annotate src/share/vm/oops/methodDataOop.hpp @ 2670:c26de9aef2ed

7071307: MethodHandle bimorphic inlining should consider the frequency Reviewed-by: twisti, roland, kvn, iveresov
author never
date Fri, 02 Sep 2011 20:58:21 -0700
parents bad7ecd0b6ed
children
rev   line source
duke@0 1 /*
stefank@2099 2 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
trims@1472 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1472 20 * or visit www.oracle.com if you need additional information or have any
trims@1472 21 * questions.
duke@0 22 *
duke@0 23 */
duke@0 24
stefank@1879 25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
stefank@1879 26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
stefank@1879 27
stefank@1879 28 #include "interpreter/bytecodes.hpp"
stefank@1879 29 #include "memory/universe.hpp"
stefank@1879 30 #include "oops/methodOop.hpp"
stefank@1879 31 #include "oops/oop.hpp"
stefank@1879 32 #include "runtime/orderAccess.hpp"
stefank@1879 33
duke@0 34 class BytecodeStream;
duke@0 35
duke@0 36 // The MethodData object collects counts and other profile information
duke@0 37 // during zeroth-tier (interpretive) and first-tier execution.
duke@0 38 // The profile is used later by compilation heuristics. Some heuristics
duke@0 39 // enable use of aggressive (or "heroic") optimizations. An aggressive
duke@0 40 // optimization often has a down-side, a corner case that it handles
duke@0 41 // poorly, but which is thought to be rare. The profile provides
duke@0 42 // evidence of this rarity for a given method or even BCI. It allows
duke@0 43 // the compiler to back out of the optimization at places where it
duke@0 44 // has historically been a poor choice. Other heuristics try to use
duke@0 45 // specific information gathered about types observed at a given site.
duke@0 46 //
duke@0 47 // All data in the profile is approximate. It is expected to be accurate
duke@0 48 // on the whole, but the system expects occasional inaccuraces, due to
duke@0 49 // counter overflow, multiprocessor races during data collection, space
duke@0 50 // limitations, missing MDO blocks, etc. Bad or missing data will degrade
duke@0 51 // optimization quality but will not affect correctness. Also, each MDO
duke@0 52 // is marked with its birth-date ("creation_mileage") which can be used
duke@0 53 // to assess the quality ("maturity") of its data.
duke@0 54 //
duke@0 55 // Short (<32-bit) counters are designed to overflow to a known "saturated"
duke@0 56 // state. Also, certain recorded per-BCI events are given one-bit counters
duke@0 57 // which overflow to a saturated state which applied to all counters at
duke@0 58 // that BCI. In other words, there is a small lattice which approximates
duke@0 59 // the ideal of an infinite-precision counter for each event at each BCI,
duke@0 60 // and the lattice quickly "bottoms out" in a state where all counters
duke@0 61 // are taken to be indefinitely large.
duke@0 62 //
duke@0 63 // The reader will find many data races in profile gathering code, starting
duke@0 64 // with invocation counter incrementation. None of these races harm correct
duke@0 65 // execution of the compiled code.
duke@0 66
ysr@941 67 // forward decl
ysr@941 68 class ProfileData;
ysr@941 69
duke@0 70 // DataLayout
duke@0 71 //
duke@0 72 // Overlay for generic profiling data.
duke@0 73 class DataLayout VALUE_OBJ_CLASS_SPEC {
duke@0 74 private:
duke@0 75 // Every data layout begins with a header. This header
duke@0 76 // contains a tag, which is used to indicate the size/layout
duke@0 77 // of the data, 4 bits of flags, which can be used in any way,
duke@0 78 // 4 bits of trap history (none/one reason/many reasons),
duke@0 79 // and a bci, which is used to tie this piece of data to a
duke@0 80 // specific bci in the bytecodes.
duke@0 81 union {
duke@0 82 intptr_t _bits;
duke@0 83 struct {
duke@0 84 u1 _tag;
duke@0 85 u1 _flags;
duke@0 86 u2 _bci;
duke@0 87 } _struct;
duke@0 88 } _header;
duke@0 89
duke@0 90 // The data layout has an arbitrary number of cells, each sized
duke@0 91 // to accomodate a pointer or an integer.
duke@0 92 intptr_t _cells[1];
duke@0 93
duke@0 94 // Some types of data layouts need a length field.
duke@0 95 static bool needs_array_len(u1 tag);
duke@0 96
duke@0 97 public:
duke@0 98 enum {
duke@0 99 counter_increment = 1
duke@0 100 };
duke@0 101
duke@0 102 enum {
duke@0 103 cell_size = sizeof(intptr_t)
duke@0 104 };
duke@0 105
duke@0 106 // Tag values
duke@0 107 enum {
duke@0 108 no_tag,
duke@0 109 bit_data_tag,
duke@0 110 counter_data_tag,
duke@0 111 jump_data_tag,
duke@0 112 receiver_type_data_tag,
duke@0 113 virtual_call_data_tag,
duke@0 114 ret_data_tag,
duke@0 115 branch_data_tag,
kvn@45 116 multi_branch_data_tag,
kvn@45 117 arg_info_data_tag
duke@0 118 };
duke@0 119
duke@0 120 enum {
duke@0 121 // The _struct._flags word is formatted as [trap_state:4 | flags:4].
duke@0 122 // The trap state breaks down further as [recompile:1 | reason:3].
duke@0 123 // This further breakdown is defined in deoptimization.cpp.
duke@0 124 // See Deoptimization::trap_state_reason for an assert that
duke@0 125 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
duke@0 126 //
duke@0 127 // The trap_state is collected only if ProfileTraps is true.
duke@0 128 trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
duke@0 129 trap_shift = BitsPerByte - trap_bits,
duke@0 130 trap_mask = right_n_bits(trap_bits),
duke@0 131 trap_mask_in_place = (trap_mask << trap_shift),
duke@0 132 flag_limit = trap_shift,
duke@0 133 flag_mask = right_n_bits(flag_limit),
duke@0 134 first_flag = 0
duke@0 135 };
duke@0 136
duke@0 137 // Size computation
duke@0 138 static int header_size_in_bytes() {
duke@0 139 return cell_size;
duke@0 140 }
duke@0 141 static int header_size_in_cells() {
duke@0 142 return 1;
duke@0 143 }
duke@0 144
duke@0 145 static int compute_size_in_bytes(int cell_count) {
duke@0 146 return header_size_in_bytes() + cell_count * cell_size;
duke@0 147 }
duke@0 148
duke@0 149 // Initialization
duke@0 150 void initialize(u1 tag, u2 bci, int cell_count);
duke@0 151
duke@0 152 // Accessors
duke@0 153 u1 tag() {
duke@0 154 return _header._struct._tag;
duke@0 155 }
duke@0 156
duke@0 157 // Return a few bits of trap state. Range is [0..trap_mask].
duke@0 158 // The state tells if traps with zero, one, or many reasons have occurred.
duke@0 159 // It also tells whether zero or many recompilations have occurred.
duke@0 160 // The associated trap histogram in the MDO itself tells whether
duke@0 161 // traps are common or not. If a BCI shows that a trap X has
duke@0 162 // occurred, and the MDO shows N occurrences of X, we make the
duke@0 163 // simplifying assumption that all N occurrences can be blamed
duke@0 164 // on that BCI.
duke@0 165 int trap_state() {
duke@0 166 return ((_header._struct._flags >> trap_shift) & trap_mask);
duke@0 167 }
duke@0 168
duke@0 169 void set_trap_state(int new_state) {
duke@0 170 assert(ProfileTraps, "used only under +ProfileTraps");
duke@0 171 uint old_flags = (_header._struct._flags & flag_mask);
duke@0 172 _header._struct._flags = (new_state << trap_shift) | old_flags;
duke@0 173 }
duke@0 174
duke@0 175 u1 flags() {
duke@0 176 return _header._struct._flags;
duke@0 177 }
duke@0 178
duke@0 179 u2 bci() {
duke@0 180 return _header._struct._bci;
duke@0 181 }
duke@0 182
duke@0 183 void set_header(intptr_t value) {
duke@0 184 _header._bits = value;
duke@0 185 }
duke@0 186 void release_set_header(intptr_t value) {
duke@0 187 OrderAccess::release_store_ptr(&_header._bits, value);
duke@0 188 }
duke@0 189 intptr_t header() {
duke@0 190 return _header._bits;
duke@0 191 }
duke@0 192 void set_cell_at(int index, intptr_t value) {
duke@0 193 _cells[index] = value;
duke@0 194 }
duke@0 195 void release_set_cell_at(int index, intptr_t value) {
duke@0 196 OrderAccess::release_store_ptr(&_cells[index], value);
duke@0 197 }
duke@0 198 intptr_t cell_at(int index) {
duke@0 199 return _cells[index];
duke@0 200 }
duke@0 201 intptr_t* adr_cell_at(int index) {
duke@0 202 return &_cells[index];
duke@0 203 }
duke@0 204 oop* adr_oop_at(int index) {
duke@0 205 return (oop*)&(_cells[index]);
duke@0 206 }
duke@0 207
duke@0 208 void set_flag_at(int flag_number) {
duke@0 209 assert(flag_number < flag_limit, "oob");
duke@0 210 _header._struct._flags |= (0x1 << flag_number);
duke@0 211 }
duke@0 212 bool flag_at(int flag_number) {
duke@0 213 assert(flag_number < flag_limit, "oob");
duke@0 214 return (_header._struct._flags & (0x1 << flag_number)) != 0;
duke@0 215 }
duke@0 216
duke@0 217 // Low-level support for code generation.
duke@0 218 static ByteSize header_offset() {
duke@0 219 return byte_offset_of(DataLayout, _header);
duke@0 220 }
duke@0 221 static ByteSize tag_offset() {
duke@0 222 return byte_offset_of(DataLayout, _header._struct._tag);
duke@0 223 }
duke@0 224 static ByteSize flags_offset() {
duke@0 225 return byte_offset_of(DataLayout, _header._struct._flags);
duke@0 226 }
duke@0 227 static ByteSize bci_offset() {
duke@0 228 return byte_offset_of(DataLayout, _header._struct._bci);
duke@0 229 }
duke@0 230 static ByteSize cell_offset(int index) {
coleenp@2180 231 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
duke@0 232 }
duke@0 233 // Return a value which, when or-ed as a byte into _flags, sets the flag.
duke@0 234 static int flag_number_to_byte_constant(int flag_number) {
duke@0 235 assert(0 <= flag_number && flag_number < flag_limit, "oob");
duke@0 236 DataLayout temp; temp.set_header(0);
duke@0 237 temp.set_flag_at(flag_number);
duke@0 238 return temp._header._struct._flags;
duke@0 239 }
duke@0 240 // Return a value which, when or-ed as a word into _header, sets the flag.
duke@0 241 static intptr_t flag_mask_to_header_mask(int byte_constant) {
duke@0 242 DataLayout temp; temp.set_header(0);
duke@0 243 temp._header._struct._flags = byte_constant;
duke@0 244 return temp._header._bits;
duke@0 245 }
ysr@941 246
ysr@941 247 // GC support
ysr@941 248 ProfileData* data_in();
ysr@941 249 void follow_weak_refs(BoolObjectClosure* cl);
duke@0 250 };
duke@0 251
duke@0 252
duke@0 253 // ProfileData class hierarchy
duke@0 254 class ProfileData;
duke@0 255 class BitData;
duke@0 256 class CounterData;
duke@0 257 class ReceiverTypeData;
duke@0 258 class VirtualCallData;
duke@0 259 class RetData;
duke@0 260 class JumpData;
duke@0 261 class BranchData;
duke@0 262 class ArrayData;
duke@0 263 class MultiBranchData;
kvn@45 264 class ArgInfoData;
duke@0 265
duke@0 266
duke@0 267 // ProfileData
duke@0 268 //
duke@0 269 // A ProfileData object is created to refer to a section of profiling
duke@0 270 // data in a structured way.
duke@0 271 class ProfileData : public ResourceObj {
duke@0 272 private:
duke@0 273 #ifndef PRODUCT
duke@0 274 enum {
duke@0 275 tab_width_one = 16,
duke@0 276 tab_width_two = 36
duke@0 277 };
duke@0 278 #endif // !PRODUCT
duke@0 279
duke@0 280 // This is a pointer to a section of profiling data.
duke@0 281 DataLayout* _data;
duke@0 282
duke@0 283 protected:
duke@0 284 DataLayout* data() { return _data; }
duke@0 285
duke@0 286 enum {
duke@0 287 cell_size = DataLayout::cell_size
duke@0 288 };
duke@0 289
duke@0 290 public:
duke@0 291 // How many cells are in this?
duke@0 292 virtual int cell_count() {
duke@0 293 ShouldNotReachHere();
duke@0 294 return -1;
duke@0 295 }
duke@0 296
duke@0 297 // Return the size of this data.
duke@0 298 int size_in_bytes() {
duke@0 299 return DataLayout::compute_size_in_bytes(cell_count());
duke@0 300 }
duke@0 301
duke@0 302 protected:
duke@0 303 // Low-level accessors for underlying data
duke@0 304 void set_intptr_at(int index, intptr_t value) {
duke@0 305 assert(0 <= index && index < cell_count(), "oob");
duke@0 306 data()->set_cell_at(index, value);
duke@0 307 }
duke@0 308 void release_set_intptr_at(int index, intptr_t value) {
duke@0 309 assert(0 <= index && index < cell_count(), "oob");
duke@0 310 data()->release_set_cell_at(index, value);
duke@0 311 }
duke@0 312 intptr_t intptr_at(int index) {
duke@0 313 assert(0 <= index && index < cell_count(), "oob");
duke@0 314 return data()->cell_at(index);
duke@0 315 }
duke@0 316 void set_uint_at(int index, uint value) {
duke@0 317 set_intptr_at(index, (intptr_t) value);
duke@0 318 }
duke@0 319 void release_set_uint_at(int index, uint value) {
duke@0 320 release_set_intptr_at(index, (intptr_t) value);
duke@0 321 }
duke@0 322 uint uint_at(int index) {
duke@0 323 return (uint)intptr_at(index);
duke@0 324 }
duke@0 325 void set_int_at(int index, int value) {
duke@0 326 set_intptr_at(index, (intptr_t) value);
duke@0 327 }
duke@0 328 void release_set_int_at(int index, int value) {
duke@0 329 release_set_intptr_at(index, (intptr_t) value);
duke@0 330 }
duke@0 331 int int_at(int index) {
duke@0 332 return (int)intptr_at(index);
duke@0 333 }
duke@0 334 int int_at_unchecked(int index) {
duke@0 335 return (int)data()->cell_at(index);
duke@0 336 }
duke@0 337 void set_oop_at(int index, oop value) {
duke@0 338 set_intptr_at(index, (intptr_t) value);
duke@0 339 }
duke@0 340 oop oop_at(int index) {
duke@0 341 return (oop)intptr_at(index);
duke@0 342 }
duke@0 343 oop* adr_oop_at(int index) {
duke@0 344 assert(0 <= index && index < cell_count(), "oob");
duke@0 345 return data()->adr_oop_at(index);
duke@0 346 }
duke@0 347
duke@0 348 void set_flag_at(int flag_number) {
duke@0 349 data()->set_flag_at(flag_number);
duke@0 350 }
duke@0 351 bool flag_at(int flag_number) {
duke@0 352 return data()->flag_at(flag_number);
duke@0 353 }
duke@0 354
duke@0 355 // two convenient imports for use by subclasses:
duke@0 356 static ByteSize cell_offset(int index) {
duke@0 357 return DataLayout::cell_offset(index);
duke@0 358 }
duke@0 359 static int flag_number_to_byte_constant(int flag_number) {
duke@0 360 return DataLayout::flag_number_to_byte_constant(flag_number);
duke@0 361 }
duke@0 362
duke@0 363 ProfileData(DataLayout* data) {
duke@0 364 _data = data;
duke@0 365 }
duke@0 366
duke@0 367 public:
duke@0 368 // Constructor for invalid ProfileData.
duke@0 369 ProfileData();
duke@0 370
duke@0 371 u2 bci() {
duke@0 372 return data()->bci();
duke@0 373 }
duke@0 374
duke@0 375 address dp() {
duke@0 376 return (address)_data;
duke@0 377 }
duke@0 378
duke@0 379 int trap_state() {
duke@0 380 return data()->trap_state();
duke@0 381 }
duke@0 382 void set_trap_state(int new_state) {
duke@0 383 data()->set_trap_state(new_state);
duke@0 384 }
duke@0 385
duke@0 386 // Type checking
duke@0 387 virtual bool is_BitData() { return false; }
duke@0 388 virtual bool is_CounterData() { return false; }
duke@0 389 virtual bool is_JumpData() { return false; }
duke@0 390 virtual bool is_ReceiverTypeData(){ return false; }
duke@0 391 virtual bool is_VirtualCallData() { return false; }
duke@0 392 virtual bool is_RetData() { return false; }
duke@0 393 virtual bool is_BranchData() { return false; }
duke@0 394 virtual bool is_ArrayData() { return false; }
duke@0 395 virtual bool is_MultiBranchData() { return false; }
kvn@45 396 virtual bool is_ArgInfoData() { return false; }
kvn@45 397
duke@0 398
duke@0 399 BitData* as_BitData() {
duke@0 400 assert(is_BitData(), "wrong type");
duke@0 401 return is_BitData() ? (BitData*) this : NULL;
duke@0 402 }
duke@0 403 CounterData* as_CounterData() {
duke@0 404 assert(is_CounterData(), "wrong type");
duke@0 405 return is_CounterData() ? (CounterData*) this : NULL;
duke@0 406 }
duke@0 407 JumpData* as_JumpData() {
duke@0 408 assert(is_JumpData(), "wrong type");
duke@0 409 return is_JumpData() ? (JumpData*) this : NULL;
duke@0 410 }
duke@0 411 ReceiverTypeData* as_ReceiverTypeData() {
duke@0 412 assert(is_ReceiverTypeData(), "wrong type");
duke@0 413 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
duke@0 414 }
duke@0 415 VirtualCallData* as_VirtualCallData() {
duke@0 416 assert(is_VirtualCallData(), "wrong type");
duke@0 417 return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
duke@0 418 }
duke@0 419 RetData* as_RetData() {
duke@0 420 assert(is_RetData(), "wrong type");
duke@0 421 return is_RetData() ? (RetData*) this : NULL;
duke@0 422 }
duke@0 423 BranchData* as_BranchData() {
duke@0 424 assert(is_BranchData(), "wrong type");
duke@0 425 return is_BranchData() ? (BranchData*) this : NULL;
duke@0 426 }
duke@0 427 ArrayData* as_ArrayData() {
duke@0 428 assert(is_ArrayData(), "wrong type");
duke@0 429 return is_ArrayData() ? (ArrayData*) this : NULL;
duke@0 430 }
duke@0 431 MultiBranchData* as_MultiBranchData() {
duke@0 432 assert(is_MultiBranchData(), "wrong type");
duke@0 433 return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
duke@0 434 }
kvn@45 435 ArgInfoData* as_ArgInfoData() {
kvn@45 436 assert(is_ArgInfoData(), "wrong type");
kvn@45 437 return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
kvn@45 438 }
duke@0 439
duke@0 440
duke@0 441 // Subclass specific initialization
duke@0 442 virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {}
duke@0 443
duke@0 444 // GC support
duke@0 445 virtual void follow_contents() {}
duke@0 446 virtual void oop_iterate(OopClosure* blk) {}
duke@0 447 virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {}
duke@0 448 virtual void adjust_pointers() {}
ysr@941 449 virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure) {}
duke@0 450
duke@0 451 #ifndef SERIALGC
duke@0 452 // Parallel old support
duke@0 453 virtual void follow_contents(ParCompactionManager* cm) {}
duke@0 454 virtual void update_pointers() {}
duke@0 455 #endif // SERIALGC
duke@0 456
duke@0 457 // CI translation: ProfileData can represent both MethodDataOop data
duke@0 458 // as well as CIMethodData data. This function is provided for translating
duke@0 459 // an oop in a ProfileData to the ci equivalent. Generally speaking,
duke@0 460 // most ProfileData don't require any translation, so we provide the null
duke@0 461 // translation here, and the required translators are in the ci subclasses.
duke@0 462 virtual void translate_from(ProfileData* data) {}
duke@0 463
duke@0 464 virtual void print_data_on(outputStream* st) {
duke@0 465 ShouldNotReachHere();
duke@0 466 }
duke@0 467
duke@0 468 #ifndef PRODUCT
duke@0 469 void print_shared(outputStream* st, const char* name);
duke@0 470 void tab(outputStream* st);
duke@0 471 #endif
duke@0 472 };
duke@0 473
duke@0 474 // BitData
duke@0 475 //
duke@0 476 // A BitData holds a flag or two in its header.
duke@0 477 class BitData : public ProfileData {
duke@0 478 protected:
duke@0 479 enum {
duke@0 480 // null_seen:
duke@0 481 // saw a null operand (cast/aastore/instanceof)
duke@0 482 null_seen_flag = DataLayout::first_flag + 0
duke@0 483 };
duke@0 484 enum { bit_cell_count = 0 }; // no additional data fields needed.
duke@0 485 public:
duke@0 486 BitData(DataLayout* layout) : ProfileData(layout) {
duke@0 487 }
duke@0 488
duke@0 489 virtual bool is_BitData() { return true; }
duke@0 490
duke@0 491 static int static_cell_count() {
duke@0 492 return bit_cell_count;
duke@0 493 }
duke@0 494
duke@0 495 virtual int cell_count() {
duke@0 496 return static_cell_count();
duke@0 497 }
duke@0 498
duke@0 499 // Accessor
duke@0 500
duke@0 501 // The null_seen flag bit is specially known to the interpreter.
duke@0 502 // Consulting it allows the compiler to avoid setting up null_check traps.
duke@0 503 bool null_seen() { return flag_at(null_seen_flag); }
duke@0 504 void set_null_seen() { set_flag_at(null_seen_flag); }
duke@0 505
duke@0 506
duke@0 507 // Code generation support
duke@0 508 static int null_seen_byte_constant() {
duke@0 509 return flag_number_to_byte_constant(null_seen_flag);
duke@0 510 }
duke@0 511
duke@0 512 static ByteSize bit_data_size() {
duke@0 513 return cell_offset(bit_cell_count);
duke@0 514 }
duke@0 515
duke@0 516 #ifndef PRODUCT
duke@0 517 void print_data_on(outputStream* st);
duke@0 518 #endif
duke@0 519 };
duke@0 520
duke@0 521 // CounterData
duke@0 522 //
duke@0 523 // A CounterData corresponds to a simple counter.
duke@0 524 class CounterData : public BitData {
duke@0 525 protected:
duke@0 526 enum {
duke@0 527 count_off,
duke@0 528 counter_cell_count
duke@0 529 };
duke@0 530 public:
duke@0 531 CounterData(DataLayout* layout) : BitData(layout) {}
duke@0 532
duke@0 533 virtual bool is_CounterData() { return true; }
duke@0 534
duke@0 535 static int static_cell_count() {
duke@0 536 return counter_cell_count;
duke@0 537 }
duke@0 538
duke@0 539 virtual int cell_count() {
duke@0 540 return static_cell_count();
duke@0 541 }
duke@0 542
duke@0 543 // Direct accessor
duke@0 544 uint count() {
duke@0 545 return uint_at(count_off);
duke@0 546 }
duke@0 547
duke@0 548 // Code generation support
duke@0 549 static ByteSize count_offset() {
duke@0 550 return cell_offset(count_off);
duke@0 551 }
duke@0 552 static ByteSize counter_data_size() {
duke@0 553 return cell_offset(counter_cell_count);
duke@0 554 }
duke@0 555
kvn@1251 556 void set_count(uint count) {
kvn@1251 557 set_uint_at(count_off, count);
kvn@1251 558 }
kvn@1251 559
duke@0 560 #ifndef PRODUCT
duke@0 561 void print_data_on(outputStream* st);
duke@0 562 #endif
duke@0 563 };
duke@0 564
duke@0 565 // JumpData
duke@0 566 //
duke@0 567 // A JumpData is used to access profiling information for a direct
duke@0 568 // branch. It is a counter, used for counting the number of branches,
duke@0 569 // plus a data displacement, used for realigning the data pointer to
duke@0 570 // the corresponding target bci.
duke@0 571 class JumpData : public ProfileData {
duke@0 572 protected:
duke@0 573 enum {
duke@0 574 taken_off_set,
duke@0 575 displacement_off_set,
duke@0 576 jump_cell_count
duke@0 577 };
duke@0 578
duke@0 579 void set_displacement(int displacement) {
duke@0 580 set_int_at(displacement_off_set, displacement);
duke@0 581 }
duke@0 582
duke@0 583 public:
duke@0 584 JumpData(DataLayout* layout) : ProfileData(layout) {
duke@0 585 assert(layout->tag() == DataLayout::jump_data_tag ||
duke@0 586 layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@0 587 }
duke@0 588
duke@0 589 virtual bool is_JumpData() { return true; }
duke@0 590
duke@0 591 static int static_cell_count() {
duke@0 592 return jump_cell_count;
duke@0 593 }
duke@0 594
duke@0 595 virtual int cell_count() {
duke@0 596 return static_cell_count();
duke@0 597 }
duke@0 598
duke@0 599 // Direct accessor
duke@0 600 uint taken() {
duke@0 601 return uint_at(taken_off_set);
duke@0 602 }
never@2670 603
never@2670 604 void set_taken(uint cnt) {
never@2670 605 set_uint_at(taken_off_set, cnt);
never@2670 606 }
never@2670 607
duke@0 608 // Saturating counter
duke@0 609 uint inc_taken() {
duke@0 610 uint cnt = taken() + 1;
duke@0 611 // Did we wrap? Will compiler screw us??
duke@0 612 if (cnt == 0) cnt--;
duke@0 613 set_uint_at(taken_off_set, cnt);
duke@0 614 return cnt;
duke@0 615 }
duke@0 616
duke@0 617 int displacement() {
duke@0 618 return int_at(displacement_off_set);
duke@0 619 }
duke@0 620
duke@0 621 // Code generation support
duke@0 622 static ByteSize taken_offset() {
duke@0 623 return cell_offset(taken_off_set);
duke@0 624 }
duke@0 625
duke@0 626 static ByteSize displacement_offset() {
duke@0 627 return cell_offset(displacement_off_set);
duke@0 628 }
duke@0 629
duke@0 630 // Specific initialization.
duke@0 631 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@0 632
duke@0 633 #ifndef PRODUCT
duke@0 634 void print_data_on(outputStream* st);
duke@0 635 #endif
duke@0 636 };
duke@0 637
duke@0 638 // ReceiverTypeData
duke@0 639 //
duke@0 640 // A ReceiverTypeData is used to access profiling information about a
duke@0 641 // dynamic type check. It consists of a counter which counts the total times
duke@0 642 // that the check is reached, and a series of (klassOop, count) pairs
duke@0 643 // which are used to store a type profile for the receiver of the check.
duke@0 644 class ReceiverTypeData : public CounterData {
duke@0 645 protected:
duke@0 646 enum {
duke@0 647 receiver0_offset = counter_cell_count,
duke@0 648 count0_offset,
duke@0 649 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
duke@0 650 };
duke@0 651
duke@0 652 public:
duke@0 653 ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
duke@0 654 assert(layout->tag() == DataLayout::receiver_type_data_tag ||
duke@0 655 layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
duke@0 656 }
duke@0 657
duke@0 658 virtual bool is_ReceiverTypeData() { return true; }
duke@0 659
duke@0 660 static int static_cell_count() {
duke@0 661 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
duke@0 662 }
duke@0 663
duke@0 664 virtual int cell_count() {
duke@0 665 return static_cell_count();
duke@0 666 }
duke@0 667
duke@0 668 // Direct accessors
duke@0 669 static uint row_limit() {
duke@0 670 return TypeProfileWidth;
duke@0 671 }
duke@0 672 static int receiver_cell_index(uint row) {
duke@0 673 return receiver0_offset + row * receiver_type_row_cell_count;
duke@0 674 }
duke@0 675 static int receiver_count_cell_index(uint row) {
duke@0 676 return count0_offset + row * receiver_type_row_cell_count;
duke@0 677 }
duke@0 678
duke@0 679 // Get the receiver at row. The 'unchecked' version is needed by parallel old
duke@0 680 // gc; it does not assert the receiver is a klass. During compaction of the
duke@0 681 // perm gen, the klass may already have moved, so the is_klass() predicate
duke@0 682 // would fail. The 'normal' version should be used whenever possible.
duke@0 683 klassOop receiver_unchecked(uint row) {
duke@0 684 assert(row < row_limit(), "oob");
duke@0 685 oop recv = oop_at(receiver_cell_index(row));
duke@0 686 return (klassOop)recv;
duke@0 687 }
duke@0 688
duke@0 689 klassOop receiver(uint row) {
duke@0 690 klassOop recv = receiver_unchecked(row);
duke@0 691 assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type");
duke@0 692 return recv;
duke@0 693 }
duke@0 694
ysr@941 695 void set_receiver(uint row, oop p) {
ysr@941 696 assert((uint)row < row_limit(), "oob");
ysr@941 697 set_oop_at(receiver_cell_index(row), p);
ysr@941 698 }
ysr@941 699
duke@0 700 uint receiver_count(uint row) {
duke@0 701 assert(row < row_limit(), "oob");
duke@0 702 return uint_at(receiver_count_cell_index(row));
duke@0 703 }
duke@0 704
ysr@941 705 void set_receiver_count(uint row, uint count) {
ysr@941 706 assert(row < row_limit(), "oob");
ysr@941 707 set_uint_at(receiver_count_cell_index(row), count);
ysr@941 708 }
ysr@941 709
ysr@941 710 void clear_row(uint row) {
ysr@941 711 assert(row < row_limit(), "oob");
kvn@1251 712 // Clear total count - indicator of polymorphic call site.
kvn@1251 713 // The site may look like as monomorphic after that but
kvn@1251 714 // it allow to have more accurate profiling information because
kvn@1251 715 // there was execution phase change since klasses were unloaded.
kvn@1251 716 // If the site is still polymorphic then MDO will be updated
kvn@1251 717 // to reflect it. But it could be the case that the site becomes
kvn@1251 718 // only bimorphic. Then keeping total count not 0 will be wrong.
kvn@1251 719 // Even if we use monomorphic (when it is not) for compilation
kvn@1251 720 // we will only have trap, deoptimization and recompile again
kvn@1251 721 // with updated MDO after executing method in Interpreter.
kvn@1251 722 // An additional receiver will be recorded in the cleaned row
kvn@1251 723 // during next call execution.
kvn@1251 724 //
kvn@1251 725 // Note: our profiling logic works with empty rows in any slot.
kvn@1251 726 // We do sorting a profiling info (ciCallProfile) for compilation.
kvn@1251 727 //
kvn@1251 728 set_count(0);
ysr@941 729 set_receiver(row, NULL);
ysr@941 730 set_receiver_count(row, 0);
ysr@941 731 }
ysr@941 732
duke@0 733 // Code generation support
duke@0 734 static ByteSize receiver_offset(uint row) {
duke@0 735 return cell_offset(receiver_cell_index(row));
duke@0 736 }
duke@0 737 static ByteSize receiver_count_offset(uint row) {
duke@0 738 return cell_offset(receiver_count_cell_index(row));
duke@0 739 }
duke@0 740 static ByteSize receiver_type_data_size() {
duke@0 741 return cell_offset(static_cell_count());
duke@0 742 }
duke@0 743
duke@0 744 // GC support
duke@0 745 virtual void follow_contents();
duke@0 746 virtual void oop_iterate(OopClosure* blk);
duke@0 747 virtual void oop_iterate_m(OopClosure* blk, MemRegion mr);
duke@0 748 virtual void adjust_pointers();
ysr@941 749 virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure);
duke@0 750
duke@0 751 #ifndef SERIALGC
duke@0 752 // Parallel old support
duke@0 753 virtual void follow_contents(ParCompactionManager* cm);
duke@0 754 virtual void update_pointers();
duke@0 755 #endif // SERIALGC
duke@0 756
duke@0 757 oop* adr_receiver(uint row) {
duke@0 758 return adr_oop_at(receiver_cell_index(row));
duke@0 759 }
duke@0 760
duke@0 761 #ifndef PRODUCT
duke@0 762 void print_receiver_data_on(outputStream* st);
duke@0 763 void print_data_on(outputStream* st);
duke@0 764 #endif
duke@0 765 };
duke@0 766
duke@0 767 // VirtualCallData
duke@0 768 //
duke@0 769 // A VirtualCallData is used to access profiling information about a
duke@0 770 // virtual call. For now, it has nothing more than a ReceiverTypeData.
duke@0 771 class VirtualCallData : public ReceiverTypeData {
duke@0 772 public:
duke@0 773 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
duke@0 774 assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
duke@0 775 }
duke@0 776
duke@0 777 virtual bool is_VirtualCallData() { return true; }
duke@0 778
duke@0 779 static int static_cell_count() {
duke@0 780 // At this point we could add more profile state, e.g., for arguments.
duke@0 781 // But for now it's the same size as the base record type.
duke@0 782 return ReceiverTypeData::static_cell_count();
duke@0 783 }
duke@0 784
duke@0 785 virtual int cell_count() {
duke@0 786 return static_cell_count();
duke@0 787 }
duke@0 788
duke@0 789 // Direct accessors
duke@0 790 static ByteSize virtual_call_data_size() {
duke@0 791 return cell_offset(static_cell_count());
duke@0 792 }
duke@0 793
duke@0 794 #ifndef PRODUCT
duke@0 795 void print_data_on(outputStream* st);
duke@0 796 #endif
duke@0 797 };
duke@0 798
duke@0 799 // RetData
duke@0 800 //
duke@0 801 // A RetData is used to access profiling information for a ret bytecode.
duke@0 802 // It is composed of a count of the number of times that the ret has
duke@0 803 // been executed, followed by a series of triples of the form
duke@0 804 // (bci, count, di) which count the number of times that some bci was the
duke@0 805 // target of the ret and cache a corresponding data displacement.
duke@0 806 class RetData : public CounterData {
duke@0 807 protected:
duke@0 808 enum {
duke@0 809 bci0_offset = counter_cell_count,
duke@0 810 count0_offset,
duke@0 811 displacement0_offset,
duke@0 812 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
duke@0 813 };
duke@0 814
duke@0 815 void set_bci(uint row, int bci) {
duke@0 816 assert((uint)row < row_limit(), "oob");
duke@0 817 set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@0 818 }
duke@0 819 void release_set_bci(uint row, int bci) {
duke@0 820 assert((uint)row < row_limit(), "oob");
duke@0 821 // 'release' when setting the bci acts as a valid flag for other
duke@0 822 // threads wrt bci_count and bci_displacement.
duke@0 823 release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@0 824 }
duke@0 825 void set_bci_count(uint row, uint count) {
duke@0 826 assert((uint)row < row_limit(), "oob");
duke@0 827 set_uint_at(count0_offset + row * ret_row_cell_count, count);
duke@0 828 }
duke@0 829 void set_bci_displacement(uint row, int disp) {
duke@0 830 set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
duke@0 831 }
duke@0 832
duke@0 833 public:
duke@0 834 RetData(DataLayout* layout) : CounterData(layout) {
duke@0 835 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
duke@0 836 }
duke@0 837
duke@0 838 virtual bool is_RetData() { return true; }
duke@0 839
duke@0 840 enum {
duke@0 841 no_bci = -1 // value of bci when bci1/2 are not in use.
duke@0 842 };
duke@0 843
duke@0 844 static int static_cell_count() {
duke@0 845 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
duke@0 846 }
duke@0 847
duke@0 848 virtual int cell_count() {
duke@0 849 return static_cell_count();
duke@0 850 }
duke@0 851
duke@0 852 static uint row_limit() {
duke@0 853 return BciProfileWidth;
duke@0 854 }
duke@0 855 static int bci_cell_index(uint row) {
duke@0 856 return bci0_offset + row * ret_row_cell_count;
duke@0 857 }
duke@0 858 static int bci_count_cell_index(uint row) {
duke@0 859 return count0_offset + row * ret_row_cell_count;
duke@0 860 }
duke@0 861 static int bci_displacement_cell_index(uint row) {
duke@0 862 return displacement0_offset + row * ret_row_cell_count;
duke@0 863 }
duke@0 864
duke@0 865 // Direct accessors
duke@0 866 int bci(uint row) {
duke@0 867 return int_at(bci_cell_index(row));
duke@0 868 }
duke@0 869 uint bci_count(uint row) {
duke@0 870 return uint_at(bci_count_cell_index(row));
duke@0 871 }
duke@0 872 int bci_displacement(uint row) {
duke@0 873 return int_at(bci_displacement_cell_index(row));
duke@0 874 }
duke@0 875
duke@0 876 // Interpreter Runtime support
duke@0 877 address fixup_ret(int return_bci, methodDataHandle mdo);
duke@0 878
duke@0 879 // Code generation support
duke@0 880 static ByteSize bci_offset(uint row) {
duke@0 881 return cell_offset(bci_cell_index(row));
duke@0 882 }
duke@0 883 static ByteSize bci_count_offset(uint row) {
duke@0 884 return cell_offset(bci_count_cell_index(row));
duke@0 885 }
duke@0 886 static ByteSize bci_displacement_offset(uint row) {
duke@0 887 return cell_offset(bci_displacement_cell_index(row));
duke@0 888 }
duke@0 889
duke@0 890 // Specific initialization.
duke@0 891 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@0 892
duke@0 893 #ifndef PRODUCT
duke@0 894 void print_data_on(outputStream* st);
duke@0 895 #endif
duke@0 896 };
duke@0 897
duke@0 898 // BranchData
duke@0 899 //
duke@0 900 // A BranchData is used to access profiling data for a two-way branch.
duke@0 901 // It consists of taken and not_taken counts as well as a data displacement
duke@0 902 // for the taken case.
duke@0 903 class BranchData : public JumpData {
duke@0 904 protected:
duke@0 905 enum {
duke@0 906 not_taken_off_set = jump_cell_count,
duke@0 907 branch_cell_count
duke@0 908 };
duke@0 909
duke@0 910 void set_displacement(int displacement) {
duke@0 911 set_int_at(displacement_off_set, displacement);
duke@0 912 }
duke@0 913
duke@0 914 public:
duke@0 915 BranchData(DataLayout* layout) : JumpData(layout) {
duke@0 916 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@0 917 }
duke@0 918
duke@0 919 virtual bool is_BranchData() { return true; }
duke@0 920
duke@0 921 static int static_cell_count() {
duke@0 922 return branch_cell_count;
duke@0 923 }
duke@0 924
duke@0 925 virtual int cell_count() {
duke@0 926 return static_cell_count();
duke@0 927 }
duke@0 928
duke@0 929 // Direct accessor
duke@0 930 uint not_taken() {
duke@0 931 return uint_at(not_taken_off_set);
duke@0 932 }
duke@0 933
never@2670 934 void set_not_taken(uint cnt) {
never@2670 935 set_uint_at(not_taken_off_set, cnt);
never@2670 936 }
never@2670 937
duke@0 938 uint inc_not_taken() {
duke@0 939 uint cnt = not_taken() + 1;
duke@0 940 // Did we wrap? Will compiler screw us??
duke@0 941 if (cnt == 0) cnt--;
duke@0 942 set_uint_at(not_taken_off_set, cnt);
duke@0 943 return cnt;
duke@0 944 }
duke@0 945
duke@0 946 // Code generation support
duke@0 947 static ByteSize not_taken_offset() {
duke@0 948 return cell_offset(not_taken_off_set);
duke@0 949 }
duke@0 950 static ByteSize branch_data_size() {
duke@0 951 return cell_offset(branch_cell_count);
duke@0 952 }
duke@0 953
duke@0 954 // Specific initialization.
duke@0 955 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@0 956
duke@0 957 #ifndef PRODUCT
duke@0 958 void print_data_on(outputStream* st);
duke@0 959 #endif
duke@0 960 };
duke@0 961
duke@0 962 // ArrayData
duke@0 963 //
duke@0 964 // A ArrayData is a base class for accessing profiling data which does
duke@0 965 // not have a statically known size. It consists of an array length
duke@0 966 // and an array start.
duke@0 967 class ArrayData : public ProfileData {
duke@0 968 protected:
duke@0 969 friend class DataLayout;
duke@0 970
duke@0 971 enum {
duke@0 972 array_len_off_set,
duke@0 973 array_start_off_set
duke@0 974 };
duke@0 975
duke@0 976 uint array_uint_at(int index) {
duke@0 977 int aindex = index + array_start_off_set;
duke@0 978 return uint_at(aindex);
duke@0 979 }
duke@0 980 int array_int_at(int index) {
duke@0 981 int aindex = index + array_start_off_set;
duke@0 982 return int_at(aindex);
duke@0 983 }
duke@0 984 oop array_oop_at(int index) {
duke@0 985 int aindex = index + array_start_off_set;
duke@0 986 return oop_at(aindex);
duke@0 987 }
duke@0 988 void array_set_int_at(int index, int value) {
duke@0 989 int aindex = index + array_start_off_set;
duke@0 990 set_int_at(aindex, value);
duke@0 991 }
duke@0 992
duke@0 993 // Code generation support for subclasses.
duke@0 994 static ByteSize array_element_offset(int index) {
duke@0 995 return cell_offset(array_start_off_set + index);
duke@0 996 }
duke@0 997
duke@0 998 public:
duke@0 999 ArrayData(DataLayout* layout) : ProfileData(layout) {}
duke@0 1000
duke@0 1001 virtual bool is_ArrayData() { return true; }
duke@0 1002
duke@0 1003 static int static_cell_count() {
duke@0 1004 return -1;
duke@0 1005 }
duke@0 1006
duke@0 1007 int array_len() {
duke@0 1008 return int_at_unchecked(array_len_off_set);
duke@0 1009 }
duke@0 1010
duke@0 1011 virtual int cell_count() {
duke@0 1012 return array_len() + 1;
duke@0 1013 }
duke@0 1014
duke@0 1015 // Code generation support
duke@0 1016 static ByteSize array_len_offset() {
duke@0 1017 return cell_offset(array_len_off_set);
duke@0 1018 }
duke@0 1019 static ByteSize array_start_offset() {
duke@0 1020 return cell_offset(array_start_off_set);
duke@0 1021 }
duke@0 1022 };
duke@0 1023
duke@0 1024 // MultiBranchData
duke@0 1025 //
duke@0 1026 // A MultiBranchData is used to access profiling information for
duke@0 1027 // a multi-way branch (*switch bytecodes). It consists of a series
duke@0 1028 // of (count, displacement) pairs, which count the number of times each
duke@0 1029 // case was taken and specify the data displacment for each branch target.
duke@0 1030 class MultiBranchData : public ArrayData {
duke@0 1031 protected:
duke@0 1032 enum {
duke@0 1033 default_count_off_set,
duke@0 1034 default_disaplacement_off_set,
duke@0 1035 case_array_start
duke@0 1036 };
duke@0 1037 enum {
duke@0 1038 relative_count_off_set,
duke@0 1039 relative_displacement_off_set,
duke@0 1040 per_case_cell_count
duke@0 1041 };
duke@0 1042
duke@0 1043 void set_default_displacement(int displacement) {
duke@0 1044 array_set_int_at(default_disaplacement_off_set, displacement);
duke@0 1045 }
duke@0 1046 void set_displacement_at(int index, int displacement) {
duke@0 1047 array_set_int_at(case_array_start +
duke@0 1048 index * per_case_cell_count +
duke@0 1049 relative_displacement_off_set,
duke@0 1050 displacement);
duke@0 1051 }
duke@0 1052
duke@0 1053 public:
duke@0 1054 MultiBranchData(DataLayout* layout) : ArrayData(layout) {
duke@0 1055 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
duke@0 1056 }
duke@0 1057
duke@0 1058 virtual bool is_MultiBranchData() { return true; }
duke@0 1059
duke@0 1060 static int compute_cell_count(BytecodeStream* stream);
duke@0 1061
duke@0 1062 int number_of_cases() {
duke@0 1063 int alen = array_len() - 2; // get rid of default case here.
duke@0 1064 assert(alen % per_case_cell_count == 0, "must be even");
duke@0 1065 return (alen / per_case_cell_count);
duke@0 1066 }
duke@0 1067
duke@0 1068 uint default_count() {
duke@0 1069 return array_uint_at(default_count_off_set);
duke@0 1070 }
duke@0 1071 int default_displacement() {
duke@0 1072 return array_int_at(default_disaplacement_off_set);
duke@0 1073 }
duke@0 1074
duke@0 1075 uint count_at(int index) {
duke@0 1076 return array_uint_at(case_array_start +
duke@0 1077 index * per_case_cell_count +
duke@0 1078 relative_count_off_set);
duke@0 1079 }
duke@0 1080 int displacement_at(int index) {
duke@0 1081 return array_int_at(case_array_start +
duke@0 1082 index * per_case_cell_count +
duke@0 1083 relative_displacement_off_set);
duke@0 1084 }
duke@0 1085
duke@0 1086 // Code generation support
duke@0 1087 static ByteSize default_count_offset() {
duke@0 1088 return array_element_offset(default_count_off_set);
duke@0 1089 }
duke@0 1090 static ByteSize default_displacement_offset() {
duke@0 1091 return array_element_offset(default_disaplacement_off_set);
duke@0 1092 }
duke@0 1093 static ByteSize case_count_offset(int index) {
duke@0 1094 return case_array_offset() +
duke@0 1095 (per_case_size() * index) +
duke@0 1096 relative_count_offset();
duke@0 1097 }
duke@0 1098 static ByteSize case_array_offset() {
duke@0 1099 return array_element_offset(case_array_start);
duke@0 1100 }
duke@0 1101 static ByteSize per_case_size() {
duke@0 1102 return in_ByteSize(per_case_cell_count) * cell_size;
duke@0 1103 }
duke@0 1104 static ByteSize relative_count_offset() {
duke@0 1105 return in_ByteSize(relative_count_off_set) * cell_size;
duke@0 1106 }
duke@0 1107 static ByteSize relative_displacement_offset() {
duke@0 1108 return in_ByteSize(relative_displacement_off_set) * cell_size;
duke@0 1109 }
duke@0 1110
duke@0 1111 // Specific initialization.
duke@0 1112 void post_initialize(BytecodeStream* stream, methodDataOop mdo);
duke@0 1113
duke@0 1114 #ifndef PRODUCT
duke@0 1115 void print_data_on(outputStream* st);
duke@0 1116 #endif
duke@0 1117 };
duke@0 1118
kvn@45 1119 class ArgInfoData : public ArrayData {
kvn@45 1120
kvn@45 1121 public:
kvn@45 1122 ArgInfoData(DataLayout* layout) : ArrayData(layout) {
kvn@45 1123 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
kvn@45 1124 }
kvn@45 1125
kvn@45 1126 virtual bool is_ArgInfoData() { return true; }
kvn@45 1127
kvn@45 1128
kvn@45 1129 int number_of_args() {
kvn@45 1130 return array_len();
kvn@45 1131 }
kvn@45 1132
kvn@45 1133 uint arg_modified(int arg) {
kvn@45 1134 return array_uint_at(arg);
kvn@45 1135 }
kvn@45 1136
kvn@45 1137 void set_arg_modified(int arg, uint val) {
kvn@45 1138 array_set_int_at(arg, val);
kvn@45 1139 }
kvn@45 1140
kvn@45 1141 #ifndef PRODUCT
kvn@45 1142 void print_data_on(outputStream* st);
kvn@45 1143 #endif
kvn@45 1144 };
kvn@45 1145
duke@0 1146 // methodDataOop
duke@0 1147 //
duke@0 1148 // A methodDataOop holds information which has been collected about
duke@0 1149 // a method. Its layout looks like this:
duke@0 1150 //
duke@0 1151 // -----------------------------
duke@0 1152 // | header |
duke@0 1153 // | klass |
duke@0 1154 // -----------------------------
duke@0 1155 // | method |
duke@0 1156 // | size of the methodDataOop |
duke@0 1157 // -----------------------------
duke@0 1158 // | Data entries... |
duke@0 1159 // | (variable size) |
duke@0 1160 // | |
duke@0 1161 // . .
duke@0 1162 // . .
duke@0 1163 // . .
duke@0 1164 // | |
duke@0 1165 // -----------------------------
duke@0 1166 //
duke@0 1167 // The data entry area is a heterogeneous array of DataLayouts. Each
duke@0 1168 // DataLayout in the array corresponds to a specific bytecode in the
duke@0 1169 // method. The entries in the array are sorted by the corresponding
duke@0 1170 // bytecode. Access to the data is via resource-allocated ProfileData,
duke@0 1171 // which point to the underlying blocks of DataLayout structures.
duke@0 1172 //
duke@0 1173 // During interpretation, if profiling in enabled, the interpreter
duke@0 1174 // maintains a method data pointer (mdp), which points at the entry
duke@0 1175 // in the array corresponding to the current bci. In the course of
duke@0 1176 // intepretation, when a bytecode is encountered that has profile data
duke@0 1177 // associated with it, the entry pointed to by mdp is updated, then the
duke@0 1178 // mdp is adjusted to point to the next appropriate DataLayout. If mdp
duke@0 1179 // is NULL to begin with, the interpreter assumes that the current method
duke@0 1180 // is not (yet) being profiled.
duke@0 1181 //
duke@0 1182 // In methodDataOop parlance, "dp" is a "data pointer", the actual address
duke@0 1183 // of a DataLayout element. A "di" is a "data index", the offset in bytes
duke@0 1184 // from the base of the data entry array. A "displacement" is the byte offset
duke@0 1185 // in certain ProfileData objects that indicate the amount the mdp must be
duke@0 1186 // adjusted in the event of a change in control flow.
duke@0 1187 //
duke@0 1188
duke@0 1189 class methodDataOopDesc : public oopDesc {
duke@0 1190 friend class VMStructs;
duke@0 1191 private:
duke@0 1192 friend class ProfileData;
duke@0 1193
duke@0 1194 // Back pointer to the methodOop
duke@0 1195 methodOop _method;
duke@0 1196
duke@0 1197 // Size of this oop in bytes
duke@0 1198 int _size;
duke@0 1199
duke@0 1200 // Cached hint for bci_to_dp and bci_to_data
duke@0 1201 int _hint_di;
duke@0 1202
duke@0 1203 // Whole-method sticky bits and flags
duke@0 1204 public:
duke@0 1205 enum {
kvn@2442 1206 _trap_hist_limit = 17, // decoupled from Deoptimization::Reason_LIMIT
duke@0 1207 _trap_hist_mask = max_jubyte,
duke@0 1208 _extra_data_count = 4 // extra DataLayout headers, for trap history
duke@0 1209 }; // Public flag values
duke@0 1210 private:
duke@0 1211 uint _nof_decompiles; // count of all nmethod removals
duke@0 1212 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits
duke@0 1213 uint _nof_overflow_traps; // trap count, excluding _trap_hist
duke@0 1214 union {
duke@0 1215 intptr_t _align;
duke@0 1216 u1 _array[_trap_hist_limit];
duke@0 1217 } _trap_hist;
duke@0 1218
duke@0 1219 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@0 1220 intx _eflags; // flags on escape information
duke@0 1221 intx _arg_local; // bit set of non-escaping arguments
duke@0 1222 intx _arg_stack; // bit set of stack-allocatable arguments
duke@0 1223 intx _arg_returned; // bit set of returned arguments
duke@0 1224
iveresov@1703 1225 int _creation_mileage; // method mileage at MDO creation
iveresov@1703 1226
iveresov@1703 1227 // How many invocations has this MDO seen?
iveresov@1703 1228 // These counters are used to determine the exact age of MDO.
iveresov@1703 1229 // We need those because in tiered a method can be concurrently
iveresov@1703 1230 // executed at different levels.
iveresov@1703 1231 InvocationCounter _invocation_counter;
iveresov@1703 1232 // Same for backedges.
iveresov@1703 1233 InvocationCounter _backedge_counter;
iveresov@2124 1234 // Counter values at the time profiling started.
iveresov@2124 1235 int _invocation_counter_start;
iveresov@2124 1236 int _backedge_counter_start;
iveresov@1703 1237 // Number of loops and blocks is computed when compiling the first
iveresov@1703 1238 // time with C1. It is used to determine if method is trivial.
iveresov@1703 1239 short _num_loops;
iveresov@1703 1240 short _num_blocks;
iveresov@1703 1241 // Highest compile level this method has ever seen.
iveresov@1703 1242 u1 _highest_comp_level;
iveresov@1703 1243 // Same for OSR level
iveresov@1703 1244 u1 _highest_osr_comp_level;
iveresov@1703 1245 // Does this method contain anything worth profiling?
iveresov@1703 1246 bool _would_profile;
duke@0 1247
duke@0 1248 // Size of _data array in bytes. (Excludes header and extra_data fields.)
duke@0 1249 int _data_size;
duke@0 1250
duke@0 1251 // Beginning of the data entries
duke@0 1252 intptr_t _data[1];
duke@0 1253
duke@0 1254 // Helper for size computation
duke@0 1255 static int compute_data_size(BytecodeStream* stream);
duke@0 1256 static int bytecode_cell_count(Bytecodes::Code code);
duke@0 1257 enum { no_profile_data = -1, variable_cell_count = -2 };
duke@0 1258
duke@0 1259 // Helper for initialization
duke@0 1260 DataLayout* data_layout_at(int data_index) {
duke@0 1261 assert(data_index % sizeof(intptr_t) == 0, "unaligned");
duke@0 1262 return (DataLayout*) (((address)_data) + data_index);
duke@0 1263 }
duke@0 1264
duke@0 1265 // Initialize an individual data segment. Returns the size of
duke@0 1266 // the segment in bytes.
duke@0 1267 int initialize_data(BytecodeStream* stream, int data_index);
duke@0 1268
duke@0 1269 // Helper for data_at
duke@0 1270 DataLayout* limit_data_position() {
duke@0 1271 return (DataLayout*)((address)data_base() + _data_size);
duke@0 1272 }
duke@0 1273 bool out_of_bounds(int data_index) {
duke@0 1274 return data_index >= data_size();
duke@0 1275 }
duke@0 1276
duke@0 1277 // Give each of the data entries a chance to perform specific
duke@0 1278 // data initialization.
duke@0 1279 void post_initialize(BytecodeStream* stream);
duke@0 1280
duke@0 1281 // hint accessors
duke@0 1282 int hint_di() const { return _hint_di; }
duke@0 1283 void set_hint_di(int di) {
duke@0 1284 assert(!out_of_bounds(di), "hint_di out of bounds");
duke@0 1285 _hint_di = di;
duke@0 1286 }
duke@0 1287 ProfileData* data_before(int bci) {
duke@0 1288 // avoid SEGV on this edge case
duke@0 1289 if (data_size() == 0)
duke@0 1290 return NULL;
duke@0 1291 int hint = hint_di();
duke@0 1292 if (data_layout_at(hint)->bci() <= bci)
duke@0 1293 return data_at(hint);
duke@0 1294 return first_data();
duke@0 1295 }
duke@0 1296
duke@0 1297 // What is the index of the first data entry?
duke@0 1298 int first_di() { return 0; }
duke@0 1299
duke@0 1300 // Find or create an extra ProfileData:
duke@0 1301 ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
duke@0 1302
kvn@45 1303 // return the argument info cell
kvn@45 1304 ArgInfoData *arg_info();
kvn@45 1305
duke@0 1306 public:
duke@0 1307 static int header_size() {
duke@0 1308 return sizeof(methodDataOopDesc)/wordSize;
duke@0 1309 }
duke@0 1310
duke@0 1311 // Compute the size of a methodDataOop before it is created.
duke@0 1312 static int compute_allocation_size_in_bytes(methodHandle method);
duke@0 1313 static int compute_allocation_size_in_words(methodHandle method);
duke@0 1314 static int compute_extra_data_count(int data_size, int empty_bc_count);
duke@0 1315
duke@0 1316 // Determine if a given bytecode can have profile information.
duke@0 1317 static bool bytecode_has_profile(Bytecodes::Code code) {
duke@0 1318 return bytecode_cell_count(code) != no_profile_data;
duke@0 1319 }
duke@0 1320
duke@0 1321 // Perform initialization of a new methodDataOop
duke@0 1322 void initialize(methodHandle method);
duke@0 1323
duke@0 1324 // My size
duke@0 1325 int object_size_in_bytes() { return _size; }
duke@0 1326 int object_size() {
duke@0 1327 return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord);
duke@0 1328 }
duke@0 1329
duke@0 1330 int creation_mileage() const { return _creation_mileage; }
duke@0 1331 void set_creation_mileage(int x) { _creation_mileage = x; }
iveresov@1703 1332
iveresov@1703 1333 int invocation_count() {
iveresov@1703 1334 if (invocation_counter()->carry()) {
iveresov@1703 1335 return InvocationCounter::count_limit;
iveresov@1703 1336 }
iveresov@1703 1337 return invocation_counter()->count();
iveresov@1703 1338 }
iveresov@1703 1339 int backedge_count() {
iveresov@1703 1340 if (backedge_counter()->carry()) {
iveresov@1703 1341 return InvocationCounter::count_limit;
iveresov@1703 1342 }
iveresov@1703 1343 return backedge_counter()->count();
iveresov@1703 1344 }
iveresov@1703 1345
iveresov@2124 1346 int invocation_count_start() {
iveresov@2124 1347 if (invocation_counter()->carry()) {
iveresov@2124 1348 return 0;
iveresov@2124 1349 }
iveresov@2124 1350 return _invocation_counter_start;
iveresov@2124 1351 }
iveresov@2124 1352
iveresov@2124 1353 int backedge_count_start() {
iveresov@2124 1354 if (backedge_counter()->carry()) {
iveresov@2124 1355 return 0;
iveresov@2124 1356 }
iveresov@2124 1357 return _backedge_counter_start;
iveresov@2124 1358 }
iveresov@2124 1359
iveresov@2124 1360 int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
iveresov@2124 1361 int backedge_count_delta() { return backedge_count() - backedge_count_start(); }
iveresov@2124 1362
iveresov@2124 1363 void reset_start_counters() {
iveresov@2124 1364 _invocation_counter_start = invocation_count();
iveresov@2124 1365 _backedge_counter_start = backedge_count();
iveresov@2124 1366 }
iveresov@2124 1367
iveresov@1703 1368 InvocationCounter* invocation_counter() { return &_invocation_counter; }
iveresov@1703 1369 InvocationCounter* backedge_counter() { return &_backedge_counter; }
iveresov@1703 1370
iveresov@1703 1371 void set_would_profile(bool p) { _would_profile = p; }
iveresov@1703 1372 bool would_profile() const { return _would_profile; }
iveresov@1703 1373
iveresov@1703 1374 int highest_comp_level() { return _highest_comp_level; }
iveresov@1703 1375 void set_highest_comp_level(int level) { _highest_comp_level = level; }
iveresov@1703 1376 int highest_osr_comp_level() { return _highest_osr_comp_level; }
iveresov@1703 1377 void set_highest_osr_comp_level(int level) { _highest_osr_comp_level = level; }
iveresov@1703 1378
iveresov@1703 1379 int num_loops() const { return _num_loops; }
iveresov@1703 1380 void set_num_loops(int n) { _num_loops = n; }
iveresov@1703 1381 int num_blocks() const { return _num_blocks; }
iveresov@1703 1382 void set_num_blocks(int n) { _num_blocks = n; }
iveresov@1703 1383
duke@0 1384 bool is_mature() const; // consult mileage and ProfileMaturityPercentage
duke@0 1385 static int mileage_of(methodOop m);
duke@0 1386
duke@0 1387 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@0 1388 enum EscapeFlag {
duke@0 1389 estimated = 1 << 0,
kvn@78 1390 return_local = 1 << 1,
kvn@78 1391 return_allocated = 1 << 2,
kvn@78 1392 allocated_escapes = 1 << 3,
kvn@78 1393 unknown_modified = 1 << 4
duke@0 1394 };
duke@0 1395
duke@0 1396 intx eflags() { return _eflags; }
duke@0 1397 intx arg_local() { return _arg_local; }
duke@0 1398 intx arg_stack() { return _arg_stack; }
duke@0 1399 intx arg_returned() { return _arg_returned; }
kvn@45 1400 uint arg_modified(int a) { ArgInfoData *aid = arg_info();
kvn@45 1401 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@45 1402 return aid->arg_modified(a); }
duke@0 1403
duke@0 1404 void set_eflags(intx v) { _eflags = v; }
duke@0 1405 void set_arg_local(intx v) { _arg_local = v; }
duke@0 1406 void set_arg_stack(intx v) { _arg_stack = v; }
duke@0 1407 void set_arg_returned(intx v) { _arg_returned = v; }
kvn@45 1408 void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info();
kvn@45 1409 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@45 1410
kvn@45 1411 aid->set_arg_modified(a, v); }
duke@0 1412
duke@0 1413 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
duke@0 1414
duke@0 1415 // Location and size of data area
duke@0 1416 address data_base() const {
duke@0 1417 return (address) _data;
duke@0 1418 }
duke@0 1419 int data_size() {
duke@0 1420 return _data_size;
duke@0 1421 }
duke@0 1422
duke@0 1423 // Accessors
duke@0 1424 methodOop method() { return _method; }
duke@0 1425
duke@0 1426 // Get the data at an arbitrary (sort of) data index.
duke@0 1427 ProfileData* data_at(int data_index);
duke@0 1428
duke@0 1429 // Walk through the data in order.
duke@0 1430 ProfileData* first_data() { return data_at(first_di()); }
duke@0 1431 ProfileData* next_data(ProfileData* current);
duke@0 1432 bool is_valid(ProfileData* current) { return current != NULL; }
duke@0 1433
duke@0 1434 // Convert a dp (data pointer) to a di (data index).
duke@0 1435 int dp_to_di(address dp) {
duke@0 1436 return dp - ((address)_data);
duke@0 1437 }
duke@0 1438
duke@0 1439 address di_to_dp(int di) {
duke@0 1440 return (address)data_layout_at(di);
duke@0 1441 }
duke@0 1442
duke@0 1443 // bci to di/dp conversion.
duke@0 1444 address bci_to_dp(int bci);
duke@0 1445 int bci_to_di(int bci) {
duke@0 1446 return dp_to_di(bci_to_dp(bci));
duke@0 1447 }
duke@0 1448
duke@0 1449 // Get the data at an arbitrary bci, or NULL if there is none.
duke@0 1450 ProfileData* bci_to_data(int bci);
duke@0 1451
duke@0 1452 // Same, but try to create an extra_data record if one is needed:
duke@0 1453 ProfileData* allocate_bci_to_data(int bci) {
duke@0 1454 ProfileData* data = bci_to_data(bci);
duke@0 1455 return (data != NULL) ? data : bci_to_extra_data(bci, true);
duke@0 1456 }
duke@0 1457
duke@0 1458 // Add a handful of extra data records, for trap tracking.
duke@0 1459 DataLayout* extra_data_base() { return limit_data_position(); }
duke@0 1460 DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); }
duke@0 1461 int extra_data_size() { return (address)extra_data_limit()
duke@0 1462 - (address)extra_data_base(); }
duke@0 1463 static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
duke@0 1464
duke@0 1465 // Return (uint)-1 for overflow.
duke@0 1466 uint trap_count(int reason) const {
duke@0 1467 assert((uint)reason < _trap_hist_limit, "oob");
duke@0 1468 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
duke@0 1469 }
duke@0 1470 // For loops:
duke@0 1471 static uint trap_reason_limit() { return _trap_hist_limit; }
duke@0 1472 static uint trap_count_limit() { return _trap_hist_mask; }
duke@0 1473 uint inc_trap_count(int reason) {
duke@0 1474 // Count another trap, anywhere in this method.
duke@0 1475 assert(reason >= 0, "must be single trap");
duke@0 1476 if ((uint)reason < _trap_hist_limit) {
duke@0 1477 uint cnt1 = 1 + _trap_hist._array[reason];
duke@0 1478 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow...
duke@0 1479 _trap_hist._array[reason] = cnt1;
duke@0 1480 return cnt1;
duke@0 1481 } else {
duke@0 1482 return _trap_hist_mask + (++_nof_overflow_traps);
duke@0 1483 }
duke@0 1484 } else {
duke@0 1485 // Could not represent the count in the histogram.
duke@0 1486 return (++_nof_overflow_traps);
duke@0 1487 }
duke@0 1488 }
duke@0 1489
duke@0 1490 uint overflow_trap_count() const {
duke@0 1491 return _nof_overflow_traps;
duke@0 1492 }
duke@0 1493 uint overflow_recompile_count() const {
duke@0 1494 return _nof_overflow_recompiles;
duke@0 1495 }
duke@0 1496 void inc_overflow_recompile_count() {
duke@0 1497 _nof_overflow_recompiles += 1;
duke@0 1498 }
duke@0 1499 uint decompile_count() const {
duke@0 1500 return _nof_decompiles;
duke@0 1501 }
duke@0 1502 void inc_decompile_count() {
duke@0 1503 _nof_decompiles += 1;
kvn@1206 1504 if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
iveresov@1703 1505 method()->set_not_compilable(CompLevel_full_optimization);
kvn@1206 1506 }
duke@0 1507 }
duke@0 1508
duke@0 1509 // Support for code generation
duke@0 1510 static ByteSize data_offset() {
duke@0 1511 return byte_offset_of(methodDataOopDesc, _data[0]);
duke@0 1512 }
duke@0 1513
iveresov@1703 1514 static ByteSize invocation_counter_offset() {
iveresov@1703 1515 return byte_offset_of(methodDataOopDesc, _invocation_counter);
iveresov@1703 1516 }
iveresov@1703 1517 static ByteSize backedge_counter_offset() {
iveresov@1703 1518 return byte_offset_of(methodDataOopDesc, _backedge_counter);
iveresov@1703 1519 }
iveresov@1703 1520
duke@0 1521 // GC support
duke@0 1522 oop* adr_method() const { return (oop*)&_method; }
duke@0 1523 bool object_is_parsable() const { return _size != 0; }
duke@0 1524 void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; }
duke@0 1525
duke@0 1526 #ifndef PRODUCT
duke@0 1527 // printing support for method data
duke@0 1528 void print_data_on(outputStream* st);
duke@0 1529 #endif
duke@0 1530
duke@0 1531 // verification
duke@0 1532 void verify_data_on(outputStream* st);
duke@0 1533 };
stefank@1879 1534
stefank@1879 1535 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP