 1190 }
duke@0 1191
duke@0 1192
duke@0 1193 inline bool is_odd (intx x) { return x & 1; }
duke@0 1194 inline bool is_even(intx x) { return !is_odd(x); }
duke@0 1195
duke@0 1196 // "to" should be greater than "from."
duke@0 1197 inline intx byte_size(void* from, void* to) {
duke@0 1198 return (address)to - (address)from;
duke@0 1199 }
duke@0 1200
duke@0 1201 //----------------------------------------------------------------------------------------------------
duke@0 1202 // Avoid non-portable casts with these routines (DEPRECATED)
duke@0 1203
duke@0 1204 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@0 1205 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@0 1206
duke@0 1207 // Given sequence of four bytes, build into a 32-bit word
duke@0 1208 // following the conventions used in class files.
duke@0 1209 // On the 386, this could be realized with a simple address cast.
duke@0 1210 //
duke@0 1211
duke@0 1212 // This routine takes eight bytes:
duke@0 1213 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@1709 1214 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
twisti@1709 1215 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
twisti@1709 1216 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
twisti@1709 1217 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
twisti@1709 1218 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
twisti@1709 1219 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
twisti@1709 1220 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
twisti@1709 1221 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
duke@0 1222 }
duke@0 1223
duke@0 1224 // This routine takes four bytes:
duke@0 1225 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
twisti@1709 1226 return (( u4(c1) << 24 ) & 0xff000000)
twisti@1709 1227 | (( u4(c2) << 16 ) & 0x00ff0000)
twisti@1709 1228 | (( u4(c3) << 8 ) & 0x0000ff00)
twisti@1709 1229 | (( u4(c4) << 0 ) & 0x000000ff);
duke@0 1230 }
duke@0 1231
duke@0 1232 // And this one works if the four bytes are contiguous in memory:
duke@0 1233 inline u4 build_u4_from( u1* p ) {
duke@0 1234 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@0 1235 }
duke@0 1236
duke@0 1237 // Ditto for two-byte ints:
duke@0 1238 inline u2 build_u2_from( u1 c1, u1 c2 ) {
twisti@1709 1239 return u2((( u2(c1) << 8 ) & 0xff00)
twisti@1709 1240 | (( u2(c2) << 0 ) & 0x00ff));
duke@0 1241 }
duke@0 1242
duke@0 1243 // And this one works if the two bytes are contiguous in memory:
duke@0 1244 inline u2 build_u2_from( u1* p ) {
duke@0 1245 return build_u2_from( p[0], p[1] );
duke@0 1246 }
duke@0 1247
duke@0 1248 // Ditto for floats:
duke@0 1249 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@0 1250 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@0 1251 return *(jfloat*)&u;
duke@0 1252 }
duke@0 1253
duke@0 1254 inline jfloat build_float_from( u1* p ) {
duke@0 1255 u4 u = build_u4_from( p );
duke@0 1256 return *(jfloat*)&u;
duke@0 1257 }
duke@0 1258
duke@0 1259
duke@0 1260 // now (64-bit) longs
duke@0 1261
duke@0 1262 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@1709 1263 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
twisti@1709 1264 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
twisti@1709 1265 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
twisti@1709 1266 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
twisti@1709 1267 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
twisti@1709 1268 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
twisti@1709 1269 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
twisti@1709 1270 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
duke@0 1271 }
duke@0 1272
duke@0 1273 inline jlong build_long_from( u1* p ) {
duke@0 1274 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@0 1275 }
duke@0 1276
duke@0 1277
duke@0 1278 // Doubles, too!
duke@0 1279 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@0 1280 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@0 1281 return *(jdouble*)&u;
duke@0 1282 }
duke@0 1283
duke@0 1284 inline jdouble build_double_from( u1* p ) {
duke@0 1285 jlong u = build_long_from( p );
duke@0 1286 return *(jdouble*)&u;
duke@0 1287 }
duke@0 1288
duke@0 1289
duke@0 1290 // Portable routines to go the other way:
duke@0 1291
duke@0 1292 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@0 1293 c1 = u1(x >> 8);
duke@0 1294 c2 = u1(x);
duke@0 1295 }
duke@0 1296
duke@0 1297 inline void explode_short_to( u2 x, u1* p ) {
duke@0 1298 explode_short_to( x, p[0], p[1]);
duke@0 1299 }
duke@0 1300
duke@0 1301 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@0 1302 c1 = u1(x >> 24);
duke@0 1303 c2 = u1(x >> 16);
duke@0 1304 c3 = u1(x >> 8);
duke@0 1305 c4 = u1(x);
duke@0 1306 }
duke@0 1307
duke@0 1308 inline void explode_int_to( u4 x, u1* p ) {
duke@0 1309 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@0 1310 }
duke@0 1311
duke@0 1312
duke@0 1313 // Pack and extract shorts to/from ints:
duke@0 1314
duke@0 1315 inline int extract_low_short_from_int(jint x) {
duke@0 1316 return x & 0xffff;
duke@0 1317 }
duke@0 1318
duke@0 1319 inline int extract_high_short_from_int(jint x) {
duke@0 1320 return (x >> 16) & 0xffff;
duke@0 1321 }
duke@0 1322
duke@0 1323 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@0 1324 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@0 1325 }
duke@0 1326
drchase@6412 1327 // Convert pointer to intptr_t, for use in printing pointers.
drchase@6412 1328 inline intptr_t p2i(const void * p) {
drchase@6412 1329 return (intptr_t) p;
drchase@6412 1330 }
drchase@6412 1331
roland@8168 1332 // swap a & b
roland@8168 1333 template<class T> static void swap(T& a, T& b) {
roland@8168 1334 T tmp = a;
roland@8168 1335 a = b;
roland@8168 1336 b = tmp;
roland@8168 1337 }
roland@8168 1338
duke@0 1339 // Printf-style formatters for fixed- and variable-width types as pointers and
never@2721 1340 // integers. These are derived from the definitions in inttypes.h. If the platform
never@2721 1341 // doesn't provide appropriate definitions, they should be provided in
never@2721 1342 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@0 1343
tonyp@2208 1344 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
tonyp@2037 1345
duke@0 1346 // Format 32-bit quantities.
never@2721 1347 #define INT32_FORMAT "%" PRId32
never@2721 1348 #define UINT32_FORMAT "%" PRIu32
never@2721 1349 #define INT32_FORMAT_W(width) "%" #width PRId32
never@2721 1350 #define UINT32_FORMAT_W(width) "%" #width PRIu32
duke@0 1351
never@2721 1352 #define PTR32_FORMAT "0x%08" PRIx32
bdelsart@8666 1353 #define PTR32_FORMAT_W(width) "0x%" #width PRIx32
duke@0 1354
duke@0 1355 // Format 64-bit quantities.
never@2721 1356 #define INT64_FORMAT "%" PRId64
never@2721 1357 #define UINT64_FORMAT "%" PRIu64
drchase@6412 1358 #define UINT64_FORMAT_X "%" PRIx64
never@2721 1359 #define INT64_FORMAT_W(width) "%" #width PRId64
never@2721 1360 #define UINT64_FORMAT_W(width) "%" #width PRIu64
duke@0 1361
never@2721 1362 #define PTR64_FORMAT "0x%016" PRIx64
duke@0 1363
hseigel@4030 1364 // Format jlong, if necessary
hseigel@4030 1365 #ifndef JLONG_FORMAT
hseigel@4030 1366 #define JLONG_FORMAT INT64_FORMAT
hseigel@4030 1367 #endif
hseigel@4030 1368 #ifndef JULONG_FORMAT
hseigel@4030 1369 #define JULONG_FORMAT UINT64_FORMAT
hseigel@4030 1370 #endif
minqi@6446 1371 #ifndef JULONG_FORMAT_X
minqi@6446 1372 #define JULONG_FORMAT_X UINT64_FORMAT_X
minqi@6446 1373 #endif
hseigel@4030 1374
never@2721 1375 // Format pointers which change size between 32- and 64-bit.
duke@0 1376 #ifdef _LP64
never@2721 1377 #define INTPTR_FORMAT "0x%016" PRIxPTR
never@2721 1378 #define PTR_FORMAT "0x%016" PRIxPTR
duke@0 1379 #else // !_LP64
never@2721 1380 #define INTPTR_FORMAT "0x%08" PRIxPTR
never@2721 1381 #define PTR_FORMAT "0x%08" PRIxPTR
duke@0 1382 #endif // _LP64
duke@0 1383
drchase@6412 1384 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR
drchase@6412 1385
stefank@6324 1386 #define SSIZE_FORMAT "%" PRIdPTR
stefank@6324 1387 #define SIZE_FORMAT "%" PRIuPTR
stefank@6324 1388 #define SIZE_FORMAT_HEX "0x%" PRIxPTR
stefank@6324 1389 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
stefank@6324 1390 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR
stefank@6324 1391 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
never@2721 1392
never@2721 1393 #define INTX_FORMAT "%" PRIdPTR
never@2721 1394 #define UINTX_FORMAT "%" PRIuPTR
never@2721 1395 #define INTX_FORMAT_W(width) "%" #width PRIdPTR
never@2721 1396 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
never@2721 1397
duke@0 1398
duke@0 1399 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
stefank@1879 1400
aph@9821 1401 //----------------------------------------------------------------------------------------------------
aph@9821 1402 // Sum and product which can never overflow: they wrap, just like the
aph@9821 1403 // Java operations. Note that we don't intend these to be used for
aph@9821 1404 // general-purpose arithmetic: their purpose is to emulate Java
aph@9821 1405 // operations.
aph@9821 1406
aph@9821 1407 // The goal of this code to avoid undefined or implementation-defined
jwilhelm@10455 1408 // behavior. The use of an lvalue to reference cast is explicitly
aph@9821 1409 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para
aph@9821 1410 // 15 in C++03]
aph@9821 1411 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \
aph@9821 1412 inline TYPE NAME (TYPE in1, TYPE in2) { \
aph@9821 1413 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
aph@9821 1414 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \
aph@9821 1415 return reinterpret_cast<TYPE&>(ures); \
aph@9821 1416 }
aph@9821 1417
aph@9821 1418 JAVA_INTEGER_OP(+, java_add, jint, juint)
aph@9821 1419 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
aph@9821 1420 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
aph@9821 1421 JAVA_INTEGER_OP(+, java_add, jlong, julong)
aph@9821 1422 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
aph@9821 1423 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
aph@9821 1424
aph@9821 1425 #undef JAVA_INTEGER_OP
aph@9821 1426
coleenp@3860 1427 // Dereference vptr
coleenp@3860 1428 // All C++ compilers that we know of have the vtbl pointer in the first
coleenp@3860 1429 // word. If there are exceptions, this function needs to be made compiler
coleenp@3860 1430 // specific.
coleenp@6445 1431 static inline void* dereference_vptr(const void* addr) {
coleenp@3860 1432 return *(void**)addr;
coleenp@3860 1433 }
coleenp@3860 1434
stefank@1879 1435 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP