annotate src/share/vm/oops/methodData.hpp @ 3602:da91efe96a93

6964458: Reimplement class meta-data storage to use native memory Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>
author coleenp
date Sat, 01 Sep 2012 13:25:18 -0400
parents src/share/vm/oops/methodDataOop.hpp@c26de9aef2ed
children 16fb9f942703 6a51fc70a15e
rev   line source
duke@0 1 /*
coleenp@3602 2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
trims@1472 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1472 20 * or visit www.oracle.com if you need additional information or have any
trims@1472 21 * questions.
duke@0 22 *
duke@0 23 */
duke@0 24
stefank@1879 25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
stefank@1879 26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
stefank@1879 27
stefank@1879 28 #include "interpreter/bytecodes.hpp"
stefank@1879 29 #include "memory/universe.hpp"
coleenp@3602 30 #include "oops/method.hpp"
stefank@1879 31 #include "oops/oop.hpp"
stefank@1879 32 #include "runtime/orderAccess.hpp"
stefank@1879 33
duke@0 34 class BytecodeStream;
duke@0 35
duke@0 36 // The MethodData object collects counts and other profile information
duke@0 37 // during zeroth-tier (interpretive) and first-tier execution.
duke@0 38 // The profile is used later by compilation heuristics. Some heuristics
duke@0 39 // enable use of aggressive (or "heroic") optimizations. An aggressive
duke@0 40 // optimization often has a down-side, a corner case that it handles
duke@0 41 // poorly, but which is thought to be rare. The profile provides
duke@0 42 // evidence of this rarity for a given method or even BCI. It allows
duke@0 43 // the compiler to back out of the optimization at places where it
duke@0 44 // has historically been a poor choice. Other heuristics try to use
duke@0 45 // specific information gathered about types observed at a given site.
duke@0 46 //
duke@0 47 // All data in the profile is approximate. It is expected to be accurate
duke@0 48 // on the whole, but the system expects occasional inaccuraces, due to
duke@0 49 // counter overflow, multiprocessor races during data collection, space
duke@0 50 // limitations, missing MDO blocks, etc. Bad or missing data will degrade
duke@0 51 // optimization quality but will not affect correctness. Also, each MDO
duke@0 52 // is marked with its birth-date ("creation_mileage") which can be used
duke@0 53 // to assess the quality ("maturity") of its data.
duke@0 54 //
duke@0 55 // Short (<32-bit) counters are designed to overflow to a known "saturated"
duke@0 56 // state. Also, certain recorded per-BCI events are given one-bit counters
duke@0 57 // which overflow to a saturated state which applied to all counters at
duke@0 58 // that BCI. In other words, there is a small lattice which approximates
duke@0 59 // the ideal of an infinite-precision counter for each event at each BCI,
duke@0 60 // and the lattice quickly "bottoms out" in a state where all counters
duke@0 61 // are taken to be indefinitely large.
duke@0 62 //
duke@0 63 // The reader will find many data races in profile gathering code, starting
duke@0 64 // with invocation counter incrementation. None of these races harm correct
duke@0 65 // execution of the compiled code.
duke@0 66
ysr@941 67 // forward decl
ysr@941 68 class ProfileData;
ysr@941 69
duke@0 70 // DataLayout
duke@0 71 //
duke@0 72 // Overlay for generic profiling data.
duke@0 73 class DataLayout VALUE_OBJ_CLASS_SPEC {
duke@0 74 private:
duke@0 75 // Every data layout begins with a header. This header
duke@0 76 // contains a tag, which is used to indicate the size/layout
duke@0 77 // of the data, 4 bits of flags, which can be used in any way,
duke@0 78 // 4 bits of trap history (none/one reason/many reasons),
duke@0 79 // and a bci, which is used to tie this piece of data to a
duke@0 80 // specific bci in the bytecodes.
duke@0 81 union {
duke@0 82 intptr_t _bits;
duke@0 83 struct {
duke@0 84 u1 _tag;
duke@0 85 u1 _flags;
duke@0 86 u2 _bci;
duke@0 87 } _struct;
duke@0 88 } _header;
duke@0 89
duke@0 90 // The data layout has an arbitrary number of cells, each sized
duke@0 91 // to accomodate a pointer or an integer.
duke@0 92 intptr_t _cells[1];
duke@0 93
duke@0 94 // Some types of data layouts need a length field.
duke@0 95 static bool needs_array_len(u1 tag);
duke@0 96
duke@0 97 public:
duke@0 98 enum {
duke@0 99 counter_increment = 1
duke@0 100 };
duke@0 101
duke@0 102 enum {
duke@0 103 cell_size = sizeof(intptr_t)
duke@0 104 };
duke@0 105
duke@0 106 // Tag values
duke@0 107 enum {
duke@0 108 no_tag,
duke@0 109 bit_data_tag,
duke@0 110 counter_data_tag,
duke@0 111 jump_data_tag,
duke@0 112 receiver_type_data_tag,
duke@0 113 virtual_call_data_tag,
duke@0 114 ret_data_tag,
duke@0 115 branch_data_tag,
kvn@45 116 multi_branch_data_tag,
kvn@45 117 arg_info_data_tag
duke@0 118 };
duke@0 119
duke@0 120 enum {
duke@0 121 // The _struct._flags word is formatted as [trap_state:4 | flags:4].
duke@0 122 // The trap state breaks down further as [recompile:1 | reason:3].
duke@0 123 // This further breakdown is defined in deoptimization.cpp.
duke@0 124 // See Deoptimization::trap_state_reason for an assert that
duke@0 125 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
duke@0 126 //
duke@0 127 // The trap_state is collected only if ProfileTraps is true.
duke@0 128 trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
duke@0 129 trap_shift = BitsPerByte - trap_bits,
duke@0 130 trap_mask = right_n_bits(trap_bits),
duke@0 131 trap_mask_in_place = (trap_mask << trap_shift),
duke@0 132 flag_limit = trap_shift,
duke@0 133 flag_mask = right_n_bits(flag_limit),
duke@0 134 first_flag = 0
duke@0 135 };
duke@0 136
duke@0 137 // Size computation
duke@0 138 static int header_size_in_bytes() {
duke@0 139 return cell_size;
duke@0 140 }
duke@0 141 static int header_size_in_cells() {
duke@0 142 return 1;
duke@0 143 }
duke@0 144
duke@0 145 static int compute_size_in_bytes(int cell_count) {
duke@0 146 return header_size_in_bytes() + cell_count * cell_size;
duke@0 147 }
duke@0 148
duke@0 149 // Initialization
duke@0 150 void initialize(u1 tag, u2 bci, int cell_count);
duke@0 151
duke@0 152 // Accessors
duke@0 153 u1 tag() {
duke@0 154 return _header._struct._tag;
duke@0 155 }
duke@0 156
duke@0 157 // Return a few bits of trap state. Range is [0..trap_mask].
duke@0 158 // The state tells if traps with zero, one, or many reasons have occurred.
duke@0 159 // It also tells whether zero or many recompilations have occurred.
duke@0 160 // The associated trap histogram in the MDO itself tells whether
duke@0 161 // traps are common or not. If a BCI shows that a trap X has
duke@0 162 // occurred, and the MDO shows N occurrences of X, we make the
duke@0 163 // simplifying assumption that all N occurrences can be blamed
duke@0 164 // on that BCI.
duke@0 165 int trap_state() {
duke@0 166 return ((_header._struct._flags >> trap_shift) & trap_mask);
duke@0 167 }
duke@0 168
duke@0 169 void set_trap_state(int new_state) {
duke@0 170 assert(ProfileTraps, "used only under +ProfileTraps");
duke@0 171 uint old_flags = (_header._struct._flags & flag_mask);
duke@0 172 _header._struct._flags = (new_state << trap_shift) | old_flags;
duke@0 173 }
duke@0 174
duke@0 175 u1 flags() {
duke@0 176 return _header._struct._flags;
duke@0 177 }
duke@0 178
duke@0 179 u2 bci() {
duke@0 180 return _header._struct._bci;
duke@0 181 }
duke@0 182
duke@0 183 void set_header(intptr_t value) {
duke@0 184 _header._bits = value;
duke@0 185 }
duke@0 186 void release_set_header(intptr_t value) {
duke@0 187 OrderAccess::release_store_ptr(&_header._bits, value);
duke@0 188 }
duke@0 189 intptr_t header() {
duke@0 190 return _header._bits;
duke@0 191 }
duke@0 192 void set_cell_at(int index, intptr_t value) {
duke@0 193 _cells[index] = value;
duke@0 194 }
duke@0 195 void release_set_cell_at(int index, intptr_t value) {
duke@0 196 OrderAccess::release_store_ptr(&_cells[index], value);
duke@0 197 }
duke@0 198 intptr_t cell_at(int index) {
duke@0 199 return _cells[index];
duke@0 200 }
duke@0 201
duke@0 202 void set_flag_at(int flag_number) {
duke@0 203 assert(flag_number < flag_limit, "oob");
duke@0 204 _header._struct._flags |= (0x1 << flag_number);
duke@0 205 }
duke@0 206 bool flag_at(int flag_number) {
duke@0 207 assert(flag_number < flag_limit, "oob");
duke@0 208 return (_header._struct._flags & (0x1 << flag_number)) != 0;
duke@0 209 }
duke@0 210
duke@0 211 // Low-level support for code generation.
duke@0 212 static ByteSize header_offset() {
duke@0 213 return byte_offset_of(DataLayout, _header);
duke@0 214 }
duke@0 215 static ByteSize tag_offset() {
duke@0 216 return byte_offset_of(DataLayout, _header._struct._tag);
duke@0 217 }
duke@0 218 static ByteSize flags_offset() {
duke@0 219 return byte_offset_of(DataLayout, _header._struct._flags);
duke@0 220 }
duke@0 221 static ByteSize bci_offset() {
duke@0 222 return byte_offset_of(DataLayout, _header._struct._bci);
duke@0 223 }
duke@0 224 static ByteSize cell_offset(int index) {
coleenp@2180 225 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
duke@0 226 }
duke@0 227 // Return a value which, when or-ed as a byte into _flags, sets the flag.
duke@0 228 static int flag_number_to_byte_constant(int flag_number) {
duke@0 229 assert(0 <= flag_number && flag_number < flag_limit, "oob");
duke@0 230 DataLayout temp; temp.set_header(0);
duke@0 231 temp.set_flag_at(flag_number);
duke@0 232 return temp._header._struct._flags;
duke@0 233 }
duke@0 234 // Return a value which, when or-ed as a word into _header, sets the flag.
duke@0 235 static intptr_t flag_mask_to_header_mask(int byte_constant) {
duke@0 236 DataLayout temp; temp.set_header(0);
duke@0 237 temp._header._struct._flags = byte_constant;
duke@0 238 return temp._header._bits;
duke@0 239 }
ysr@941 240
coleenp@3602 241 ProfileData* data_in();
coleenp@3602 242
ysr@941 243 // GC support
coleenp@3602 244 void clean_weak_klass_links(BoolObjectClosure* cl);
duke@0 245 };
duke@0 246
duke@0 247
duke@0 248 // ProfileData class hierarchy
duke@0 249 class ProfileData;
duke@0 250 class BitData;
duke@0 251 class CounterData;
duke@0 252 class ReceiverTypeData;
duke@0 253 class VirtualCallData;
duke@0 254 class RetData;
duke@0 255 class JumpData;
duke@0 256 class BranchData;
duke@0 257 class ArrayData;
duke@0 258 class MultiBranchData;
kvn@45 259 class ArgInfoData;
duke@0 260
duke@0 261
duke@0 262 // ProfileData
duke@0 263 //
duke@0 264 // A ProfileData object is created to refer to a section of profiling
duke@0 265 // data in a structured way.
duke@0 266 class ProfileData : public ResourceObj {
duke@0 267 private:
duke@0 268 #ifndef PRODUCT
duke@0 269 enum {
duke@0 270 tab_width_one = 16,
duke@0 271 tab_width_two = 36
duke@0 272 };
duke@0 273 #endif // !PRODUCT
duke@0 274
duke@0 275 // This is a pointer to a section of profiling data.
duke@0 276 DataLayout* _data;
duke@0 277
duke@0 278 protected:
duke@0 279 DataLayout* data() { return _data; }
duke@0 280
duke@0 281 enum {
duke@0 282 cell_size = DataLayout::cell_size
duke@0 283 };
duke@0 284
duke@0 285 public:
duke@0 286 // How many cells are in this?
duke@0 287 virtual int cell_count() {
duke@0 288 ShouldNotReachHere();
duke@0 289 return -1;
duke@0 290 }
duke@0 291
duke@0 292 // Return the size of this data.
duke@0 293 int size_in_bytes() {
duke@0 294 return DataLayout::compute_size_in_bytes(cell_count());
duke@0 295 }
duke@0 296
duke@0 297 protected:
duke@0 298 // Low-level accessors for underlying data
duke@0 299 void set_intptr_at(int index, intptr_t value) {
duke@0 300 assert(0 <= index && index < cell_count(), "oob");
duke@0 301 data()->set_cell_at(index, value);
duke@0 302 }
duke@0 303 void release_set_intptr_at(int index, intptr_t value) {
duke@0 304 assert(0 <= index && index < cell_count(), "oob");
duke@0 305 data()->release_set_cell_at(index, value);
duke@0 306 }
duke@0 307 intptr_t intptr_at(int index) {
duke@0 308 assert(0 <= index && index < cell_count(), "oob");
duke@0 309 return data()->cell_at(index);
duke@0 310 }
duke@0 311 void set_uint_at(int index, uint value) {
duke@0 312 set_intptr_at(index, (intptr_t) value);
duke@0 313 }
duke@0 314 void release_set_uint_at(int index, uint value) {
duke@0 315 release_set_intptr_at(index, (intptr_t) value);
duke@0 316 }
duke@0 317 uint uint_at(int index) {
duke@0 318 return (uint)intptr_at(index);
duke@0 319 }
duke@0 320 void set_int_at(int index, int value) {
duke@0 321 set_intptr_at(index, (intptr_t) value);
duke@0 322 }
duke@0 323 void release_set_int_at(int index, int value) {
duke@0 324 release_set_intptr_at(index, (intptr_t) value);
duke@0 325 }
duke@0 326 int int_at(int index) {
duke@0 327 return (int)intptr_at(index);
duke@0 328 }
duke@0 329 int int_at_unchecked(int index) {
duke@0 330 return (int)data()->cell_at(index);
duke@0 331 }
duke@0 332 void set_oop_at(int index, oop value) {
duke@0 333 set_intptr_at(index, (intptr_t) value);
duke@0 334 }
duke@0 335 oop oop_at(int index) {
duke@0 336 return (oop)intptr_at(index);
duke@0 337 }
duke@0 338
duke@0 339 void set_flag_at(int flag_number) {
duke@0 340 data()->set_flag_at(flag_number);
duke@0 341 }
duke@0 342 bool flag_at(int flag_number) {
duke@0 343 return data()->flag_at(flag_number);
duke@0 344 }
duke@0 345
duke@0 346 // two convenient imports for use by subclasses:
duke@0 347 static ByteSize cell_offset(int index) {
duke@0 348 return DataLayout::cell_offset(index);
duke@0 349 }
duke@0 350 static int flag_number_to_byte_constant(int flag_number) {
duke@0 351 return DataLayout::flag_number_to_byte_constant(flag_number);
duke@0 352 }
duke@0 353
duke@0 354 ProfileData(DataLayout* data) {
duke@0 355 _data = data;
duke@0 356 }
duke@0 357
duke@0 358 public:
duke@0 359 // Constructor for invalid ProfileData.
duke@0 360 ProfileData();
duke@0 361
duke@0 362 u2 bci() {
duke@0 363 return data()->bci();
duke@0 364 }
duke@0 365
duke@0 366 address dp() {
duke@0 367 return (address)_data;
duke@0 368 }
duke@0 369
duke@0 370 int trap_state() {
duke@0 371 return data()->trap_state();
duke@0 372 }
duke@0 373 void set_trap_state(int new_state) {
duke@0 374 data()->set_trap_state(new_state);
duke@0 375 }
duke@0 376
duke@0 377 // Type checking
duke@0 378 virtual bool is_BitData() { return false; }
duke@0 379 virtual bool is_CounterData() { return false; }
duke@0 380 virtual bool is_JumpData() { return false; }
duke@0 381 virtual bool is_ReceiverTypeData(){ return false; }
duke@0 382 virtual bool is_VirtualCallData() { return false; }
duke@0 383 virtual bool is_RetData() { return false; }
duke@0 384 virtual bool is_BranchData() { return false; }
duke@0 385 virtual bool is_ArrayData() { return false; }
duke@0 386 virtual bool is_MultiBranchData() { return false; }
kvn@45 387 virtual bool is_ArgInfoData() { return false; }
kvn@45 388
duke@0 389
duke@0 390 BitData* as_BitData() {
duke@0 391 assert(is_BitData(), "wrong type");
duke@0 392 return is_BitData() ? (BitData*) this : NULL;
duke@0 393 }
duke@0 394 CounterData* as_CounterData() {
duke@0 395 assert(is_CounterData(), "wrong type");
duke@0 396 return is_CounterData() ? (CounterData*) this : NULL;
duke@0 397 }
duke@0 398 JumpData* as_JumpData() {
duke@0 399 assert(is_JumpData(), "wrong type");
duke@0 400 return is_JumpData() ? (JumpData*) this : NULL;
duke@0 401 }
duke@0 402 ReceiverTypeData* as_ReceiverTypeData() {
duke@0 403 assert(is_ReceiverTypeData(), "wrong type");
duke@0 404 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
duke@0 405 }
duke@0 406 VirtualCallData* as_VirtualCallData() {
duke@0 407 assert(is_VirtualCallData(), "wrong type");
duke@0 408 return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
duke@0 409 }
duke@0 410 RetData* as_RetData() {
duke@0 411 assert(is_RetData(), "wrong type");
duke@0 412 return is_RetData() ? (RetData*) this : NULL;
duke@0 413 }
duke@0 414 BranchData* as_BranchData() {
duke@0 415 assert(is_BranchData(), "wrong type");
duke@0 416 return is_BranchData() ? (BranchData*) this : NULL;
duke@0 417 }
duke@0 418 ArrayData* as_ArrayData() {
duke@0 419 assert(is_ArrayData(), "wrong type");
duke@0 420 return is_ArrayData() ? (ArrayData*) this : NULL;
duke@0 421 }
duke@0 422 MultiBranchData* as_MultiBranchData() {
duke@0 423 assert(is_MultiBranchData(), "wrong type");
duke@0 424 return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
duke@0 425 }
kvn@45 426 ArgInfoData* as_ArgInfoData() {
kvn@45 427 assert(is_ArgInfoData(), "wrong type");
kvn@45 428 return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
kvn@45 429 }
duke@0 430
duke@0 431
duke@0 432 // Subclass specific initialization
coleenp@3602 433 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
duke@0 434
duke@0 435 // GC support
coleenp@3602 436 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
duke@0 437
duke@0 438 // CI translation: ProfileData can represent both MethodDataOop data
duke@0 439 // as well as CIMethodData data. This function is provided for translating
duke@0 440 // an oop in a ProfileData to the ci equivalent. Generally speaking,
duke@0 441 // most ProfileData don't require any translation, so we provide the null
duke@0 442 // translation here, and the required translators are in the ci subclasses.
duke@0 443 virtual void translate_from(ProfileData* data) {}
duke@0 444
duke@0 445 virtual void print_data_on(outputStream* st) {
duke@0 446 ShouldNotReachHere();
duke@0 447 }
duke@0 448
duke@0 449 #ifndef PRODUCT
duke@0 450 void print_shared(outputStream* st, const char* name);
duke@0 451 void tab(outputStream* st);
duke@0 452 #endif
duke@0 453 };
duke@0 454
duke@0 455 // BitData
duke@0 456 //
duke@0 457 // A BitData holds a flag or two in its header.
duke@0 458 class BitData : public ProfileData {
duke@0 459 protected:
duke@0 460 enum {
duke@0 461 // null_seen:
duke@0 462 // saw a null operand (cast/aastore/instanceof)
duke@0 463 null_seen_flag = DataLayout::first_flag + 0
duke@0 464 };
duke@0 465 enum { bit_cell_count = 0 }; // no additional data fields needed.
duke@0 466 public:
duke@0 467 BitData(DataLayout* layout) : ProfileData(layout) {
duke@0 468 }
duke@0 469
duke@0 470 virtual bool is_BitData() { return true; }
duke@0 471
duke@0 472 static int static_cell_count() {
duke@0 473 return bit_cell_count;
duke@0 474 }
duke@0 475
duke@0 476 virtual int cell_count() {
duke@0 477 return static_cell_count();
duke@0 478 }
duke@0 479
duke@0 480 // Accessor
duke@0 481
duke@0 482 // The null_seen flag bit is specially known to the interpreter.
duke@0 483 // Consulting it allows the compiler to avoid setting up null_check traps.
duke@0 484 bool null_seen() { return flag_at(null_seen_flag); }
duke@0 485 void set_null_seen() { set_flag_at(null_seen_flag); }
duke@0 486
duke@0 487
duke@0 488 // Code generation support
duke@0 489 static int null_seen_byte_constant() {
duke@0 490 return flag_number_to_byte_constant(null_seen_flag);
duke@0 491 }
duke@0 492
duke@0 493 static ByteSize bit_data_size() {
duke@0 494 return cell_offset(bit_cell_count);
duke@0 495 }
duke@0 496
duke@0 497 #ifndef PRODUCT
duke@0 498 void print_data_on(outputStream* st);
duke@0 499 #endif
duke@0 500 };
duke@0 501
duke@0 502 // CounterData
duke@0 503 //
duke@0 504 // A CounterData corresponds to a simple counter.
duke@0 505 class CounterData : public BitData {
duke@0 506 protected:
duke@0 507 enum {
duke@0 508 count_off,
duke@0 509 counter_cell_count
duke@0 510 };
duke@0 511 public:
duke@0 512 CounterData(DataLayout* layout) : BitData(layout) {}
duke@0 513
duke@0 514 virtual bool is_CounterData() { return true; }
duke@0 515
duke@0 516 static int static_cell_count() {
duke@0 517 return counter_cell_count;
duke@0 518 }
duke@0 519
duke@0 520 virtual int cell_count() {
duke@0 521 return static_cell_count();
duke@0 522 }
duke@0 523
duke@0 524 // Direct accessor
duke@0 525 uint count() {
duke@0 526 return uint_at(count_off);
duke@0 527 }
duke@0 528
duke@0 529 // Code generation support
duke@0 530 static ByteSize count_offset() {
duke@0 531 return cell_offset(count_off);
duke@0 532 }
duke@0 533 static ByteSize counter_data_size() {
duke@0 534 return cell_offset(counter_cell_count);
duke@0 535 }
duke@0 536
kvn@1251 537 void set_count(uint count) {
kvn@1251 538 set_uint_at(count_off, count);
kvn@1251 539 }
kvn@1251 540
duke@0 541 #ifndef PRODUCT
duke@0 542 void print_data_on(outputStream* st);
duke@0 543 #endif
duke@0 544 };
duke@0 545
duke@0 546 // JumpData
duke@0 547 //
duke@0 548 // A JumpData is used to access profiling information for a direct
duke@0 549 // branch. It is a counter, used for counting the number of branches,
duke@0 550 // plus a data displacement, used for realigning the data pointer to
duke@0 551 // the corresponding target bci.
duke@0 552 class JumpData : public ProfileData {
duke@0 553 protected:
duke@0 554 enum {
duke@0 555 taken_off_set,
duke@0 556 displacement_off_set,
duke@0 557 jump_cell_count
duke@0 558 };
duke@0 559
duke@0 560 void set_displacement(int displacement) {
duke@0 561 set_int_at(displacement_off_set, displacement);
duke@0 562 }
duke@0 563
duke@0 564 public:
duke@0 565 JumpData(DataLayout* layout) : ProfileData(layout) {
duke@0 566 assert(layout->tag() == DataLayout::jump_data_tag ||
duke@0 567 layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@0 568 }
duke@0 569
duke@0 570 virtual bool is_JumpData() { return true; }
duke@0 571
duke@0 572 static int static_cell_count() {
duke@0 573 return jump_cell_count;
duke@0 574 }
duke@0 575
duke@0 576 virtual int cell_count() {
duke@0 577 return static_cell_count();
duke@0 578 }
duke@0 579
duke@0 580 // Direct accessor
duke@0 581 uint taken() {
duke@0 582 return uint_at(taken_off_set);
duke@0 583 }
never@2670 584
never@2670 585 void set_taken(uint cnt) {
never@2670 586 set_uint_at(taken_off_set, cnt);
never@2670 587 }
never@2670 588
duke@0 589 // Saturating counter
duke@0 590 uint inc_taken() {
duke@0 591 uint cnt = taken() + 1;
duke@0 592 // Did we wrap? Will compiler screw us??
duke@0 593 if (cnt == 0) cnt--;
duke@0 594 set_uint_at(taken_off_set, cnt);
duke@0 595 return cnt;
duke@0 596 }
duke@0 597
duke@0 598 int displacement() {
duke@0 599 return int_at(displacement_off_set);
duke@0 600 }
duke@0 601
duke@0 602 // Code generation support
duke@0 603 static ByteSize taken_offset() {
duke@0 604 return cell_offset(taken_off_set);
duke@0 605 }
duke@0 606
duke@0 607 static ByteSize displacement_offset() {
duke@0 608 return cell_offset(displacement_off_set);
duke@0 609 }
duke@0 610
duke@0 611 // Specific initialization.
coleenp@3602 612 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 613
duke@0 614 #ifndef PRODUCT
duke@0 615 void print_data_on(outputStream* st);
duke@0 616 #endif
duke@0 617 };
duke@0 618
duke@0 619 // ReceiverTypeData
duke@0 620 //
duke@0 621 // A ReceiverTypeData is used to access profiling information about a
duke@0 622 // dynamic type check. It consists of a counter which counts the total times
coleenp@3602 623 // that the check is reached, and a series of (Klass*, count) pairs
duke@0 624 // which are used to store a type profile for the receiver of the check.
duke@0 625 class ReceiverTypeData : public CounterData {
duke@0 626 protected:
duke@0 627 enum {
duke@0 628 receiver0_offset = counter_cell_count,
duke@0 629 count0_offset,
duke@0 630 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
duke@0 631 };
duke@0 632
duke@0 633 public:
duke@0 634 ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
duke@0 635 assert(layout->tag() == DataLayout::receiver_type_data_tag ||
duke@0 636 layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
duke@0 637 }
duke@0 638
duke@0 639 virtual bool is_ReceiverTypeData() { return true; }
duke@0 640
duke@0 641 static int static_cell_count() {
duke@0 642 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
duke@0 643 }
duke@0 644
duke@0 645 virtual int cell_count() {
duke@0 646 return static_cell_count();
duke@0 647 }
duke@0 648
duke@0 649 // Direct accessors
duke@0 650 static uint row_limit() {
duke@0 651 return TypeProfileWidth;
duke@0 652 }
duke@0 653 static int receiver_cell_index(uint row) {
duke@0 654 return receiver0_offset + row * receiver_type_row_cell_count;
duke@0 655 }
duke@0 656 static int receiver_count_cell_index(uint row) {
duke@0 657 return count0_offset + row * receiver_type_row_cell_count;
duke@0 658 }
duke@0 659
coleenp@3602 660 Klass* receiver(uint row) {
duke@0 661 assert(row < row_limit(), "oob");
duke@0 662
coleenp@3602 663 Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
coleenp@3602 664 assert(recv == NULL || recv->is_klass(), "wrong type");
duke@0 665 return recv;
duke@0 666 }
duke@0 667
coleenp@3602 668 void set_receiver(uint row, Klass* k) {
ysr@941 669 assert((uint)row < row_limit(), "oob");
coleenp@3602 670 set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
ysr@941 671 }
ysr@941 672
duke@0 673 uint receiver_count(uint row) {
duke@0 674 assert(row < row_limit(), "oob");
duke@0 675 return uint_at(receiver_count_cell_index(row));
duke@0 676 }
duke@0 677
ysr@941 678 void set_receiver_count(uint row, uint count) {
ysr@941 679 assert(row < row_limit(), "oob");
ysr@941 680 set_uint_at(receiver_count_cell_index(row), count);
ysr@941 681 }
ysr@941 682
ysr@941 683 void clear_row(uint row) {
ysr@941 684 assert(row < row_limit(), "oob");
kvn@1251 685 // Clear total count - indicator of polymorphic call site.
kvn@1251 686 // The site may look like as monomorphic after that but
kvn@1251 687 // it allow to have more accurate profiling information because
kvn@1251 688 // there was execution phase change since klasses were unloaded.
kvn@1251 689 // If the site is still polymorphic then MDO will be updated
kvn@1251 690 // to reflect it. But it could be the case that the site becomes
kvn@1251 691 // only bimorphic. Then keeping total count not 0 will be wrong.
kvn@1251 692 // Even if we use monomorphic (when it is not) for compilation
kvn@1251 693 // we will only have trap, deoptimization and recompile again
kvn@1251 694 // with updated MDO after executing method in Interpreter.
kvn@1251 695 // An additional receiver will be recorded in the cleaned row
kvn@1251 696 // during next call execution.
kvn@1251 697 //
kvn@1251 698 // Note: our profiling logic works with empty rows in any slot.
kvn@1251 699 // We do sorting a profiling info (ciCallProfile) for compilation.
kvn@1251 700 //
kvn@1251 701 set_count(0);
ysr@941 702 set_receiver(row, NULL);
ysr@941 703 set_receiver_count(row, 0);
ysr@941 704 }
ysr@941 705
duke@0 706 // Code generation support
duke@0 707 static ByteSize receiver_offset(uint row) {
duke@0 708 return cell_offset(receiver_cell_index(row));
duke@0 709 }
duke@0 710 static ByteSize receiver_count_offset(uint row) {
duke@0 711 return cell_offset(receiver_count_cell_index(row));
duke@0 712 }
duke@0 713 static ByteSize receiver_type_data_size() {
duke@0 714 return cell_offset(static_cell_count());
duke@0 715 }
duke@0 716
duke@0 717 // GC support
coleenp@3602 718 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
duke@0 719
duke@0 720 #ifndef PRODUCT
duke@0 721 void print_receiver_data_on(outputStream* st);
duke@0 722 void print_data_on(outputStream* st);
duke@0 723 #endif
duke@0 724 };
duke@0 725
duke@0 726 // VirtualCallData
duke@0 727 //
duke@0 728 // A VirtualCallData is used to access profiling information about a
duke@0 729 // virtual call. For now, it has nothing more than a ReceiverTypeData.
duke@0 730 class VirtualCallData : public ReceiverTypeData {
duke@0 731 public:
duke@0 732 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
duke@0 733 assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
duke@0 734 }
duke@0 735
duke@0 736 virtual bool is_VirtualCallData() { return true; }
duke@0 737
duke@0 738 static int static_cell_count() {
duke@0 739 // At this point we could add more profile state, e.g., for arguments.
duke@0 740 // But for now it's the same size as the base record type.
duke@0 741 return ReceiverTypeData::static_cell_count();
duke@0 742 }
duke@0 743
duke@0 744 virtual int cell_count() {
duke@0 745 return static_cell_count();
duke@0 746 }
duke@0 747
duke@0 748 // Direct accessors
duke@0 749 static ByteSize virtual_call_data_size() {
duke@0 750 return cell_offset(static_cell_count());
duke@0 751 }
duke@0 752
duke@0 753 #ifndef PRODUCT
duke@0 754 void print_data_on(outputStream* st);
duke@0 755 #endif
duke@0 756 };
duke@0 757
duke@0 758 // RetData
duke@0 759 //
duke@0 760 // A RetData is used to access profiling information for a ret bytecode.
duke@0 761 // It is composed of a count of the number of times that the ret has
duke@0 762 // been executed, followed by a series of triples of the form
duke@0 763 // (bci, count, di) which count the number of times that some bci was the
duke@0 764 // target of the ret and cache a corresponding data displacement.
duke@0 765 class RetData : public CounterData {
duke@0 766 protected:
duke@0 767 enum {
duke@0 768 bci0_offset = counter_cell_count,
duke@0 769 count0_offset,
duke@0 770 displacement0_offset,
duke@0 771 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
duke@0 772 };
duke@0 773
duke@0 774 void set_bci(uint row, int bci) {
duke@0 775 assert((uint)row < row_limit(), "oob");
duke@0 776 set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@0 777 }
duke@0 778 void release_set_bci(uint row, int bci) {
duke@0 779 assert((uint)row < row_limit(), "oob");
duke@0 780 // 'release' when setting the bci acts as a valid flag for other
duke@0 781 // threads wrt bci_count and bci_displacement.
duke@0 782 release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
duke@0 783 }
duke@0 784 void set_bci_count(uint row, uint count) {
duke@0 785 assert((uint)row < row_limit(), "oob");
duke@0 786 set_uint_at(count0_offset + row * ret_row_cell_count, count);
duke@0 787 }
duke@0 788 void set_bci_displacement(uint row, int disp) {
duke@0 789 set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
duke@0 790 }
duke@0 791
duke@0 792 public:
duke@0 793 RetData(DataLayout* layout) : CounterData(layout) {
duke@0 794 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
duke@0 795 }
duke@0 796
duke@0 797 virtual bool is_RetData() { return true; }
duke@0 798
duke@0 799 enum {
duke@0 800 no_bci = -1 // value of bci when bci1/2 are not in use.
duke@0 801 };
duke@0 802
duke@0 803 static int static_cell_count() {
duke@0 804 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
duke@0 805 }
duke@0 806
duke@0 807 virtual int cell_count() {
duke@0 808 return static_cell_count();
duke@0 809 }
duke@0 810
duke@0 811 static uint row_limit() {
duke@0 812 return BciProfileWidth;
duke@0 813 }
duke@0 814 static int bci_cell_index(uint row) {
duke@0 815 return bci0_offset + row * ret_row_cell_count;
duke@0 816 }
duke@0 817 static int bci_count_cell_index(uint row) {
duke@0 818 return count0_offset + row * ret_row_cell_count;
duke@0 819 }
duke@0 820 static int bci_displacement_cell_index(uint row) {
duke@0 821 return displacement0_offset + row * ret_row_cell_count;
duke@0 822 }
duke@0 823
duke@0 824 // Direct accessors
duke@0 825 int bci(uint row) {
duke@0 826 return int_at(bci_cell_index(row));
duke@0 827 }
duke@0 828 uint bci_count(uint row) {
duke@0 829 return uint_at(bci_count_cell_index(row));
duke@0 830 }
duke@0 831 int bci_displacement(uint row) {
duke@0 832 return int_at(bci_displacement_cell_index(row));
duke@0 833 }
duke@0 834
duke@0 835 // Interpreter Runtime support
coleenp@3602 836 address fixup_ret(int return_bci, MethodData* mdo);
duke@0 837
duke@0 838 // Code generation support
duke@0 839 static ByteSize bci_offset(uint row) {
duke@0 840 return cell_offset(bci_cell_index(row));
duke@0 841 }
duke@0 842 static ByteSize bci_count_offset(uint row) {
duke@0 843 return cell_offset(bci_count_cell_index(row));
duke@0 844 }
duke@0 845 static ByteSize bci_displacement_offset(uint row) {
duke@0 846 return cell_offset(bci_displacement_cell_index(row));
duke@0 847 }
duke@0 848
duke@0 849 // Specific initialization.
coleenp@3602 850 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 851
duke@0 852 #ifndef PRODUCT
duke@0 853 void print_data_on(outputStream* st);
duke@0 854 #endif
duke@0 855 };
duke@0 856
duke@0 857 // BranchData
duke@0 858 //
duke@0 859 // A BranchData is used to access profiling data for a two-way branch.
duke@0 860 // It consists of taken and not_taken counts as well as a data displacement
duke@0 861 // for the taken case.
duke@0 862 class BranchData : public JumpData {
duke@0 863 protected:
duke@0 864 enum {
duke@0 865 not_taken_off_set = jump_cell_count,
duke@0 866 branch_cell_count
duke@0 867 };
duke@0 868
duke@0 869 void set_displacement(int displacement) {
duke@0 870 set_int_at(displacement_off_set, displacement);
duke@0 871 }
duke@0 872
duke@0 873 public:
duke@0 874 BranchData(DataLayout* layout) : JumpData(layout) {
duke@0 875 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
duke@0 876 }
duke@0 877
duke@0 878 virtual bool is_BranchData() { return true; }
duke@0 879
duke@0 880 static int static_cell_count() {
duke@0 881 return branch_cell_count;
duke@0 882 }
duke@0 883
duke@0 884 virtual int cell_count() {
duke@0 885 return static_cell_count();
duke@0 886 }
duke@0 887
duke@0 888 // Direct accessor
duke@0 889 uint not_taken() {
duke@0 890 return uint_at(not_taken_off_set);
duke@0 891 }
duke@0 892
never@2670 893 void set_not_taken(uint cnt) {
never@2670 894 set_uint_at(not_taken_off_set, cnt);
never@2670 895 }
never@2670 896
duke@0 897 uint inc_not_taken() {
duke@0 898 uint cnt = not_taken() + 1;
duke@0 899 // Did we wrap? Will compiler screw us??
duke@0 900 if (cnt == 0) cnt--;
duke@0 901 set_uint_at(not_taken_off_set, cnt);
duke@0 902 return cnt;
duke@0 903 }
duke@0 904
duke@0 905 // Code generation support
duke@0 906 static ByteSize not_taken_offset() {
duke@0 907 return cell_offset(not_taken_off_set);
duke@0 908 }
duke@0 909 static ByteSize branch_data_size() {
duke@0 910 return cell_offset(branch_cell_count);
duke@0 911 }
duke@0 912
duke@0 913 // Specific initialization.
coleenp@3602 914 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 915
duke@0 916 #ifndef PRODUCT
duke@0 917 void print_data_on(outputStream* st);
duke@0 918 #endif
duke@0 919 };
duke@0 920
duke@0 921 // ArrayData
duke@0 922 //
duke@0 923 // A ArrayData is a base class for accessing profiling data which does
duke@0 924 // not have a statically known size. It consists of an array length
duke@0 925 // and an array start.
duke@0 926 class ArrayData : public ProfileData {
duke@0 927 protected:
duke@0 928 friend class DataLayout;
duke@0 929
duke@0 930 enum {
duke@0 931 array_len_off_set,
duke@0 932 array_start_off_set
duke@0 933 };
duke@0 934
duke@0 935 uint array_uint_at(int index) {
duke@0 936 int aindex = index + array_start_off_set;
duke@0 937 return uint_at(aindex);
duke@0 938 }
duke@0 939 int array_int_at(int index) {
duke@0 940 int aindex = index + array_start_off_set;
duke@0 941 return int_at(aindex);
duke@0 942 }
duke@0 943 oop array_oop_at(int index) {
duke@0 944 int aindex = index + array_start_off_set;
duke@0 945 return oop_at(aindex);
duke@0 946 }
duke@0 947 void array_set_int_at(int index, int value) {
duke@0 948 int aindex = index + array_start_off_set;
duke@0 949 set_int_at(aindex, value);
duke@0 950 }
duke@0 951
duke@0 952 // Code generation support for subclasses.
duke@0 953 static ByteSize array_element_offset(int index) {
duke@0 954 return cell_offset(array_start_off_set + index);
duke@0 955 }
duke@0 956
duke@0 957 public:
duke@0 958 ArrayData(DataLayout* layout) : ProfileData(layout) {}
duke@0 959
duke@0 960 virtual bool is_ArrayData() { return true; }
duke@0 961
duke@0 962 static int static_cell_count() {
duke@0 963 return -1;
duke@0 964 }
duke@0 965
duke@0 966 int array_len() {
duke@0 967 return int_at_unchecked(array_len_off_set);
duke@0 968 }
duke@0 969
duke@0 970 virtual int cell_count() {
duke@0 971 return array_len() + 1;
duke@0 972 }
duke@0 973
duke@0 974 // Code generation support
duke@0 975 static ByteSize array_len_offset() {
duke@0 976 return cell_offset(array_len_off_set);
duke@0 977 }
duke@0 978 static ByteSize array_start_offset() {
duke@0 979 return cell_offset(array_start_off_set);
duke@0 980 }
duke@0 981 };
duke@0 982
duke@0 983 // MultiBranchData
duke@0 984 //
duke@0 985 // A MultiBranchData is used to access profiling information for
duke@0 986 // a multi-way branch (*switch bytecodes). It consists of a series
duke@0 987 // of (count, displacement) pairs, which count the number of times each
duke@0 988 // case was taken and specify the data displacment for each branch target.
duke@0 989 class MultiBranchData : public ArrayData {
duke@0 990 protected:
duke@0 991 enum {
duke@0 992 default_count_off_set,
duke@0 993 default_disaplacement_off_set,
duke@0 994 case_array_start
duke@0 995 };
duke@0 996 enum {
duke@0 997 relative_count_off_set,
duke@0 998 relative_displacement_off_set,
duke@0 999 per_case_cell_count
duke@0 1000 };
duke@0 1001
duke@0 1002 void set_default_displacement(int displacement) {
duke@0 1003 array_set_int_at(default_disaplacement_off_set, displacement);
duke@0 1004 }
duke@0 1005 void set_displacement_at(int index, int displacement) {
duke@0 1006 array_set_int_at(case_array_start +
duke@0 1007 index * per_case_cell_count +
duke@0 1008 relative_displacement_off_set,
duke@0 1009 displacement);
duke@0 1010 }
duke@0 1011
duke@0 1012 public:
duke@0 1013 MultiBranchData(DataLayout* layout) : ArrayData(layout) {
duke@0 1014 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
duke@0 1015 }
duke@0 1016
duke@0 1017 virtual bool is_MultiBranchData() { return true; }
duke@0 1018
duke@0 1019 static int compute_cell_count(BytecodeStream* stream);
duke@0 1020
duke@0 1021 int number_of_cases() {
duke@0 1022 int alen = array_len() - 2; // get rid of default case here.
duke@0 1023 assert(alen % per_case_cell_count == 0, "must be even");
duke@0 1024 return (alen / per_case_cell_count);
duke@0 1025 }
duke@0 1026
duke@0 1027 uint default_count() {
duke@0 1028 return array_uint_at(default_count_off_set);
duke@0 1029 }
duke@0 1030 int default_displacement() {
duke@0 1031 return array_int_at(default_disaplacement_off_set);
duke@0 1032 }
duke@0 1033
duke@0 1034 uint count_at(int index) {
duke@0 1035 return array_uint_at(case_array_start +
duke@0 1036 index * per_case_cell_count +
duke@0 1037 relative_count_off_set);
duke@0 1038 }
duke@0 1039 int displacement_at(int index) {
duke@0 1040 return array_int_at(case_array_start +
duke@0 1041 index * per_case_cell_count +
duke@0 1042 relative_displacement_off_set);
duke@0 1043 }
duke@0 1044
duke@0 1045 // Code generation support
duke@0 1046 static ByteSize default_count_offset() {
duke@0 1047 return array_element_offset(default_count_off_set);
duke@0 1048 }
duke@0 1049 static ByteSize default_displacement_offset() {
duke@0 1050 return array_element_offset(default_disaplacement_off_set);
duke@0 1051 }
duke@0 1052 static ByteSize case_count_offset(int index) {
duke@0 1053 return case_array_offset() +
duke@0 1054 (per_case_size() * index) +
duke@0 1055 relative_count_offset();
duke@0 1056 }
duke@0 1057 static ByteSize case_array_offset() {
duke@0 1058 return array_element_offset(case_array_start);
duke@0 1059 }
duke@0 1060 static ByteSize per_case_size() {
duke@0 1061 return in_ByteSize(per_case_cell_count) * cell_size;
duke@0 1062 }
duke@0 1063 static ByteSize relative_count_offset() {
duke@0 1064 return in_ByteSize(relative_count_off_set) * cell_size;
duke@0 1065 }
duke@0 1066 static ByteSize relative_displacement_offset() {
duke@0 1067 return in_ByteSize(relative_displacement_off_set) * cell_size;
duke@0 1068 }
duke@0 1069
duke@0 1070 // Specific initialization.
coleenp@3602 1071 void post_initialize(BytecodeStream* stream, MethodData* mdo);
duke@0 1072
duke@0 1073 #ifndef PRODUCT
duke@0 1074 void print_data_on(outputStream* st);
duke@0 1075 #endif
duke@0 1076 };
duke@0 1077
kvn@45 1078 class ArgInfoData : public ArrayData {
kvn@45 1079
kvn@45 1080 public:
kvn@45 1081 ArgInfoData(DataLayout* layout) : ArrayData(layout) {
kvn@45 1082 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
kvn@45 1083 }
kvn@45 1084
kvn@45 1085 virtual bool is_ArgInfoData() { return true; }
kvn@45 1086
kvn@45 1087
kvn@45 1088 int number_of_args() {
kvn@45 1089 return array_len();
kvn@45 1090 }
kvn@45 1091
kvn@45 1092 uint arg_modified(int arg) {
kvn@45 1093 return array_uint_at(arg);
kvn@45 1094 }
kvn@45 1095
kvn@45 1096 void set_arg_modified(int arg, uint val) {
kvn@45 1097 array_set_int_at(arg, val);
kvn@45 1098 }
kvn@45 1099
kvn@45 1100 #ifndef PRODUCT
kvn@45 1101 void print_data_on(outputStream* st);
kvn@45 1102 #endif
kvn@45 1103 };
kvn@45 1104
coleenp@3602 1105 // MethodData*
duke@0 1106 //
coleenp@3602 1107 // A MethodData* holds information which has been collected about
duke@0 1108 // a method. Its layout looks like this:
duke@0 1109 //
duke@0 1110 // -----------------------------
duke@0 1111 // | header |
duke@0 1112 // | klass |
duke@0 1113 // -----------------------------
duke@0 1114 // | method |
coleenp@3602 1115 // | size of the MethodData* |
duke@0 1116 // -----------------------------
duke@0 1117 // | Data entries... |
duke@0 1118 // | (variable size) |
duke@0 1119 // | |
duke@0 1120 // . .
duke@0 1121 // . .
duke@0 1122 // . .
duke@0 1123 // | |
duke@0 1124 // -----------------------------
duke@0 1125 //
duke@0 1126 // The data entry area is a heterogeneous array of DataLayouts. Each
duke@0 1127 // DataLayout in the array corresponds to a specific bytecode in the
duke@0 1128 // method. The entries in the array are sorted by the corresponding
duke@0 1129 // bytecode. Access to the data is via resource-allocated ProfileData,
duke@0 1130 // which point to the underlying blocks of DataLayout structures.
duke@0 1131 //
duke@0 1132 // During interpretation, if profiling in enabled, the interpreter
duke@0 1133 // maintains a method data pointer (mdp), which points at the entry
duke@0 1134 // in the array corresponding to the current bci. In the course of
duke@0 1135 // intepretation, when a bytecode is encountered that has profile data
duke@0 1136 // associated with it, the entry pointed to by mdp is updated, then the
duke@0 1137 // mdp is adjusted to point to the next appropriate DataLayout. If mdp
duke@0 1138 // is NULL to begin with, the interpreter assumes that the current method
duke@0 1139 // is not (yet) being profiled.
duke@0 1140 //
coleenp@3602 1141 // In MethodData* parlance, "dp" is a "data pointer", the actual address
duke@0 1142 // of a DataLayout element. A "di" is a "data index", the offset in bytes
duke@0 1143 // from the base of the data entry array. A "displacement" is the byte offset
duke@0 1144 // in certain ProfileData objects that indicate the amount the mdp must be
duke@0 1145 // adjusted in the event of a change in control flow.
duke@0 1146 //
duke@0 1147
coleenp@3602 1148 class MethodData : public Metadata {
duke@0 1149 friend class VMStructs;
duke@0 1150 private:
duke@0 1151 friend class ProfileData;
duke@0 1152
coleenp@3602 1153 // Back pointer to the Method*
coleenp@3602 1154 Method* _method;
duke@0 1155
duke@0 1156 // Size of this oop in bytes
duke@0 1157 int _size;
duke@0 1158
duke@0 1159 // Cached hint for bci_to_dp and bci_to_data
duke@0 1160 int _hint_di;
duke@0 1161
coleenp@3602 1162 MethodData(methodHandle method, int size, TRAPS);
coleenp@3602 1163 public:
coleenp@3602 1164 static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
coleenp@3602 1165 MethodData() {}; // For ciMethodData
coleenp@3602 1166
coleenp@3602 1167 bool is_methodData() const volatile { return true; }
coleenp@3602 1168
duke@0 1169 // Whole-method sticky bits and flags
duke@0 1170 enum {
kvn@2442 1171 _trap_hist_limit = 17, // decoupled from Deoptimization::Reason_LIMIT
duke@0 1172 _trap_hist_mask = max_jubyte,
duke@0 1173 _extra_data_count = 4 // extra DataLayout headers, for trap history
duke@0 1174 }; // Public flag values
duke@0 1175 private:
duke@0 1176 uint _nof_decompiles; // count of all nmethod removals
duke@0 1177 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits
duke@0 1178 uint _nof_overflow_traps; // trap count, excluding _trap_hist
duke@0 1179 union {
duke@0 1180 intptr_t _align;
duke@0 1181 u1 _array[_trap_hist_limit];
duke@0 1182 } _trap_hist;
duke@0 1183
duke@0 1184 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@0 1185 intx _eflags; // flags on escape information
duke@0 1186 intx _arg_local; // bit set of non-escaping arguments
duke@0 1187 intx _arg_stack; // bit set of stack-allocatable arguments
duke@0 1188 intx _arg_returned; // bit set of returned arguments
duke@0 1189
iveresov@1703 1190 int _creation_mileage; // method mileage at MDO creation
iveresov@1703 1191
iveresov@1703 1192 // How many invocations has this MDO seen?
iveresov@1703 1193 // These counters are used to determine the exact age of MDO.
iveresov@1703 1194 // We need those because in tiered a method can be concurrently
iveresov@1703 1195 // executed at different levels.
iveresov@1703 1196 InvocationCounter _invocation_counter;
iveresov@1703 1197 // Same for backedges.
iveresov@1703 1198 InvocationCounter _backedge_counter;
iveresov@2124 1199 // Counter values at the time profiling started.
iveresov@2124 1200 int _invocation_counter_start;
iveresov@2124 1201 int _backedge_counter_start;
iveresov@1703 1202 // Number of loops and blocks is computed when compiling the first
iveresov@1703 1203 // time with C1. It is used to determine if method is trivial.
iveresov@1703 1204 short _num_loops;
iveresov@1703 1205 short _num_blocks;
iveresov@1703 1206 // Highest compile level this method has ever seen.
iveresov@1703 1207 u1 _highest_comp_level;
iveresov@1703 1208 // Same for OSR level
iveresov@1703 1209 u1 _highest_osr_comp_level;
iveresov@1703 1210 // Does this method contain anything worth profiling?
iveresov@1703 1211 bool _would_profile;
duke@0 1212
duke@0 1213 // Size of _data array in bytes. (Excludes header and extra_data fields.)
duke@0 1214 int _data_size;
duke@0 1215
duke@0 1216 // Beginning of the data entries
duke@0 1217 intptr_t _data[1];
duke@0 1218
duke@0 1219 // Helper for size computation
duke@0 1220 static int compute_data_size(BytecodeStream* stream);
duke@0 1221 static int bytecode_cell_count(Bytecodes::Code code);
duke@0 1222 enum { no_profile_data = -1, variable_cell_count = -2 };
duke@0 1223
duke@0 1224 // Helper for initialization
coleenp@3602 1225 DataLayout* data_layout_at(int data_index) const {
duke@0 1226 assert(data_index % sizeof(intptr_t) == 0, "unaligned");
duke@0 1227 return (DataLayout*) (((address)_data) + data_index);
duke@0 1228 }
duke@0 1229
duke@0 1230 // Initialize an individual data segment. Returns the size of
duke@0 1231 // the segment in bytes.
duke@0 1232 int initialize_data(BytecodeStream* stream, int data_index);
duke@0 1233
duke@0 1234 // Helper for data_at
coleenp@3602 1235 DataLayout* limit_data_position() const {
duke@0 1236 return (DataLayout*)((address)data_base() + _data_size);
duke@0 1237 }
coleenp@3602 1238 bool out_of_bounds(int data_index) const {
duke@0 1239 return data_index >= data_size();
duke@0 1240 }
duke@0 1241
duke@0 1242 // Give each of the data entries a chance to perform specific
duke@0 1243 // data initialization.
duke@0 1244 void post_initialize(BytecodeStream* stream);
duke@0 1245
duke@0 1246 // hint accessors
duke@0 1247 int hint_di() const { return _hint_di; }
duke@0 1248 void set_hint_di(int di) {
duke@0 1249 assert(!out_of_bounds(di), "hint_di out of bounds");
duke@0 1250 _hint_di = di;
duke@0 1251 }
duke@0 1252 ProfileData* data_before(int bci) {
duke@0 1253 // avoid SEGV on this edge case
duke@0 1254 if (data_size() == 0)
duke@0 1255 return NULL;
duke@0 1256 int hint = hint_di();
duke@0 1257 if (data_layout_at(hint)->bci() <= bci)
duke@0 1258 return data_at(hint);
duke@0 1259 return first_data();
duke@0 1260 }
duke@0 1261
duke@0 1262 // What is the index of the first data entry?
coleenp@3602 1263 int first_di() const { return 0; }
duke@0 1264
duke@0 1265 // Find or create an extra ProfileData:
duke@0 1266 ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
duke@0 1267
kvn@45 1268 // return the argument info cell
kvn@45 1269 ArgInfoData *arg_info();
kvn@45 1270
duke@0 1271 public:
duke@0 1272 static int header_size() {
coleenp@3602 1273 return sizeof(MethodData)/wordSize;
duke@0 1274 }
duke@0 1275
coleenp@3602 1276 // Compute the size of a MethodData* before it is created.
duke@0 1277 static int compute_allocation_size_in_bytes(methodHandle method);
duke@0 1278 static int compute_allocation_size_in_words(methodHandle method);
duke@0 1279 static int compute_extra_data_count(int data_size, int empty_bc_count);
duke@0 1280
duke@0 1281 // Determine if a given bytecode can have profile information.
duke@0 1282 static bool bytecode_has_profile(Bytecodes::Code code) {
duke@0 1283 return bytecode_cell_count(code) != no_profile_data;
duke@0 1284 }
duke@0 1285
coleenp@3602 1286 // Perform initialization of a new MethodData*
duke@0 1287 void initialize(methodHandle method);
duke@0 1288
duke@0 1289 // My size
coleenp@3602 1290 int size_in_bytes() const { return _size; }
coleenp@3602 1291 int size() const { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
duke@0 1292
duke@0 1293 int creation_mileage() const { return _creation_mileage; }
duke@0 1294 void set_creation_mileage(int x) { _creation_mileage = x; }
iveresov@1703 1295
iveresov@1703 1296 int invocation_count() {
iveresov@1703 1297 if (invocation_counter()->carry()) {
iveresov@1703 1298 return InvocationCounter::count_limit;
iveresov@1703 1299 }
iveresov@1703 1300 return invocation_counter()->count();
iveresov@1703 1301 }
iveresov@1703 1302 int backedge_count() {
iveresov@1703 1303 if (backedge_counter()->carry()) {
iveresov@1703 1304 return InvocationCounter::count_limit;
iveresov@1703 1305 }
iveresov@1703 1306 return backedge_counter()->count();
iveresov@1703 1307 }
iveresov@1703 1308
iveresov@2124 1309 int invocation_count_start() {
iveresov@2124 1310 if (invocation_counter()->carry()) {
iveresov@2124 1311 return 0;
iveresov@2124 1312 }
iveresov@2124 1313 return _invocation_counter_start;
iveresov@2124 1314 }
iveresov@2124 1315
iveresov@2124 1316 int backedge_count_start() {
iveresov@2124 1317 if (backedge_counter()->carry()) {
iveresov@2124 1318 return 0;
iveresov@2124 1319 }
iveresov@2124 1320 return _backedge_counter_start;
iveresov@2124 1321 }
iveresov@2124 1322
iveresov@2124 1323 int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
iveresov@2124 1324 int backedge_count_delta() { return backedge_count() - backedge_count_start(); }
iveresov@2124 1325
iveresov@2124 1326 void reset_start_counters() {
iveresov@2124 1327 _invocation_counter_start = invocation_count();
iveresov@2124 1328 _backedge_counter_start = backedge_count();
iveresov@2124 1329 }
iveresov@2124 1330
iveresov@1703 1331 InvocationCounter* invocation_counter() { return &_invocation_counter; }
iveresov@1703 1332 InvocationCounter* backedge_counter() { return &_backedge_counter; }
iveresov@1703 1333
iveresov@1703 1334 void set_would_profile(bool p) { _would_profile = p; }
iveresov@1703 1335 bool would_profile() const { return _would_profile; }
iveresov@1703 1336
iveresov@1703 1337 int highest_comp_level() { return _highest_comp_level; }
iveresov@1703 1338 void set_highest_comp_level(int level) { _highest_comp_level = level; }
iveresov@1703 1339 int highest_osr_comp_level() { return _highest_osr_comp_level; }
iveresov@1703 1340 void set_highest_osr_comp_level(int level) { _highest_osr_comp_level = level; }
iveresov@1703 1341
iveresov@1703 1342 int num_loops() const { return _num_loops; }
iveresov@1703 1343 void set_num_loops(int n) { _num_loops = n; }
iveresov@1703 1344 int num_blocks() const { return _num_blocks; }
iveresov@1703 1345 void set_num_blocks(int n) { _num_blocks = n; }
iveresov@1703 1346
duke@0 1347 bool is_mature() const; // consult mileage and ProfileMaturityPercentage
coleenp@3602 1348 static int mileage_of(Method* m);
duke@0 1349
duke@0 1350 // Support for interprocedural escape analysis, from Thomas Kotzmann.
duke@0 1351 enum EscapeFlag {
duke@0 1352 estimated = 1 << 0,
kvn@78 1353 return_local = 1 << 1,
kvn@78 1354 return_allocated = 1 << 2,
kvn@78 1355 allocated_escapes = 1 << 3,
kvn@78 1356 unknown_modified = 1 << 4
duke@0 1357 };
duke@0 1358
duke@0 1359 intx eflags() { return _eflags; }
duke@0 1360 intx arg_local() { return _arg_local; }
duke@0 1361 intx arg_stack() { return _arg_stack; }
duke@0 1362 intx arg_returned() { return _arg_returned; }
kvn@45 1363 uint arg_modified(int a) { ArgInfoData *aid = arg_info();
kvn@45 1364 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@45 1365 return aid->arg_modified(a); }
duke@0 1366
duke@0 1367 void set_eflags(intx v) { _eflags = v; }
duke@0 1368 void set_arg_local(intx v) { _arg_local = v; }
duke@0 1369 void set_arg_stack(intx v) { _arg_stack = v; }
duke@0 1370 void set_arg_returned(intx v) { _arg_returned = v; }
kvn@45 1371 void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info();
kvn@45 1372 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
kvn@45 1373
kvn@45 1374 aid->set_arg_modified(a, v); }
duke@0 1375
duke@0 1376 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
duke@0 1377
duke@0 1378 // Location and size of data area
duke@0 1379 address data_base() const {
duke@0 1380 return (address) _data;
duke@0 1381 }
coleenp@3602 1382 int data_size() const {
duke@0 1383 return _data_size;
duke@0 1384 }
duke@0 1385
duke@0 1386 // Accessors
coleenp@3602 1387 Method* method() const { return _method; }
duke@0 1388
duke@0 1389 // Get the data at an arbitrary (sort of) data index.
coleenp@3602 1390 ProfileData* data_at(int data_index) const;
duke@0 1391
duke@0 1392 // Walk through the data in order.
coleenp@3602 1393 ProfileData* first_data() const { return data_at(first_di()); }
coleenp@3602 1394 ProfileData* next_data(ProfileData* current) const;
coleenp@3602 1395 bool is_valid(ProfileData* current) const { return current != NULL; }
duke@0 1396
duke@0 1397 // Convert a dp (data pointer) to a di (data index).
coleenp@3602 1398 int dp_to_di(address dp) const {
duke@0 1399 return dp - ((address)_data);
duke@0 1400 }
duke@0 1401
duke@0 1402 address di_to_dp(int di) {
duke@0 1403 return (address)data_layout_at(di);
duke@0 1404 }
duke@0 1405
duke@0 1406 // bci to di/dp conversion.
duke@0 1407 address bci_to_dp(int bci);
duke@0 1408 int bci_to_di(int bci) {
duke@0 1409 return dp_to_di(bci_to_dp(bci));
duke@0 1410 }
duke@0 1411
duke@0 1412 // Get the data at an arbitrary bci, or NULL if there is none.
duke@0 1413 ProfileData* bci_to_data(int bci);
duke@0 1414
duke@0 1415 // Same, but try to create an extra_data record if one is needed:
duke@0 1416 ProfileData* allocate_bci_to_data(int bci) {
duke@0 1417 ProfileData* data = bci_to_data(bci);
duke@0 1418 return (data != NULL) ? data : bci_to_extra_data(bci, true);
duke@0 1419 }
duke@0 1420
duke@0 1421 // Add a handful of extra data records, for trap tracking.
coleenp@3602 1422 DataLayout* extra_data_base() const { return limit_data_position(); }
coleenp@3602 1423 DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
coleenp@3602 1424 int extra_data_size() const { return (address)extra_data_limit()
duke@0 1425 - (address)extra_data_base(); }
duke@0 1426 static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
duke@0 1427
duke@0 1428 // Return (uint)-1 for overflow.
duke@0 1429 uint trap_count(int reason) const {
duke@0 1430 assert((uint)reason < _trap_hist_limit, "oob");
duke@0 1431 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
duke@0 1432 }
duke@0 1433 // For loops:
duke@0 1434 static uint trap_reason_limit() { return _trap_hist_limit; }
duke@0 1435 static uint trap_count_limit() { return _trap_hist_mask; }
duke@0 1436 uint inc_trap_count(int reason) {
duke@0 1437 // Count another trap, anywhere in this method.
duke@0 1438 assert(reason >= 0, "must be single trap");
duke@0 1439 if ((uint)reason < _trap_hist_limit) {
duke@0 1440 uint cnt1 = 1 + _trap_hist._array[reason];
duke@0 1441 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow...
duke@0 1442 _trap_hist._array[reason] = cnt1;
duke@0 1443 return cnt1;
duke@0 1444 } else {
duke@0 1445 return _trap_hist_mask + (++_nof_overflow_traps);
duke@0 1446 }
duke@0 1447 } else {
duke@0 1448 // Could not represent the count in the histogram.
duke@0 1449 return (++_nof_overflow_traps);
duke@0 1450 }
duke@0 1451 }
duke@0 1452
duke@0 1453 uint overflow_trap_count() const {
duke@0 1454 return _nof_overflow_traps;
duke@0 1455 }
duke@0 1456 uint overflow_recompile_count() const {
duke@0 1457 return _nof_overflow_recompiles;
duke@0 1458 }
duke@0 1459 void inc_overflow_recompile_count() {
duke@0 1460 _nof_overflow_recompiles += 1;
duke@0 1461 }
duke@0 1462 uint decompile_count() const {
duke@0 1463 return _nof_decompiles;
duke@0 1464 }
duke@0 1465 void inc_decompile_count() {
duke@0 1466 _nof_decompiles += 1;
kvn@1206 1467 if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
iveresov@1703 1468 method()->set_not_compilable(CompLevel_full_optimization);
kvn@1206 1469 }
duke@0 1470 }
duke@0 1471
duke@0 1472 // Support for code generation
duke@0 1473 static ByteSize data_offset() {
coleenp@3602 1474 return byte_offset_of(MethodData, _data[0]);
duke@0 1475 }
duke@0 1476
iveresov@1703 1477 static ByteSize invocation_counter_offset() {
coleenp@3602 1478 return byte_offset_of(MethodData, _invocation_counter);
iveresov@1703 1479 }
iveresov@1703 1480 static ByteSize backedge_counter_offset() {
coleenp@3602 1481 return byte_offset_of(MethodData, _backedge_counter);
iveresov@1703 1482 }
iveresov@1703 1483
coleenp@3602 1484 // Deallocation support - no pointer fields to deallocate
coleenp@3602 1485 void deallocate_contents(ClassLoaderData* loader_data) {}
coleenp@3602 1486
duke@0 1487 // GC support
coleenp@3602 1488 void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
coleenp@3602 1489
coleenp@3602 1490 // Printing
coleenp@3602 1491 #ifndef PRODUCT
coleenp@3602 1492 void print_on (outputStream* st) const;
coleenp@3602 1493 #endif
coleenp@3602 1494 void print_value_on(outputStream* st) const;
duke@0 1495
duke@0 1496 #ifndef PRODUCT
duke@0 1497 // printing support for method data
coleenp@3602 1498 void print_data_on(outputStream* st) const;
duke@0 1499 #endif
duke@0 1500
coleenp@3602 1501 const char* internal_name() const { return "{method data}"; }
coleenp@3602 1502
duke@0 1503 // verification
coleenp@3602 1504 void verify_on(outputStream* st);
duke@0 1505 void verify_data_on(outputStream* st);
duke@0 1506 };
stefank@1879 1507
stefank@1879 1508 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP