annotate src/share/vm/oops/methodData.hpp @ 4473:b84fd7d73702

8007288: Additional WB API for compiler's testing Reviewed-by: kvn, vlivanov
author iignatyev
date Tue, 09 Apr 2013 09:54:17 -0700
parents d05ff4bf41b3
children 92ef81e2f571
rev   line source
duke@0 1 /*
acorn@4062 2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
trims@1472 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1472 20 * or visit www.oracle.com if you need additional information or have any
trims@1472 21 * questions.
duke@0 22 *
duke@0 23 */
duke@0 24
stefank@1879 25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
stefank@1879 26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
stefank@1879 27
stefank@1879 28 #include "interpreter/bytecodes.hpp"
stefank@1879 29 #include "memory/universe.hpp"
coleenp@3602 30 #include "oops/method.hpp"
stefank@1879 31 #include "oops/oop.hpp"
stefank@1879 32 #include "runtime/orderAccess.hpp"
stefank@1879 33
duke@0 34 class BytecodeStream;
acorn@4062 35 class KlassSizeStats;
duke@0 36
duke@0 37 // The MethodData object collects counts and other profile information
duke@0 38 // during zeroth-tier (interpretive) and first-tier execution.
duke@0 39 // The profile is used later by compilation heuristics. Some heuristics
duke@0 40 // enable use of aggressive (or "heroic") optimizations. An aggressive
duke@0 41 // optimization often has a down-side, a corner case that it handles
duke@0 42 // poorly, but which is thought to be rare. The profile provides
duke@0 43 // evidence of this rarity for a given method or even BCI. It allows
duke@0 44 // the compiler to back out of the optimization at places where it
duke@0 45 // has historically been a poor choice. Other heuristics try to use
duke@0 46 // specific information gathered about types observed at a given site.
duke@0 47 //
duke@0 48 // All data in the profile is approximate. It is expected to be accurate
duke@0 49 // on the whole, but the system expects occasional inaccuraces, due to
duke@0 50 // counter overflow, multiprocessor races during data collection, space
duke@0 51 // limitations, missing MDO blocks, etc. Bad or missing data will degrade
duke@0 52 // optimization quality but will not affect correctness. Also, each MDO
duke@0 53 // is marked with its birth-date ("creation_mileage") which can be used
duke@0 54 // to assess the quality ("maturity") of its data.
duke@0 55 //
duke@0 56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
duke@0 57 // state. Also, certain recorded per-BCI events are given one-bit counters
duke@0 58 // which overflow to a saturated state which applied to all counters at
duke@0 59 // that BCI. In other words, there is a small lattice which approximates
duke@0 60 // the ideal of an infinite-precision counter for each event at each BCI,
duke@0 61 // and the lattice quickly "bottoms out" in a state where all counters
duke@0 62 // are taken to be indefinitely large.
duke@0 63 //
duke@0 64 // The reader will find many data races in profile gathering code, starting
duke@0 65 // with invocation counter incrementation. None of these races harm correct
duke@0 66 // execution of the compiled code.
duke@0 67
ysr@941 68 // forward decl
ysr@941 69 class ProfileData;
ysr@941 70
duke@0 71 // DataLayout
duke@0 72 //
duke@0 73 // Overlay for generic profiling data.
duke@0 74 class DataLayout VALUE_OBJ_CLASS_SPEC {
duke@0 75 private:
duke@0 76 // Every data layout begins with a header. This header
duke@0 77 // contains a tag, which is used to indicate the size/layout
duke@0 78 // of the data, 4 bits of flags, which can be used in any way,
duke@0 79 // 4 bits of trap history (none/one reason/many reasons),
duke@0 80 // and a bci, which is used to tie this piece of data to a
duke@0 81 // specific bci in the bytecodes.
duke@0 82 union {
duke@0 83 intptr_t _bits;
duke@0 84 struct {
duke@0 85 u1 _tag;
duke@0 86 u1 _flags;
duke@0 87 u2 _bci;
duke@0 88 } _struct;
duke@0 89 } _header;
duke@0 90
duke@0 91 // The data layout has an arbitrary number of cells, each sized
duke@0 92 // to accomodate a pointer or an integer.
duke@0 93 intptr_t _cells[1];
duke@0 94
duke@0 95 // Some types of data layouts need a length field.
duke@0 96 static bool needs_array_len(u1 tag);
duke@0 97
duke@0 98 public:
duke@0 99 enum {
duke@0 100 counter_increment = 1
duke@0 101 };
duke@0 102
duke@0 103 enum {
duke@0 104 cell_size = sizeof(intptr_t)
duke@0 105 };
duke@0 106
duke@0 107 // Tag values
duke@0 108 enum {
duke@0 109 no_tag,
duke@0 110 bit_data_tag,
duke@0 111 counter_data_tag,
duke@0 112 jump_data_tag,
duke@0 113 receiver_type_data_tag,
duke@0 114 virtual_call_data_tag,
duke@0 115 ret_data_tag,
duke@0 116 branch_data_tag,
kvn@45 117 multi_branch_data_tag,
kvn@45 118 arg_info_data_tag
duke@0 119 };
duke@0 120
duke@0 121 enum {
duke@0 122 // The _struct._flags word is formatted as [trap_state:4 | flags:4].
duke@0 123 // The trap state breaks down further as [recompile:1 | reason:3].
duke@0 124 // This further breakdown is defined in deoptimization.cpp.
duke@0 125 // See Deoptimization::trap_state_reason for an assert that
duke@0 126 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
duke@0 127 //
duke@0 128 // The trap_state is collected only if ProfileTraps is true.
duke@0 129 trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
duke@0 130 trap_shift = BitsPerByte - trap_bits,
duke@0 131 trap_mask = right_n_bits(trap_bits),
duke@0 132 trap_mask_in_place = (trap_mask << trap_shift),
duke@0 133 flag_limit = trap_shift,
duke@0 134 flag_mask = right_n_bits(flag_limit),
duke@0 135 first_flag = 0
duke@0 136 };
duke@0 137
duke@0 138 // Size computation
duke@0 139 static int header_size_in_bytes() {
duke@0 140 return cell_size;
duke@0 141 }
duke@0 142 static int header_size_in_cells() {
duke@0 143 return 1;
duke@0 144 }
duke@0 145
duke@0 146 static int compute_size_in_bytes(int cell_count) {
duke@0 147 return header_size_in_bytes() + cell_count * cell_size;
duke@0 148 }
duke@0 149
duke@0 150 // Initialization
duke@0 151 void initialize(u1 tag, u2 bci, int cell_count);
duke@0 152
duke@0 153 // Accessors
duke@0 154 u1 tag() {
duke@0 155 return _header._struct._tag;
duke@0 156 }
duke@0 157
duke@0 158 // Return a few bits of trap state. Range is [0..trap_mask].
duke@0 159 // The state tells if traps with zero, one, or many reasons have occurred.
duke@0 160 // It also tells whether zero or many recompilations have occurred.
duke@0 161 // The associated trap histogram in the MDO itself tells whether
duke@0 162 // traps are common or not. If a BCI shows that a trap X has
duke@0 163 // occurred, and the MDO shows N occurrences of X, we make the
duke@0 164 // simplifying assumption that all N occurrences can be blamed
duke@0 165 // on that BCI.
duke@0 166 int trap_state() {
duke@0 167 return ((_header._struct._flags >> trap_shift) & trap_mask);
duke@0 168 }
duke@0 169
duke@0 170 void set_trap_state(int new_state) {
duke@0 171 assert(ProfileTraps, "used only under +ProfileTraps");
duke@0 172 uint old_flags = (_header._struct._flags & flag_mask);
duke@0 173 _header._struct._flags = (new_state << trap_shift) | old_flags;
duke@0 174 }
duke@0 175
duke@0 176 u1 flags() {
duke@0 177 return _header._struct._flags;
duke@0 178 }
duke@0 179
duke@0 180 u2 bci() {
duke@0 181 return _header._struct._bci;
duke@0 182 }
duke@0 183
duke@0 184 void set_header(intptr_t value) {
duke@0 185 _header._bits = value;
duke@0 186 }
duke@0 187 void release_set_header(intptr_t value) {
duke@0 188 OrderAccess::release_store_ptr(&_header._bits, value);
duke@0 189 }
duke@0 190 intptr_t header() {
duke@0 191 return _header._bits;
duke@0 192 }
duke@0 193 void set_cell_at(int index, intptr_t value) {
duke@0 194 _cells[index] = value;
duke@0 195 }
duke@0 196 void release_set_cell_at(int index, intptr_t value) {
duke@0 197 OrderAccess::release_store_ptr(&_cells[index], value);
duke@0 198 }
duke@0 199 intptr_t cell_at(int index) {
duke@0 200 return _cells[index];
duke@0 201 }
duke@0 202
duke@0 203 void set_flag_at(int flag_number) {
duke@0 204 assert(flag_number < flag_limit, "oob");
duke@0 205 _header._struct._flags |= (0x1 << flag_number);
duke@0 206 }
duke@0 207 bool flag_at(int flag_number) {
duke@0 208 assert(flag_number < flag_limit, "oob");
duke@0 209 return (_header._struct._flags & (0x1 << flag_number)) != 0;
duke@0 210 }
duke@0 211
duke@0 212 // Low-level support for code generation.
duke@0 213 static ByteSize header_offset() {
duke@0 214 return byte_offset_of(DataLayout, _header);
duke@0 215 }
duke@0 216 static ByteSize tag_offset() {
duke@0 217 return byte_offset_of(DataLayout, _header._struct._tag);
duke@0 218 }
duke@0 219 static ByteSize flags_offset() {
duke@0 220 return byte_offset_of(DataLayout, _header._struct._flags);
duke@0 221 }
duke@0 222 static ByteSize bci_offset() {
duke@0 223 return byte_offset_of(DataLayout, _header._struct._bci);
duke@0 224 }
duke@0 225 static ByteSize cell_offset(int index) {
coleenp@2180 226 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
duke@0 227 }
duke@0 228 // Return a value which, when or-ed as a byte into _flags, sets the flag.
duke@0 229 static int flag_number_to_byte_constant(int flag_number) {
duke@0 230 assert(0 <= flag_number && flag_number < flag_limit, "oob");
duke@0 231 DataLayout temp; temp.set_header(0);
duke@0 232 temp.set_flag_at(flag_number);
duke@0 233 return temp._header._struct._flags;
duke@0 234 }
duke@0 235 // Return a value which, when or-ed as a word into _header, sets the flag.
duke@0 236 static intptr_t flag_mask_to_header_mask(int byte_constant) {
duke@0 237 DataLayout temp; temp.set_header(0);
duke@0 238 temp._header._struct._flags = byte_constant;
duke@0 239 return temp._header._bits;
duke@0 240 }
ysr@941 241
coleenp@3602 242 ProfileData* data_in();
coleenp@3602 243
ysr@941 244 // GC support
coleenp@3602 245 void clean_weak_klass_links(BoolObjectClosure* cl);
duke@0 246 };
duke@0 247
duke@0 248
duke@0 249 // ProfileData class hierarchy
duke@0 250 class ProfileData;
duke@0 251 class BitData;
duke@0 252 class CounterData;
duke@0 253 class ReceiverTypeData;
duke@0 254 class VirtualCallData;
duke@0 255 class RetData;
duke@0 256 class JumpData;
duke@0 257 class BranchData;
duke@0 258 class ArrayData;
duke@0 259 class MultiBranchData;
kvn@45 260 class ArgInfoData;
duke@0 261
duke@0 262
duke@0 263 // ProfileData
duke@0 264 //
duke@0 265 // A ProfileData object is created to refer to a section of profiling
duke@0 266 // data in a structured way.
duke@0 267 class ProfileData : public ResourceObj {
duke@0 268 private:
duke@0 269 #ifndef PRODUCT
duke@0 270 enum {
duke@0 271 tab_width_one = 16,
duke@0 272 tab_width_two = 36
duke@0 273 };
duke@0 274 #endif // !PRODUCT
duke@0 275
duke@0 276 // This is a pointer to a section of profiling data.
duke@0 277 DataLayout* _data;
duke@0 278
duke@0 279 protected:
duke@0 280 DataLayout* data() { return _data; }
duke@0 281
duke@0 282 enum {
duke@0 283 cell_size = DataLayout::cell_size
duke@0 284 };
duke@0 285
duke@0 286 public:
duke@0 287 // How many cells are in this?
duke@0 288 virtual int cell_count() {
duke@0 289 ShouldNotReachHere();
duke@0 290 return -1;
duke@0 291 }
duke@0 292
duke@0 293 // Return the size of this data.
duke@0 294 int size_in_bytes() {
duke@0 295 return DataLayout::compute_size_in_bytes(cell_count());
duke@0 296 }
duke@0 297
duke@0 298 protected:
duke@0 299 // Low-level accessors for underlying data
duke@0 300 void set_intptr_at(int index, intptr_t value) {
duke@0 301 assert(0 <= index && index < cell_count(), "oob");
duke@0 302 data()->set_cell_at(index, value);
duke@0 303 }
duke@0 304 void release_set_intptr_at(int index, intptr_t value) {
duke@0 305 assert(0 <= index && index < cell_count(), "oob");
duke@0 306 data()->release_set_cell_at(index, value);
duke@0 307 }
duke@0 308 intptr_t intptr_at(int index) {
duke@0 309 assert(0 <= index && index < cell_count(), "oob");
duke@0 310 return data()->cell_at(index);
duke@0 311 }
duke@0 312 void set_uint_at(int index, uint value) {
duke@0 313 set_intptr_at(index, (intptr_t) value);
duke@0 314 }
duke@0 315 void release_set_uint_at(int index, uint value) {
duke@0 316 release_set_intptr_at(index, (intptr_t) value);
duke@0 317 }
duke@0 318 uint uint_at(int index) {
duke@0 319 return (uint)intptr_at(index);
duke@0 320 }
duke@0 321 void set_int_at(int index, int value) {
duke@0 322 set_intptr_at(index, (intptr_t) value);
duke@0 323 }
duke@0 324 void release_set_int_at(int index, int value) {
duke@0 325 release_set_intptr_at(index, (intptr_t) value);
duke@0 326 }
duke@0 327 int int_at(int index) {
duke@0 328 return (int)intptr_at(index);
duke@0 329 }
duke@0 330 int int_at_unchecked(int index) {
duke@0 331 return (int)data()->cell_at(index);
duke@0 332 }
duke@0 333 void set_oop_at(int index, oop value) {
duke@0 334 set_intptr_at(index, (intptr_t) value);
duke@0 335 }
duke@0 336 oop oop_at(int index) {
duke@0 337 return (oop)intptr_at(index);
duke@0 338 }
duke@0 339
duke@0 340 void set_flag_at(int flag_number) {
duke@0 341 data()->set_flag_at(flag_number);
duke@0 342 }
duke@0 343 bool flag_at(int flag_number) {
duke@0 344 return data()->flag_at(flag_number);
duke@0 345 }
duke@0 346
duke@0 347 // two convenient imports for use by subclasses:
duke@0 348 static ByteSize cell_offset(int index) {
duke@0 349 return DataLayout::cell_offset(index);
duke@0 350 }
duke@0 351 static int flag_number_to_byte_constant(int flag_number) {
duke@0 352 return DataLayout::flag_number_to_byte_constant(flag_number);
duke@0 353 }
duke@0 354
duke@0 355 ProfileData(DataLayout* data) {
duke@0 356 _data = data;
duke@0 357 }
duke@0 358
duke@0 359 public:
duke@0 360 // Constructor for invalid ProfileData.
duke@0 361 ProfileData();
duke@0 362
duke@0 363 u2 bci() {
duke@0 364 return data()->bci();
duke@0 365 }
duke@0 366
duke@0 367 address dp() {
duke@0 368 return (address)_data;
duke@0 369 }
duke@0 370
duke@0 371 int trap_state() {
duke@0 372 return data()->trap_state();
duke@0 373 }
duke@0 374 void set_trap_state(int new_state) {
duke@0 375 data()->set_trap_state(new_state);
duke@0 376 }
duke@0 377
duke@0 378 // Type checking
duke@0 379 virtual bool is_BitData() { return false; }
duke@0 380 virtual bool is_CounterData() { return false; }
duke@0 381 virtual bool is_JumpData() { return false; }
duke@0 382 virtual bool is_ReceiverTypeData(){ return false; }
duke@0 383 virtual bool is_VirtualCallData() { return false; }
duke@0 384 virtual bool is_RetData() { return false; }
duke@0 385 virtual bool is_BranchData() { return false; }
duke@0 386 virtual bool is_ArrayData() { return false; }
duke@0 387 virtual bool is_MultiBranchData() { return false; }
kvn@45 388 virtual bool is_ArgInfoData() { return false; }
kvn@45 389
duke@0 390
duke@0 391 BitData* as_BitData() {
duke@0 392 assert(is_BitData(), "wrong type");
duke@0 393 return is_BitData() ? (BitData*) this : NULL;
duke@0 394 }
duke@0 395 CounterData* as_CounterData() {
duke@0 396 assert(is_CounterData(), "wrong type");
duke@0 397 return is_CounterData() ? (CounterData*) this : NULL;
duke@0 398 }
duke@0 399 JumpData* as_JumpData() {
duke@0 400 assert(is_JumpData(), "wrong type");
duke@0 401 return is_JumpData() ? (JumpData*) this : NULL;
duke@0 402 }
duke@0 403 ReceiverTypeData* as_ReceiverTypeData() {
duke@0 404 assert(is_ReceiverTypeData(), "wrong type");
duke@0 405 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
duke@0 406 }
duke@0 407 VirtualCallData* as_VirtualCallData() {
duke@0 408 assert(is_VirtualCallData(), "wrong type");
duke@0 409 return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
duke@0 410 }
duke@0 411 RetData* as_RetData() {
duke@0 412 assert(is_RetData(), "wrong type");
duke@0 413 return is_RetData() ? (RetData*) this : NULL;
duke@0 414 }
duke@0 415 BranchData* as_BranchData() {
duke@0 416 assert(is_BranchData(), "wrong type");
duke@0 417 return is_BranchData() ? (BranchData*) this : NULL;
duke@0 418 }
duke@0 419 ArrayData* as_ArrayData() {
duke@0 420 assert(is_ArrayData(), "wrong type");
duke@0 421 return is_ArrayData() ? (ArrayData*) this : NULL;
duke@0 422 }
duke@0 423 MultiBranchData* as_MultiBranchData() {
duke@0 424 assert(is_MultiBranchData(), "wrong type");
duke@0 425 return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
duke@0 426 }
kvn@45 427 ArgInfoData* as_ArgInfoData() {
kvn@45 428 assert(is_ArgInfoData(), "wrong type");
kvn@45 429 return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
kvn@45 430 }
duke@0 431
duke@0 432
duke@0 433 // Subclass specific initialization
coleenp@3602 434 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
duke@0 435
duke@0 436 // GC support
coleenp@3602 437 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
duke@0 438
duke@0 439 // CI translation: ProfileData can represent both MethodDataOop data
duke@0 440 // as well as CIMethodData data. This function is provided for translating
duke@0 441 // an oop in a ProfileData to the ci equivalent. Generally speaking,
duke@0 442 // most ProfileData don't require any translation, so we provide the null
duke@0 443 // translation here, and the required translators are in the ci subclasses.
duke@0 444 virtual void translate_from(ProfileData* data) {}
duke@0 445
duke@0 446 virtual void print_data_on(outputStream* st) {
duke@0 447 ShouldNotReachHere();
duke@0 448 }
duke@0 449
duke@0 450 #ifndef PRODUCT
duke@0 451 void print_shared(outputStream* st, const char* name);
duke@0 452 void tab(outputStream* st);
duke@0 453 #endif
duke@0 454 };
duke@0 455
duke@0 456 // BitData
duke@0 457 //
duke@0 458 // A BitData holds a flag or two in its header.
duke@0 459 class BitData : public ProfileData {
duke@0 460 protected:
duke@0 461 enum {
duke@0 462 // null_seen:
duke@0 463 // saw a null operand (cast/aastore/instanceof)
duke@0 464 null_seen_flag = DataLayout::first_flag + 0
duke@0 465 };
duke@0 466 enum { bit_cell_count = 0 }; // no additional data fields needed.
duke@0 467 public:
duke@0 468 BitData(DataLayout* layout) : ProfileData(layout) {
duke@0 469 }
duke@0 470
duke@0 471 virtual bool is_BitData() { return true; }
duke@0 472
duke@0 473 static int static_cell_count() {
duke@0 474 return bit_cell_count;
duke@0 475 }
duke@0 476
duke@0 477 virtual int cell_count() {
duke@0 478 return static_cell_count();
duke@0 479 }
duke@0 480
duke@0 481 // Accessor
duke@0 482
duke@0 483 // The null_seen flag bit is specially known to the interpreter.
duke@0 484 // Consulting it allows the compiler to avoid setting up null_check traps.
duke@0 485 bool null_seen() { return flag_at(null_seen_flag); }
duke@0 486 void set_null_seen() { set_flag_at(null_seen_flag); }
duke@0 487
duke@0 488
duke@0 489 // Code generation support
duke@0 490 static int null_seen_byte_constant() {
duke@0 491 return flag_number_to_byte_constant(null_seen_flag);
duke@0 492 }
duke@0 493
duke@0 494 static ByteSize bit_data_size() {
duke@0 495 return cell_offset(bit_cell_count);
duke@0 496 }
duke@0 497
duke@0 498 #ifndef PRODUCT
duke@0 499 void print_data_on(outputStream* st);
duke@0 500 #endif
duke@0 501 };
duke@0 502
duke@0 503 // CounterData
duke@0 504 //
duke@0 505 // A CounterData corresponds to a simple counter.
duke@0 506 class CounterData : public BitData {
duke@0 507 protected:
duke@0 508 enum {
duke@0 509 count_off,
duke@0 510 counter_cell_count
duke@0 511 };
duke@0 512 public:
duke@0 513 CounterData(DataLayout* layout) : BitData(layout) {}
duke@0 514
duke@0 515 virtual bool is_CounterData() { return true; }
duke@0 516
duke@0 517 static int static_cell_count() {
duke@0 518 return counter_cell_count;
duke@0 519 }
duke@0 520
duke@0 521 virtual int cell_count() {
duke@0 522 return static_cell_count();
duke@0 523 }
duke@0 524
duke@0 525 // Direct accessor
duke@0 526 uint count() {
duke@0 527 return uint_at(count_off);
duke@0 528 }
duke@0 529
duke@0 530 // Code generation support
duke@0 531 static ByteSize count_offset() {
duke@0 532 return cell_offset(count_off);
duke@0 533 }
duke@0 534 static ByteSize counter_data_size() {
duke@0 535 return cell_offset(counter_cell_count);
duke@0 536 }
duke@0 537
kvn@1251 538 void set_count(uint count) {
kvn@1251 539 set_uint_at(count_off, count);
kvn@1251 540 }
kvn@1251 541
duke@0 542 #ifndef PRODUCT
duke@0 543 void print_data_on(outputStream* st);
duke@0 544 #endif
duke@0 545 };
duke@0 546
duke@0 547 // JumpData
duke@0 548 //
duke@0 549 // A JumpData is used to access profiling information for a direct
duke@0 550 // branch. It is a counter, used for counting the number of branches,
duke@0 551 // plus a data displacement, used for realigning the data pointer to
duke@0 552 // the corresponding target bci.
duke@0 553 class JumpData : public ProfileData {
duke@0 554 protected:
duke@0 555 enum {
duke@0 556 taken_off_set,
duke@0 557 displacement_off_set,
duke@0 558 jump_cell_count
duke@0 559 };
duke@0 560
duke@0 561 void set_displacement(int displacement) {
duke@0 562 set_int_at(displacement_off_set, displacement);
duke@0 563 }
duke@0 564
duke@0 565 public:
duke@0 566 JumpData(DataLayout* layout) : ProfileData(layout) {
duke@0 567 assert(layout->tag() == DataLayout::jump_data_tag ||
duke@0 568 layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@0 569 }
duke@0 570
duke@0 571 virtual bool is_JumpData() { return true; }
duke@0 572
duke@0 573 static int static_cell_count() {
duke@0 574 return jump_cell_count;
duke@0 575 }
duke@0 576
duke@0 577 virtual int cell_count() {
duke@0 578 return static_cell_count();
duke@0 579 }
duke@0 580
duke@0 581 // Direct accessor
duke@0 582 uint taken() {
duke@0 583 return uint_at(taken_off_set);
duke@0 584 }
never@2670 585
never@2670 586 void set_taken(uint cnt) {
never@2670 587 set_uint_at(taken_off_set, cnt);
never@2670 588 }
never@2670 589
duke@0 590 // Saturating counter
duke@0 591 uint inc_taken() {
duke@0 592 uint cnt = taken() + 1;
duke@0 593 // Did we wrap? Will compiler screw us??
duke@0 594 if (cnt == 0) cnt--;
duke@0 595 set_uint_at(taken_off_set, cnt);
duke@0 596 return cnt;
duke@0 597 }
duke@0 598
duke@0 599 int displacement() {
duke@0 600 return int_at(displacement_off_set);
duke@0 601 }
duke@0 602
duke@0 603 // Code generation support
duke@0 604 static ByteSize taken_offset() {
duke@0 605 return cell_offset(taken_off_set);
duke@0 606 }
duke@0 607
duke@0 608 static ByteSize displacement_offset() {
duke@0 609 return cell_offset(displacement_off_set);
duke@0 610 }
duke@0 611
duke@0 612 // Specific initialization.
coleenp@3602 613 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 614
duke@0 615 #ifndef PRODUCT
duke@0 616 void print_data_on(outputStream* st);
duke@0 617 #endif
duke@0 618 };
duke@0 619
duke@0 620 // ReceiverTypeData
duke@0 621 //
duke@0 622 // A ReceiverTypeData is used to access profiling information about a
duke@0 623 // dynamic type check. It consists of a counter which counts the total times
coleenp@3602 624 // that the check is reached, and a series of (Klass*, count) pairs
duke@0 625 // which are used to store a type profile for the receiver of the check.
duke@0 626 class ReceiverTypeData : public CounterData {
duke@0 627 protected:
duke@0 628 enum {
duke@0 629 receiver0_offset = counter_cell_count,
duke@0 630 count0_offset,
duke@0 631 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
duke@0 632 };
duke@0 633
duke@0 634 public:
duke@0 635 ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
duke@0 636 assert(layout->tag() == DataLayout::receiver_type_data_tag ||
duke@0 637 layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
duke@0 638 }
duke@0 639
duke@0 640 virtual bool is_ReceiverTypeData() { return true; }
duke@0 641
duke@0 642 static int static_cell_count() {
duke@0 643 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
duke@0 644 }
duke@0 645
duke@0 646 virtual int cell_count() {
duke@0 647 return static_cell_count();
duke@0 648 }
duke@0 649
duke@0 650 // Direct accessors
duke@0 651 static uint row_limit() {
duke@0 652 return TypeProfileWidth;
duke@0 653 }
duke@0 654 static int receiver_cell_index(uint row) {
duke@0 655 return receiver0_offset + row * receiver_type_row_cell_count;
duke@0 656 }
duke@0 657 static int receiver_count_cell_index(uint row) {
duke@0 658 return count0_offset + row * receiver_type_row_cell_count;
duke@0 659 }
duke@0 660
coleenp@3602 661 Klass* receiver(uint row) {
duke@0 662 assert(row < row_limit(), "oob");
duke@0 663
coleenp@3602 664 Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
coleenp@3602 665 assert(recv == NULL || recv->is_klass(), "wrong type");
duke@0 666 return recv;
duke@0 667 }
duke@0 668
coleenp@3602 669 void set_receiver(uint row, Klass* k) {
ysr@941 670 assert((uint)row < row_limit(), "oob");
coleenp@3602 671 set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
ysr@941 672 }
ysr@941 673
duke@0 674 uint receiver_count(uint row) {
duke@0 675 assert(row < row_limit(), "oob");
duke@0 676 return uint_at(receiver_count_cell_index(row));
duke@0 677 }
duke@0 678
ysr@941 679 void set_receiver_count(uint row, uint count) {
ysr@941 680 assert(row < row_limit(), "oob");
ysr@941 681 set_uint_at(receiver_count_cell_index(row), count);
ysr@941 682 }
ysr@941 683
ysr@941 684 void clear_row(uint row) {
ysr@941 685 assert(row < row_limit(), "oob");
kvn@1251 686 // Clear total count - indicator of polymorphic call site.
kvn@1251 687 // The site may look like as monomorphic after that but
kvn@1251 688 // it allow to have more accurate profiling information because
kvn@1251 689 // there was execution phase change since klasses were unloaded.
kvn@1251 690 // If the site is still polymorphic then MDO will be updated
kvn@1251 691 // to reflect it. But it could be the case that the site becomes
kvn@1251 692 // only bimorphic. Then keeping total count not 0 will be wrong.
kvn@1251 693 // Even if we use monomorphic (when it is not) for compilation
kvn@1251 694 // we will only have trap, deoptimization and recompile again
kvn@1251 695 // with updated MDO after executing method in Interpreter.
kvn@1251 696 // An additional receiver will be recorded in the cleaned row
kvn@1251 697 // during next call execution.
kvn@1251 698 //
kvn@1251 699 // Note: our profiling logic works with empty rows in any slot.
kvn@1251 700 // We do sorting a profiling info (ciCallProfile) for compilation.
kvn@1251 701 //
kvn@1251 702 set_count(0);
ysr@941 703 set_receiver(row, NULL);
ysr@941 704 set_receiver_count(row, 0);
ysr@941 705 }
ysr@941 706
duke@0 707 // Code generation support
duke@0 708 static ByteSize receiver_offset(uint row) {
duke@0 709 return cell_offset(receiver_cell_index(row));
duke@0 710 }
duke@0 711 static ByteSize receiver_count_offset(uint row) {
duke@0 712 return cell_offset(receiver_count_cell_index(row));
duke@0 713 }
duke@0 714 static ByteSize receiver_type_data_size() {
duke@0 715 return cell_offset(static_cell_count());
duke@0 716 }
duke@0 717
duke@0 718 // GC support
coleenp@3602 719 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
duke@0 720
duke@0 721 #ifndef PRODUCT
duke@0 722 void print_receiver_data_on(outputStream* st);
duke@0 723 void print_data_on(outputStream* st);
duke@0 724 #endif
duke@0 725 };
duke@0 726
duke@0 727 // VirtualCallData
duke@0 728 //
duke@0 729 // A VirtualCallData is used to access profiling information about a
duke@0 730 // virtual call. For now, it has nothing more than a ReceiverTypeData.
duke@0 731 class VirtualCallData : public ReceiverTypeData {
duke@0 732 public:
duke@0 733 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
duke@0 734 assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
duke@0 735 }
duke@0 736
duke@0 737 virtual bool is_VirtualCallData() { return true; }
duke@0 738
duke@0 739 static int static_cell_count() {
duke@0 740 // At this point we could add more profile state, e.g., for arguments.
duke@0 741 // But for now it's the same size as the base record type.
duke@0 742 return ReceiverTypeData::static_cell_count();
duke@0 743 }
duke@0 744
duke@0 745 virtual int cell_count() {
duke@0 746 return static_cell_count();
duke@0 747 }
duke@0 748
duke@0 749 // Direct accessors
duke@0 750 static ByteSize virtual_call_data_size() {
duke@0 751 return cell_offset(static_cell_count());
duke@0 752 }
duke@0 753
duke@0 754 #ifndef PRODUCT
duke@0 755 void print_data_on(outputStream* st);
duke@0 756 #endif
duke@0 757 };
duke@0 758
duke@0 759 // RetData
duke@0 760 //
duke@0 761 // A RetData is used to access profiling information for a ret bytecode.
duke@0 762 // It is composed of a count of the number of times that the ret has
duke@0 763 // been executed, followed by a series of triples of the form
duke@0 764 // (bci, count, di) which count the number of times that some bci was the
duke@0 765 // target of the ret and cache a corresponding data displacement.
duke@0 766 class RetData : public CounterData {
duke@0 767 protected:
duke@0 768 enum {
duke@0 769 bci0_offset = counter_cell_count,
duke@0 770 count0_offset,
duke@0 771 displacement0_offset,
duke@0 772 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
duke@0 773 };
duke@0 774
duke@0 775 void set_bci(uint row, int bci) {
duke@0 776 assert((uint)row < row_limit(), "oob");
duke@0 777 set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@0 778 }
duke@0 779 void release_set_bci(uint row, int bci) {
duke@0 780 assert((uint)row < row_limit(), "oob");
duke@0 781 // 'release' when setting the bci acts as a valid flag for other
duke@0 782 // threads wrt bci_count and bci_displacement.
duke@0 783 release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@0 784 }
duke@0 785 void set_bci_count(uint row, uint count) {
duke@0 786 assert((uint)row < row_limit(), "oob");
duke@0 787 set_uint_at(count0_offset + row * ret_row_cell_count, count);
duke@0 788 }
duke@0 789 void set_bci_displacement(uint row, int disp) {
duke@0 790 set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
duke@0 791 }
duke@0 792
duke@0 793 public:
duke@0 794 RetData(DataLayout* layout) : CounterData(layout) {
duke@0 795 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
duke@0 796 }
duke@0 797
duke@0 798 virtual bool is_RetData() { return true; }
duke@0 799
duke@0 800 enum {
duke@0 801 no_bci = -1 // value of bci when bci1/2 are not in use.
duke@0 802 };
duke@0 803
duke@0 804 static int static_cell_count() {
duke@0 805 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
duke@0 806 }
duke@0 807
duke@0 808 virtual int cell_count() {
duke@0 809 return static_cell_count();
duke@0 810 }
duke@0 811
duke@0 812 static uint row_limit() {
duke@0 813 return BciProfileWidth;
duke@0 814 }
duke@0 815 static int bci_cell_index(uint row) {
duke@0 816 return bci0_offset + row * ret_row_cell_count;
duke@0 817 }
duke@0 818 static int bci_count_cell_index(uint row) {
duke@0 819 return count0_offset + row * ret_row_cell_count;
duke@0 820 }
duke@0 821 static int bci_displacement_cell_index(uint row) {
duke@0 822 return displacement0_offset + row * ret_row_cell_count;
duke@0 823 }
duke@0 824
duke@0 825 // Direct accessors
duke@0 826 int bci(uint row) {
duke@0 827 return int_at(bci_cell_index(row));
duke@0 828 }
duke@0 829 uint bci_count(uint row) {
duke@0 830 return uint_at(bci_count_cell_index(row));
duke@0 831 }
duke@0 832 int bci_displacement(uint row) {
duke@0 833 return int_at(bci_displacement_cell_index(row));
duke@0 834 }
duke@0 835
duke@0 836 // Interpreter Runtime support
coleenp@3602 837 address fixup_ret(int return_bci, MethodData* mdo);
duke@0 838
duke@0 839 // Code generation support
duke@0 840 static ByteSize bci_offset(uint row) {
duke@0 841 return cell_offset(bci_cell_index(row));
duke@0 842 }
duke@0 843 static ByteSize bci_count_offset(uint row) {
duke@0 844 return cell_offset(bci_count_cell_index(row));
duke@0 845 }
duke@0 846 static ByteSize bci_displacement_offset(uint row) {
duke@0 847 return cell_offset(bci_displacement_cell_index(row));
duke@0 848 }
duke@0 849
duke@0 850 // Specific initialization.
coleenp@3602 851 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 852
duke@0 853 #ifndef PRODUCT
duke@0 854 void print_data_on(outputStream* st);
duke@0 855 #endif
duke@0 856 };
duke@0 857
duke@0 858 // BranchData
duke@0 859 //
duke@0 860 // A BranchData is used to access profiling data for a two-way branch.
duke@0 861 // It consists of taken and not_taken counts as well as a data displacement
duke@0 862 // for the taken case.
duke@0 863 class BranchData : public JumpData {
duke@0 864 protected:
duke@0 865 enum {
duke@0 866 not_taken_off_set = jump_cell_count,
duke@0 867 branch_cell_count
duke@0 868 };
duke@0 869
duke@0 870 void set_displacement(int displacement) {
duke@0 871 set_int_at(displacement_off_set, displacement);
duke@0 872 }
duke@0 873
duke@0 874 public:
duke@0 875 BranchData(DataLayout* layout) : JumpData(layout) {
duke@0 876 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@0 877 }
duke@0 878
duke@0 879 virtual bool is_BranchData() { return true; }
duke@0 880
duke@0 881 static int static_cell_count() {
duke@0 882 return branch_cell_count;
duke@0 883 }
duke@0 884
duke@0 885 virtual int cell_count() {
duke@0 886 return static_cell_count();
duke@0 887 }
duke@0 888
duke@0 889 // Direct accessor
duke@0 890 uint not_taken() {
duke@0 891 return uint_at(not_taken_off_set);
duke@0 892 }
duke@0 893
never@2670 894 void set_not_taken(uint cnt) {
never@2670 895 set_uint_at(not_taken_off_set, cnt);
never@2670 896 }
never@2670 897
duke@0 898 uint inc_not_taken() {
duke@0 899 uint cnt = not_taken() + 1;
duke@0 900 // Did we wrap? Will compiler screw us??
duke@0 901 if (cnt == 0) cnt--;
duke@0 902 set_uint_at(not_taken_off_set, cnt);
duke@0 903 return cnt;
duke@0 904 }
duke@0 905
duke@0 906 // Code generation support
duke@0 907 static ByteSize not_taken_offset() {
duke@0 908 return cell_offset(not_taken_off_set);
duke@0 909 }
duke@0 910 static ByteSize branch_data_size() {
duke@0 911 return cell_offset(branch_cell_count);
duke@0 912 }
duke@0 913
duke@0 914 // Specific initialization.
coleenp@3602 915 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 916
duke@0 917 #ifndef PRODUCT
duke@0 918 void print_data_on(outputStream* st);
duke@0 919 #endif
duke@0 920 };
duke@0 921
duke@0 922 // ArrayData
duke@0 923 //
duke@0 924 // A ArrayData is a base class for accessing profiling data which does
duke@0 925 // not have a statically known size. It consists of an array length
duke@0 926 // and an array start.
duke@0 927 class ArrayData : public ProfileData {
duke@0 928 protected:
duke@0 929 friend class DataLayout;
duke@0 930
duke@0 931 enum {
duke@0 932 array_len_off_set,
duke@0 933 array_start_off_set
duke@0 934 };
duke@0 935
duke@0 936 uint array_uint_at(int index) {
duke@0 937 int aindex = index + array_start_off_set;
duke@0 938 return uint_at(aindex);
duke@0 939 }
duke@0 940 int array_int_at(int index) {
duke@0 941 int aindex = index + array_start_off_set;
duke@0 942 return int_at(aindex);
duke@0 943 }
duke@0 944 oop array_oop_at(int index) {
duke@0 945 int aindex = index + array_start_off_set;
duke@0 946 return oop_at(aindex);
duke@0 947 }
duke@0 948 void array_set_int_at(int index, int value) {
duke@0 949 int aindex = index + array_start_off_set;
duke@0 950 set_int_at(aindex, value);
duke@0 951 }
duke@0 952
duke@0 953 // Code generation support for subclasses.
duke@0 954 static ByteSize array_element_offset(int index) {
duke@0 955 return cell_offset(array_start_off_set + index);
duke@0 956 }
duke@0 957
duke@0 958 public:
duke@0 959 ArrayData(DataLayout* layout) : ProfileData(layout) {}
duke@0 960
duke@0 961 virtual bool is_ArrayData() { return true; }
duke@0 962
duke@0 963 static int static_cell_count() {
duke@0 964 return -1;
duke@0 965 }
duke@0 966
duke@0 967 int array_len() {
duke@0 968 return int_at_unchecked(array_len_off_set);
duke@0 969 }
duke@0 970
duke@0 971 virtual int cell_count() {
duke@0 972 return array_len() + 1;
duke@0 973 }
duke@0 974
duke@0 975 // Code generation support
duke@0 976 static ByteSize array_len_offset() {
duke@0 977 return cell_offset(array_len_off_set);
duke@0 978 }
duke@0 979 static ByteSize array_start_offset() {
duke@0 980 return cell_offset(array_start_off_set);
duke@0 981 }
duke@0 982 };
duke@0 983
duke@0 984 // MultiBranchData
duke@0 985 //
duke@0 986 // A MultiBranchData is used to access profiling information for
duke@0 987 // a multi-way branch (*switch bytecodes). It consists of a series
duke@0 988 // of (count, displacement) pairs, which count the number of times each
duke@0 989 // case was taken and specify the data displacment for each branch target.
duke@0 990 class MultiBranchData : public ArrayData {
duke@0 991 protected:
duke@0 992 enum {
duke@0 993 default_count_off_set,
duke@0 994 default_disaplacement_off_set,
duke@0 995 case_array_start
duke@0 996 };
duke@0 997 enum {
duke@0 998 relative_count_off_set,
duke@0 999 relative_displacement_off_set,
duke@0 1000 per_case_cell_count
duke@0 1001 };
duke@0 1002
duke@0 1003 void set_default_displacement(int displacement) {
duke@0 1004 array_set_int_at(default_disaplacement_off_set, displacement);
duke@0 1005 }
duke@0 1006 void set_displacement_at(int index, int displacement) {
duke@0 1007 array_set_int_at(case_array_start +
duke@0 1008 index * per_case_cell_count +
duke@0 1009 relative_displacement_off_set,
duke@0 1010 displacement);
duke@0 1011 }
duke@0 1012
duke@0 1013 public:
duke@0 1014 MultiBranchData(DataLayout* layout) : ArrayData(layout) {
duke@0 1015 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
duke@0 1016 }
duke@0 1017
duke@0 1018 virtual bool is_MultiBranchData() { return true; }
duke@0 1019
duke@0 1020 static int compute_cell_count(BytecodeStream* stream);
duke@0 1021
duke@0 1022 int number_of_cases() {
duke@0 1023 int alen = array_len() - 2; // get rid of default case here.
duke@0 1024 assert(alen % per_case_cell_count == 0, "must be even");
duke@0 1025 return (alen / per_case_cell_count);
duke@0 1026 }
duke@0 1027
duke@0 1028 uint default_count() {
duke@0 1029 return array_uint_at(default_count_off_set);
duke@0 1030 }
duke@0 1031 int default_displacement() {
duke@0 1032 return array_int_at(default_disaplacement_off_set);
duke@0 1033 }
duke@0 1034
duke@0 1035 uint count_at(int index) {
duke@0 1036 return array_uint_at(case_array_start +
duke@0 1037 index * per_case_cell_count +
duke@0 1038 relative_count_off_set);
duke@0 1039 }
duke@0 1040 int displacement_at(int index) {
duke@0 1041 return array_int_at(case_array_start +
duke@0 1042 index * per_case_cell_count +
duke@0 1043 relative_displacement_off_set);
duke@0 1044 }
duke@0 1045
duke@0 1046 // Code generation support
duke@0 1047 static ByteSize default_count_offset() {
duke@0 1048 return array_element_offset(default_count_off_set);
duke@0 1049 }
duke@0 1050 static ByteSize default_displacement_offset() {
duke@0 1051 return array_element_offset(default_disaplacement_off_set);
duke@0 1052 }
duke@0 1053 static ByteSize case_count_offset(int index) {
duke@0 1054 return case_array_offset() +
duke@0 1055 (per_case_size() * index) +
duke@0 1056 relative_count_offset();
duke@0 1057 }
duke@0 1058 static ByteSize case_array_offset() {
duke@0 1059 return array_element_offset(case_array_start);
duke@0 1060 }
duke@0 1061 static ByteSize per_case_size() {
duke@0 1062 return in_ByteSize(per_case_cell_count) * cell_size;
duke@0 1063 }
duke@0 1064 static ByteSize relative_count_offset() {
duke@0 1065 return in_ByteSize(relative_count_off_set) * cell_size;
duke@0 1066 }
duke@0 1067 static ByteSize relative_displacement_offset() {
duke@0 1068 return in_ByteSize(relative_displacement_off_set) * cell_size;
duke@0 1069 }
duke@0 1070
duke@0 1071 // Specific initialization.
coleenp@3602 1072 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 1073
duke@0 1074 #ifndef PRODUCT
duke@0 1075 void print_data_on(outputStream* st);
duke@0 1076 #endif
duke@0 1077 };
duke@0 1078
kvn@45 1079 class ArgInfoData : public ArrayData {
kvn@45 1080
kvn@45 1081 public:
kvn@45 1082 ArgInfoData(DataLayout* layout) : ArrayData(layout) {
kvn@45 1083 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
kvn@45 1084 }
kvn@45 1085
kvn@45 1086 virtual bool is_ArgInfoData() { return true; }
kvn@45 1087
kvn@45 1088
kvn@45 1089 int number_of_args() {
kvn@45 1090 return array_len();
kvn@45 1091 }
kvn@45 1092
kvn@45 1093 uint arg_modified(int arg) {
kvn@45 1094 return array_uint_at(arg);
kvn@45 1095 }
kvn@45 1096
kvn@45 1097 void set_arg_modified(int arg, uint val) {
kvn@45 1098 array_set_int_at(arg, val);
kvn@45 1099 }
kvn@45 1100
kvn@45 1101 #ifndef PRODUCT
kvn@45 1102 void print_data_on(outputStream* st);
kvn@45 1103 #endif
kvn@45 1104 };
kvn@45 1105
coleenp@3602 1106 // MethodData*
duke@0 1107 //
coleenp@3602 1108 // A MethodData* holds information which has been collected about
duke@0 1109 // a method. Its layout looks like this:
duke@0 1110 //
duke@0 1111 // -----------------------------
duke@0 1112 // | header |
duke@0 1113 // | klass |
duke@0 1114 // -----------------------------
duke@0 1115 // | method |
coleenp@3602 1116 // | size of the MethodData* |
duke@0 1117 // -----------------------------
duke@0 1118 // | Data entries... |
duke@0 1119 // | (variable size) |
duke@0 1120 // | |
duke@0 1121 // . .
duke@0 1122 // . .
duke@0 1123 // . .
duke@0 1124 // | |
duke@0 1125 // -----------------------------
duke@0 1126 //
duke@0 1127 // The data entry area is a heterogeneous array of DataLayouts. Each
duke@0 1128 // DataLayout in the array corresponds to a specific bytecode in the
duke@0 1129 // method. The entries in the array are sorted by the corresponding
duke@0 1130 // bytecode. Access to the data is via resource-allocated ProfileData,
duke@0 1131 // which point to the underlying blocks of DataLayout structures.
duke@0 1132 //
duke@0 1133 // During interpretation, if profiling in enabled, the interpreter
duke@0 1134 // maintains a method data pointer (mdp), which points at the entry
duke@0 1135 // in the array corresponding to the current bci. In the course of
duke@0 1136 // intepretation, when a bytecode is encountered that has profile data
duke@0 1137 // associated with it, the entry pointed to by mdp is updated, then the
duke@0 1138 // mdp is adjusted to point to the next appropriate DataLayout. If mdp
duke@0 1139 // is NULL to begin with, the interpreter assumes that the current method
duke@0 1140 // is not (yet) being profiled.
duke@0 1141 //
coleenp@3602 1142 // In MethodData* parlance, "dp" is a "data pointer", the actual address
duke@0 1143 // of a DataLayout element. A "di" is a "data index", the offset in bytes
duke@0 1144 // from the base of the data entry array. A "displacement" is the byte offset
duke@0 1145 // in certain ProfileData objects that indicate the amount the mdp must be
duke@0 1146 // adjusted in the event of a change in control flow.
duke@0 1147 //
duke@0 1148
coleenp@3602 1149 class MethodData : public Metadata {
duke@0 1150 friend class VMStructs;
duke@0 1151 private:
duke@0 1152 friend class ProfileData;
duke@0 1153
coleenp@3602 1154 // Back pointer to the Method*
coleenp@3602 1155 Method* _method;
duke@0 1156
duke@0 1157 // Size of this oop in bytes
duke@0 1158 int _size;
duke@0 1159
duke@0 1160 // Cached hint for bci_to_dp and bci_to_data
duke@0 1161 int _hint_di;
duke@0 1162
coleenp@3602 1163 MethodData(methodHandle method, int size, TRAPS);
coleenp@3602 1164 public:
coleenp@3602 1165 static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
coleenp@3602 1166 MethodData() {}; // For ciMethodData
coleenp@3602 1167
coleenp@3602 1168 bool is_methodData() const volatile { return true; }
coleenp@3602 1169
duke@0 1170 // Whole-method sticky bits and flags
duke@0 1171 enum {
kvn@2442 1172 _trap_hist_limit = 17, // decoupled from Deoptimization::Reason_LIMIT
duke@0 1173 _trap_hist_mask = max_jubyte,
duke@0 1174 _extra_data_count = 4 // extra DataLayout headers, for trap history
duke@0 1175 }; // Public flag values
duke@0 1176 private:
duke@0 1177 uint _nof_decompiles; // count of all nmethod removals
duke@0 1178 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits
duke@0 1179 uint _nof_overflow_traps; // trap count, excluding _trap_hist
duke@0 1180 union {
duke@0 1181 intptr_t _align;
duke@0 1182 u1 _array[_trap_hist_limit];
duke@0 1183 } _trap_hist;
duke@0 1184
duke@0 1185 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@0 1186 intx _eflags; // flags on escape information
duke@0 1187 intx _arg_local; // bit set of non-escaping arguments
duke@0 1188 intx _arg_stack; // bit set of stack-allocatable arguments
duke@0 1189 intx _arg_returned; // bit set of returned arguments
duke@0 1190
iveresov@1703 1191 int _creation_mileage; // method mileage at MDO creation
iveresov@1703 1192
iveresov@1703 1193 // How many invocations has this MDO seen?
iveresov@1703 1194 // These counters are used to determine the exact age of MDO.
iveresov@1703 1195 // We need those because in tiered a method can be concurrently
iveresov@1703 1196 // executed at different levels.
iveresov@1703 1197 InvocationCounter _invocation_counter;
iveresov@1703 1198 // Same for backedges.
iveresov@1703 1199 InvocationCounter _backedge_counter;
iveresov@2124 1200 // Counter values at the time profiling started.
iveresov@2124 1201 int _invocation_counter_start;
iveresov@2124 1202 int _backedge_counter_start;
iveresov@1703 1203 // Number of loops and blocks is computed when compiling the first
iveresov@1703 1204 // time with C1. It is used to determine if method is trivial.
iveresov@1703 1205 short _num_loops;
iveresov@1703 1206 short _num_blocks;
iveresov@1703 1207 // Highest compile level this method has ever seen.
iveresov@1703 1208 u1 _highest_comp_level;
iveresov@1703 1209 // Same for OSR level
iveresov@1703 1210 u1 _highest_osr_comp_level;
iveresov@1703 1211 // Does this method contain anything worth profiling?
iveresov@1703 1212 bool _would_profile;
duke@0 1213
duke@0 1214 // Size of _data array in bytes. (Excludes header and extra_data fields.)
duke@0 1215 int _data_size;
duke@0 1216
duke@0 1217 // Beginning of the data entries
duke@0 1218 intptr_t _data[1];
duke@0 1219
duke@0 1220 // Helper for size computation
duke@0 1221 static int compute_data_size(BytecodeStream* stream);
duke@0 1222 static int bytecode_cell_count(Bytecodes::Code code);
duke@0 1223 enum { no_profile_data = -1, variable_cell_count = -2 };
duke@0 1224
duke@0 1225 // Helper for initialization
coleenp@3602 1226 DataLayout* data_layout_at(int data_index) const {
duke@0 1227 assert(data_index % sizeof(intptr_t) == 0, "unaligned");
duke@0 1228 return (DataLayout*) (((address)_data) + data_index);
duke@0 1229 }
duke@0 1230
duke@0 1231 // Initialize an individual data segment. Returns the size of
duke@0 1232 // the segment in bytes.
duke@0 1233 int initialize_data(BytecodeStream* stream, int data_index);
duke@0 1234
duke@0 1235 // Helper for data_at
coleenp@3602 1236 DataLayout* limit_data_position() const {
duke@0 1237 return (DataLayout*)((address)data_base() + _data_size);
duke@0 1238 }
coleenp@3602 1239 bool out_of_bounds(int data_index) const {
duke@0 1240 return data_index >= data_size();
duke@0 1241 }
duke@0 1242
duke@0 1243 // Give each of the data entries a chance to perform specific
duke@0 1244 // data initialization.
duke@0 1245 void post_initialize(BytecodeStream* stream);
duke@0 1246
duke@0 1247 // hint accessors
duke@0 1248 int hint_di() const { return _hint_di; }
duke@0 1249 void set_hint_di(int di) {
duke@0 1250 assert(!out_of_bounds(di), "hint_di out of bounds");
duke@0 1251 _hint_di = di;
duke@0 1252 }
duke@0 1253 ProfileData* data_before(int bci) {
duke@0 1254 // avoid SEGV on this edge case
duke@0 1255 if (data_size() == 0)
duke@0 1256 return NULL;
duke@0 1257 int hint = hint_di();
duke@0 1258 if (data_layout_at(hint)->bci() <= bci)
duke@0 1259 return data_at(hint);
duke@0 1260 return first_data();
duke@0 1261 }
duke@0 1262
duke@0 1263 // What is the index of the first data entry?
coleenp@3602 1264 int first_di() const { return 0; }
duke@0 1265
duke@0 1266 // Find or create an extra ProfileData:
duke@0 1267 ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
duke@0 1268
kvn@45 1269 // return the argument info cell
kvn@45 1270 ArgInfoData *arg_info();
kvn@45 1271
duke@0 1272 public:
duke@0 1273 static int header_size() {
coleenp@3602 1274 return sizeof(MethodData)/wordSize;
duke@0 1275 }
duke@0 1276
coleenp@3602 1277 // Compute the size of a MethodData* before it is created.
duke@0 1278 static int compute_allocation_size_in_bytes(methodHandle method);
duke@0 1279 static int compute_allocation_size_in_words(methodHandle method);
duke@0 1280 static int compute_extra_data_count(int data_size, int empty_bc_count);
duke@0 1281
duke@0 1282 // Determine if a given bytecode can have profile information.
duke@0 1283 static bool bytecode_has_profile(Bytecodes::Code code) {
duke@0 1284 return bytecode_cell_count(code) != no_profile_data;
duke@0 1285 }
duke@0 1286
iignatyev@4473 1287 // reset into original state
iignatyev@4473 1288 void init();
duke@0 1289
duke@0 1290 // My size
coleenp@3602 1291 int size_in_bytes() const { return _size; }
coleenp@3602 1292 int size() const { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
acorn@4062 1293 #if INCLUDE_SERVICES
acorn@4062 1294 void collect_statistics(KlassSizeStats *sz) const;
acorn@4062 1295 #endif
duke@0 1296
duke@0 1297 int creation_mileage() const { return _creation_mileage; }
duke@0 1298 void set_creation_mileage(int x) { _creation_mileage = x; }
iveresov@1703 1299
iveresov@1703 1300 int invocation_count() {
iveresov@1703 1301 if (invocation_counter()->carry()) {
iveresov@1703 1302 return InvocationCounter::count_limit;
iveresov@1703 1303 }
iveresov@1703 1304 return invocation_counter()->count();
iveresov@1703 1305 }
iveresov@1703 1306 int backedge_count() {
iveresov@1703 1307 if (backedge_counter()->carry()) {
iveresov@1703 1308 return InvocationCounter::count_limit;
iveresov@1703 1309 }
iveresov@1703 1310 return backedge_counter()->count();
iveresov@1703 1311 }
iveresov@1703 1312
iveresov@2124 1313 int invocation_count_start() {
iveresov@2124 1314 if (invocation_counter()->carry()) {
iveresov@2124 1315 return 0;
iveresov@2124 1316 }
iveresov@2124 1317 return _invocation_counter_start;
iveresov@2124 1318 }
iveresov@2124 1319
iveresov@2124 1320 int backedge_count_start() {
iveresov@2124 1321 if (backedge_counter()->carry()) {
iveresov@2124 1322 return 0;
iveresov@2124 1323 }
iveresov@2124 1324 return _backedge_counter_start;
iveresov@2124 1325 }
iveresov@2124 1326
iveresov@2124 1327 int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
iveresov@2124 1328 int backedge_count_delta() { return backedge_count() - backedge_count_start(); }
iveresov@2124 1329
iveresov@2124 1330 void reset_start_counters() {
iveresov@2124 1331 _invocation_counter_start = invocation_count();
iveresov@2124 1332 _backedge_counter_start = backedge_count();
iveresov@2124 1333 }
iveresov@2124 1334
iveresov@1703 1335 InvocationCounter* invocation_counter() { return &_invocation_counter; }
iveresov@1703 1336 InvocationCounter* backedge_counter() { return &_backedge_counter; }
iveresov@1703 1337
iveresov@1703 1338 void set_would_profile(bool p) { _would_profile = p; }
iveresov@1703 1339 bool would_profile() const { return _would_profile; }
iveresov@1703 1340
iveresov@1703 1341 int highest_comp_level() { return _highest_comp_level; }
iveresov@1703 1342 void set_highest_comp_level(int level) { _highest_comp_level = level; }
iveresov@1703 1343 int highest_osr_comp_level() { return _highest_osr_comp_level; }
iveresov@1703 1344 void set_highest_osr_comp_level(int level) { _highest_osr_comp_level = level; }
iveresov@1703 1345
iveresov@1703 1346 int num_loops() const { return _num_loops; }
iveresov@1703 1347 void set_num_loops(int n) { _num_loops = n; }
iveresov@1703 1348 int num_blocks() const { return _num_blocks; }
iveresov@1703 1349 void set_num_blocks(int n) { _num_blocks = n; }
iveresov@1703 1350
duke@0 1351 bool is_mature() const; // consult mileage and ProfileMaturityPercentage
coleenp@3602 1352 static int mileage_of(Method* m);
duke@0 1353
duke@0 1354 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@0 1355 enum EscapeFlag {
duke@0 1356 estimated = 1 << 0,
kvn@78 1357 return_local = 1 << 1,
kvn@78 1358 return_allocated = 1 << 2,
kvn@78 1359 allocated_escapes = 1 << 3,
kvn@78 1360 unknown_modified = 1 << 4
duke@0 1361 };
duke@0 1362
duke@0 1363 intx eflags() { return _eflags; }
duke@0 1364 intx arg_local() { return _arg_local; }
duke@0 1365 intx arg_stack() { return _arg_stack; }
duke@0 1366 intx arg_returned() { return _arg_returned; }
kvn@45 1367 uint arg_modified(int a) { ArgInfoData *aid = arg_info();
iignatyev@4473 1368 assert(aid != NULL, "arg_info must be not null");
kvn@45 1369 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@45 1370 return aid->arg_modified(a); }
duke@0 1371
duke@0 1372 void set_eflags(intx v) { _eflags = v; }
duke@0 1373 void set_arg_local(intx v) { _arg_local = v; }
duke@0 1374 void set_arg_stack(intx v) { _arg_stack = v; }
duke@0 1375 void set_arg_returned(intx v) { _arg_returned = v; }
kvn@45 1376 void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info();
iignatyev@4473 1377 assert(aid != NULL, "arg_info must be not null");
kvn@45 1378 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@45 1379 aid->set_arg_modified(a, v); }
duke@0 1380
duke@0 1381 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
duke@0 1382
duke@0 1383 // Location and size of data area
duke@0 1384 address data_base() const {
duke@0 1385 return (address) _data;
duke@0 1386 }
coleenp@3602 1387 int data_size() const {
duke@0 1388 return _data_size;
duke@0 1389 }
duke@0 1390
duke@0 1391 // Accessors
coleenp@3602 1392 Method* method() const { return _method; }
duke@0 1393
duke@0 1394 // Get the data at an arbitrary (sort of) data index.
coleenp@3602 1395 ProfileData* data_at(int data_index) const;
duke@0 1396
duke@0 1397 // Walk through the data in order.
coleenp@3602 1398 ProfileData* first_data() const { return data_at(first_di()); }
coleenp@3602 1399 ProfileData* next_data(ProfileData* current) const;
coleenp@3602 1400 bool is_valid(ProfileData* current) const { return current != NULL; }
duke@0 1401
duke@0 1402 // Convert a dp (data pointer) to a di (data index).
coleenp@3602 1403 int dp_to_di(address dp) const {
duke@0 1404 return dp - ((address)_data);
duke@0 1405 }
duke@0 1406
duke@0 1407 address di_to_dp(int di) {
duke@0 1408 return (address)data_layout_at(di);
duke@0 1409 }
duke@0 1410
duke@0 1411 // bci to di/dp conversion.
duke@0 1412 address bci_to_dp(int bci);
duke@0 1413 int bci_to_di(int bci) {
duke@0 1414 return dp_to_di(bci_to_dp(bci));
duke@0 1415 }
duke@0 1416
duke@0 1417 // Get the data at an arbitrary bci, or NULL if there is none.
duke@0 1418 ProfileData* bci_to_data(int bci);
duke@0 1419
duke@0 1420 // Same, but try to create an extra_data record if one is needed:
duke@0 1421 ProfileData* allocate_bci_to_data(int bci) {
duke@0 1422 ProfileData* data = bci_to_data(bci);
duke@0 1423 return (data != NULL) ? data : bci_to_extra_data(bci, true);
duke@0 1424 }
duke@0 1425
duke@0 1426 // Add a handful of extra data records, for trap tracking.
coleenp@3602 1427 DataLayout* extra_data_base() const { return limit_data_position(); }
coleenp@3602 1428 DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
coleenp@3602 1429 int extra_data_size() const { return (address)extra_data_limit()
duke@0 1430 - (address)extra_data_base(); }
duke@0 1431 static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
duke@0 1432
duke@0 1433 // Return (uint)-1 for overflow.
duke@0 1434 uint trap_count(int reason) const {
duke@0 1435 assert((uint)reason < _trap_hist_limit, "oob");
duke@0 1436 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
duke@0 1437 }
duke@0 1438 // For loops:
duke@0 1439 static uint trap_reason_limit() { return _trap_hist_limit; }
duke@0 1440 static uint trap_count_limit() { return _trap_hist_mask; }
duke@0 1441 uint inc_trap_count(int reason) {
duke@0 1442 // Count another trap, anywhere in this method.
duke@0 1443 assert(reason >= 0, "must be single trap");
duke@0 1444 if ((uint)reason < _trap_hist_limit) {
duke@0 1445 uint cnt1 = 1 + _trap_hist._array[reason];
duke@0 1446 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow...
duke@0 1447 _trap_hist._array[reason] = cnt1;
duke@0 1448 return cnt1;
duke@0 1449 } else {
duke@0 1450 return _trap_hist_mask + (++_nof_overflow_traps);
duke@0 1451 }
duke@0 1452 } else {
duke@0 1453 // Could not represent the count in the histogram.
duke@0 1454 return (++_nof_overflow_traps);
duke@0 1455 }
duke@0 1456 }
duke@0 1457
duke@0 1458 uint overflow_trap_count() const {
duke@0 1459 return _nof_overflow_traps;
duke@0 1460 }
duke@0 1461 uint overflow_recompile_count() const {
duke@0 1462 return _nof_overflow_recompiles;
duke@0 1463 }
duke@0 1464 void inc_overflow_recompile_count() {
duke@0 1465 _nof_overflow_recompiles += 1;
duke@0 1466 }
duke@0 1467 uint decompile_count() const {
duke@0 1468 return _nof_decompiles;
duke@0 1469 }
duke@0 1470 void inc_decompile_count() {
duke@0 1471 _nof_decompiles += 1;
kvn@1206 1472 if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
vlivanov@4104 1473 method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
kvn@1206 1474 }
duke@0 1475 }
duke@0 1476
duke@0 1477 // Support for code generation
duke@0 1478 static ByteSize data_offset() {
coleenp@3602 1479 return byte_offset_of(MethodData, _data[0]);
duke@0 1480 }
duke@0 1481
iveresov@1703 1482 static ByteSize invocation_counter_offset() {
coleenp@3602 1483 return byte_offset_of(MethodData, _invocation_counter);
iveresov@1703 1484 }
iveresov@1703 1485 static ByteSize backedge_counter_offset() {
coleenp@3602 1486 return byte_offset_of(MethodData, _backedge_counter);
iveresov@1703 1487 }
iveresov@1703 1488
coleenp@3602 1489 // Deallocation support - no pointer fields to deallocate
coleenp@3602 1490 void deallocate_contents(ClassLoaderData* loader_data) {}
coleenp@3602 1491
duke@0 1492 // GC support
coleenp@3602 1493 void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
coleenp@3602 1494
coleenp@3602 1495 // Printing
coleenp@3602 1496 #ifndef PRODUCT
coleenp@3602 1497 void print_on (outputStream* st) const;
coleenp@3602 1498 #endif
coleenp@3602 1499 void print_value_on(outputStream* st) const;
duke@0 1500
duke@0 1501 #ifndef PRODUCT
duke@0 1502 // printing support for method data
coleenp@3602 1503 void print_data_on(outputStream* st) const;
duke@0 1504 #endif
duke@0 1505
coleenp@3602 1506 const char* internal_name() const { return "{method data}"; }
coleenp@3602 1507
duke@0 1508 // verification
coleenp@3602 1509 void verify_on(outputStream* st);
duke@0 1510 void verify_data_on(outputStream* st);
duke@0 1511 };
stefank@1879 1512
stefank@1879 1513 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP