annotate src/share/vm/code/relocInfo.cpp @ 1483:1a5913bf5e19

6951083: oops and relocations should part of nmethod not CodeBlob Summary: This moves the oops from Codeblob to nmethod. Reviewed-by: kvn, never
author twisti
date Thu, 20 May 2010 06:34:23 -0700
parents a61af66fc99e
children e9ff18c4ace7
rev   line source
duke@0 1 /*
twisti@1483 2 * Copyright 1997-2010 Sun Microsystems, Inc. All Rights Reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
duke@0 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@0 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@0 21 * have any questions.
duke@0 22 *
duke@0 23 */
duke@0 24
duke@0 25 # include "incls/_precompiled.incl"
duke@0 26 # include "incls/_relocInfo.cpp.incl"
duke@0 27
duke@0 28
duke@0 29 const RelocationHolder RelocationHolder::none; // its type is relocInfo::none
duke@0 30
duke@0 31
duke@0 32 // Implementation of relocInfo
duke@0 33
duke@0 34 #ifdef ASSERT
duke@0 35 relocInfo::relocInfo(relocType t, int off, int f) {
duke@0 36 assert(t != data_prefix_tag, "cannot build a prefix this way");
duke@0 37 assert((t & type_mask) == t, "wrong type");
duke@0 38 assert((f & format_mask) == f, "wrong format");
duke@0 39 assert(off >= 0 && off < offset_limit(), "offset out off bounds");
duke@0 40 assert((off & (offset_unit-1)) == 0, "misaligned offset");
duke@0 41 (*this) = relocInfo(t, RAW_BITS, off, f);
duke@0 42 }
duke@0 43 #endif
duke@0 44
duke@0 45 void relocInfo::initialize(CodeSection* dest, Relocation* reloc) {
duke@0 46 relocInfo* data = this+1; // here's where the data might go
duke@0 47 dest->set_locs_end(data); // sync end: the next call may read dest.locs_end
duke@0 48 reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end
duke@0 49 relocInfo* data_limit = dest->locs_end();
duke@0 50 if (data_limit > data) {
duke@0 51 relocInfo suffix = (*this);
duke@0 52 data_limit = this->finish_prefix((short*) data_limit);
duke@0 53 // Finish up with the suffix. (Hack note: pack_data_to might edit this.)
duke@0 54 *data_limit = suffix;
duke@0 55 dest->set_locs_end(data_limit+1);
duke@0 56 }
duke@0 57 }
duke@0 58
duke@0 59 relocInfo* relocInfo::finish_prefix(short* prefix_limit) {
duke@0 60 assert(sizeof(relocInfo) == sizeof(short), "change this code");
duke@0 61 short* p = (short*)(this+1);
duke@0 62 assert(prefix_limit >= p, "must be a valid span of data");
duke@0 63 int plen = prefix_limit - p;
duke@0 64 if (plen == 0) {
duke@0 65 debug_only(_value = 0xFFFF);
duke@0 66 return this; // no data: remove self completely
duke@0 67 }
duke@0 68 if (plen == 1 && fits_into_immediate(p[0])) {
duke@0 69 (*this) = immediate_relocInfo(p[0]); // move data inside self
duke@0 70 return this+1;
duke@0 71 }
duke@0 72 // cannot compact, so just update the count and return the limit pointer
duke@0 73 (*this) = prefix_relocInfo(plen); // write new datalen
duke@0 74 assert(data() + datalen() == prefix_limit, "pointers must line up");
duke@0 75 return (relocInfo*)prefix_limit;
duke@0 76 }
duke@0 77
duke@0 78
duke@0 79 void relocInfo::set_type(relocType t) {
duke@0 80 int old_offset = addr_offset();
duke@0 81 int old_format = format();
duke@0 82 (*this) = relocInfo(t, old_offset, old_format);
duke@0 83 assert(type()==(int)t, "sanity check");
duke@0 84 assert(addr_offset()==old_offset, "sanity check");
duke@0 85 assert(format()==old_format, "sanity check");
duke@0 86 }
duke@0 87
duke@0 88
duke@0 89 void relocInfo::set_format(int f) {
duke@0 90 int old_offset = addr_offset();
duke@0 91 assert((f & format_mask) == f, "wrong format");
duke@0 92 _value = (_value & ~(format_mask << offset_width)) | (f << offset_width);
duke@0 93 assert(addr_offset()==old_offset, "sanity check");
duke@0 94 }
duke@0 95
duke@0 96
duke@0 97 void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) {
duke@0 98 bool found = false;
duke@0 99 while (itr->next() && !found) {
duke@0 100 if (itr->addr() == pc) {
duke@0 101 assert(itr->type()==old_type, "wrong relocInfo type found");
duke@0 102 itr->current()->set_type(new_type);
duke@0 103 found=true;
duke@0 104 }
duke@0 105 }
duke@0 106 assert(found, "no relocInfo found for pc");
duke@0 107 }
duke@0 108
duke@0 109
duke@0 110 void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) {
duke@0 111 change_reloc_info_for_address(itr, pc, old_type, none);
duke@0 112 }
duke@0 113
duke@0 114
duke@0 115 // ----------------------------------------------------------------------------------------------------
duke@0 116 // Implementation of RelocIterator
duke@0 117
twisti@1483 118 void RelocIterator::initialize(nmethod* nm, address begin, address limit) {
duke@0 119 initialize_misc();
duke@0 120
twisti@1483 121 if (nm == NULL && begin != NULL) {
twisti@1483 122 // allow nmethod to be deduced from beginning address
twisti@1483 123 CodeBlob* cb = CodeCache::find_blob(begin);
twisti@1483 124 nm = cb->as_nmethod_or_null();
duke@0 125 }
twisti@1483 126 assert(nm != NULL, "must be able to deduce nmethod from other arguments");
duke@0 127
twisti@1483 128 _code = nm;
twisti@1483 129 _current = nm->relocation_begin() - 1;
twisti@1483 130 _end = nm->relocation_end();
twisti@1483 131 _addr = (address) nm->instructions_begin();
duke@0 132
duke@0 133 assert(!has_current(), "just checking");
twisti@1483 134 address code_end = nm->instructions_end();
duke@0 135
twisti@1483 136 assert(begin == NULL || begin >= nm->instructions_begin(), "in bounds");
duke@0 137 // FIX THIS assert(limit == NULL || limit <= code_end, "in bounds");
duke@0 138 set_limits(begin, limit);
duke@0 139 }
duke@0 140
duke@0 141
duke@0 142 RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) {
duke@0 143 initialize_misc();
duke@0 144
duke@0 145 _current = cs->locs_start()-1;
duke@0 146 _end = cs->locs_end();
duke@0 147 _addr = cs->start();
duke@0 148 _code = NULL; // Not cb->blob();
duke@0 149
duke@0 150 CodeBuffer* cb = cs->outer();
duke@0 151 assert((int)SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal");
duke@0 152 for (int n = 0; n < (int)SECT_LIMIT; n++) {
duke@0 153 _section_start[n] = cb->code_section(n)->start();
duke@0 154 }
duke@0 155
duke@0 156 assert(!has_current(), "just checking");
duke@0 157
duke@0 158 assert(begin == NULL || begin >= cs->start(), "in bounds");
duke@0 159 assert(limit == NULL || limit <= cs->end(), "in bounds");
duke@0 160 set_limits(begin, limit);
duke@0 161 }
duke@0 162
duke@0 163
duke@0 164 enum { indexCardSize = 128 };
duke@0 165 struct RelocIndexEntry {
duke@0 166 jint addr_offset; // offset from header_end of an addr()
duke@0 167 jint reloc_offset; // offset from header_end of a relocInfo (prefix)
duke@0 168 };
duke@0 169
duke@0 170
duke@0 171 static inline int num_cards(int code_size) {
duke@0 172 return (code_size-1) / indexCardSize;
duke@0 173 }
duke@0 174
duke@0 175
duke@0 176 int RelocIterator::locs_and_index_size(int code_size, int locs_size) {
duke@0 177 if (!UseRelocIndex) return locs_size; // no index
duke@0 178 code_size = round_to(code_size, oopSize);
duke@0 179 locs_size = round_to(locs_size, oopSize);
duke@0 180 int index_size = num_cards(code_size) * sizeof(RelocIndexEntry);
duke@0 181 // format of indexed relocs:
duke@0 182 // relocation_begin: relocInfo ...
duke@0 183 // index: (addr,reloc#) ...
duke@0 184 // indexSize :relocation_end
duke@0 185 return locs_size + index_size + BytesPerInt;
duke@0 186 }
duke@0 187
duke@0 188
duke@0 189 void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) {
duke@0 190 address relocation_begin = (address)dest_begin;
duke@0 191 address relocation_end = (address)dest_end;
duke@0 192 int total_size = relocation_end - relocation_begin;
duke@0 193 int locs_size = dest_count * sizeof(relocInfo);
duke@0 194 if (!UseRelocIndex) {
duke@0 195 Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0);
duke@0 196 return;
duke@0 197 }
duke@0 198 int index_size = total_size - locs_size - BytesPerInt; // find out how much space is left
duke@0 199 int ncards = index_size / sizeof(RelocIndexEntry);
duke@0 200 assert(total_size == locs_size + index_size + BytesPerInt, "checkin'");
duke@0 201 assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'");
duke@0 202 jint* index_size_addr = (jint*)relocation_end - 1;
duke@0 203
duke@0 204 assert(sizeof(jint) == BytesPerInt, "change this code");
duke@0 205
duke@0 206 *index_size_addr = index_size;
duke@0 207 if (index_size != 0) {
duke@0 208 assert(index_size > 0, "checkin'");
duke@0 209
duke@0 210 RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size);
duke@0 211 assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'");
duke@0 212
duke@0 213 // walk over the relocations, and fill in index entries as we go
duke@0 214 RelocIterator iter;
duke@0 215 const address initial_addr = NULL;
duke@0 216 relocInfo* const initial_current = dest_begin - 1; // biased by -1 like elsewhere
duke@0 217
duke@0 218 iter._code = NULL;
duke@0 219 iter._addr = initial_addr;
duke@0 220 iter._limit = (address)(intptr_t)(ncards * indexCardSize);
duke@0 221 iter._current = initial_current;
duke@0 222 iter._end = dest_begin + dest_count;
duke@0 223
duke@0 224 int i = 0;
duke@0 225 address next_card_addr = (address)indexCardSize;
duke@0 226 int addr_offset = 0;
duke@0 227 int reloc_offset = 0;
duke@0 228 while (true) {
duke@0 229 // Checkpoint the iterator before advancing it.
duke@0 230 addr_offset = iter._addr - initial_addr;
duke@0 231 reloc_offset = iter._current - initial_current;
duke@0 232 if (!iter.next()) break;
duke@0 233 while (iter.addr() >= next_card_addr) {
duke@0 234 index[i].addr_offset = addr_offset;
duke@0 235 index[i].reloc_offset = reloc_offset;
duke@0 236 i++;
duke@0 237 next_card_addr += indexCardSize;
duke@0 238 }
duke@0 239 }
duke@0 240 while (i < ncards) {
duke@0 241 index[i].addr_offset = addr_offset;
duke@0 242 index[i].reloc_offset = reloc_offset;
duke@0 243 i++;
duke@0 244 }
duke@0 245 }
duke@0 246 }
duke@0 247
duke@0 248
duke@0 249 void RelocIterator::set_limits(address begin, address limit) {
duke@0 250 int index_size = 0;
duke@0 251 if (UseRelocIndex && _code != NULL) {
duke@0 252 index_size = ((jint*)_end)[-1];
duke@0 253 _end = (relocInfo*)( (address)_end - index_size - BytesPerInt );
duke@0 254 }
duke@0 255
duke@0 256 _limit = limit;
duke@0 257
duke@0 258 // the limit affects this next stuff:
duke@0 259 if (begin != NULL) {
duke@0 260 #ifdef ASSERT
duke@0 261 // In ASSERT mode we do not actually use the index, but simply
duke@0 262 // check that its contents would have led us to the right answer.
duke@0 263 address addrCheck = _addr;
duke@0 264 relocInfo* infoCheck = _current;
duke@0 265 #endif // ASSERT
duke@0 266 if (index_size > 0) {
duke@0 267 // skip ahead
duke@0 268 RelocIndexEntry* index = (RelocIndexEntry*)_end;
duke@0 269 RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size);
duke@0 270 assert(_addr == _code->instructions_begin(), "_addr must be unadjusted");
duke@0 271 int card = (begin - _addr) / indexCardSize;
duke@0 272 if (card > 0) {
duke@0 273 if (index+card-1 < index_limit) index += card-1;
duke@0 274 else index = index_limit - 1;
duke@0 275 #ifdef ASSERT
duke@0 276 addrCheck = _addr + index->addr_offset;
duke@0 277 infoCheck = _current + index->reloc_offset;
duke@0 278 #else
duke@0 279 // Advance the iterator immediately to the last valid state
duke@0 280 // for the previous card. Calling "next" will then advance
duke@0 281 // it to the first item on the required card.
duke@0 282 _addr += index->addr_offset;
duke@0 283 _current += index->reloc_offset;
duke@0 284 #endif // ASSERT
duke@0 285 }
duke@0 286 }
duke@0 287
duke@0 288 relocInfo* backup;
duke@0 289 address backup_addr;
duke@0 290 while (true) {
duke@0 291 backup = _current;
duke@0 292 backup_addr = _addr;
duke@0 293 #ifdef ASSERT
duke@0 294 if (backup == infoCheck) {
duke@0 295 assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL;
duke@0 296 } else {
duke@0 297 assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck");
duke@0 298 }
duke@0 299 #endif // ASSERT
duke@0 300 if (!next() || addr() >= begin) break;
duke@0 301 }
duke@0 302 assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck");
duke@0 303 assert(infoCheck == NULL || infoCheck == backup, "must have matched infoCheck");
duke@0 304 // At this point, either we are at the first matching record,
duke@0 305 // or else there is no such record, and !has_current().
duke@0 306 // In either case, revert to the immediatly preceding state.
duke@0 307 _current = backup;
duke@0 308 _addr = backup_addr;
duke@0 309 set_has_current(false);
duke@0 310 }
duke@0 311 }
duke@0 312
duke@0 313
duke@0 314 void RelocIterator::set_limit(address limit) {
duke@0 315 address code_end = (address)code() + code()->size();
duke@0 316 assert(limit == NULL || limit <= code_end, "in bounds");
duke@0 317 _limit = limit;
duke@0 318 }
duke@0 319
duke@0 320
duke@0 321 void PatchingRelocIterator:: prepass() {
duke@0 322 // turn breakpoints off during patching
duke@0 323 _init_state = (*this); // save cursor
duke@0 324 while (next()) {
duke@0 325 if (type() == relocInfo::breakpoint_type) {
duke@0 326 breakpoint_reloc()->set_active(false);
duke@0 327 }
duke@0 328 }
duke@0 329 (RelocIterator&)(*this) = _init_state; // reset cursor for client
duke@0 330 }
duke@0 331
duke@0 332
duke@0 333 void PatchingRelocIterator:: postpass() {
duke@0 334 // turn breakpoints back on after patching
duke@0 335 (RelocIterator&)(*this) = _init_state; // reset cursor again
duke@0 336 while (next()) {
duke@0 337 if (type() == relocInfo::breakpoint_type) {
duke@0 338 breakpoint_Relocation* bpt = breakpoint_reloc();
duke@0 339 bpt->set_active(bpt->enabled());
duke@0 340 }
duke@0 341 }
duke@0 342 }
duke@0 343
duke@0 344
duke@0 345 // All the strange bit-encodings are in here.
duke@0 346 // The idea is to encode relocation data which are small integers
duke@0 347 // very efficiently (a single extra halfword). Larger chunks of
duke@0 348 // relocation data need a halfword header to hold their size.
duke@0 349 void RelocIterator::advance_over_prefix() {
duke@0 350 if (_current->is_datalen()) {
duke@0 351 _data = (short*) _current->data();
duke@0 352 _datalen = _current->datalen();
duke@0 353 _current += _datalen + 1; // skip the embedded data & header
duke@0 354 } else {
duke@0 355 _databuf = _current->immediate();
duke@0 356 _data = &_databuf;
duke@0 357 _datalen = 1;
duke@0 358 _current++; // skip the header
duke@0 359 }
duke@0 360 // The client will see the following relocInfo, whatever that is.
duke@0 361 // It is the reloc to which the preceding data applies.
duke@0 362 }
duke@0 363
duke@0 364
duke@0 365 address RelocIterator::compute_section_start(int n) const {
duke@0 366 // This routine not only computes a section start, but also
duke@0 367 // memoizes it for later.
duke@0 368 #define CACHE ((RelocIterator*)this)->_section_start[n]
duke@0 369 CodeBlob* cb = code();
duke@0 370 guarantee(cb != NULL, "must have a code blob");
duke@0 371 if (n == CodeBuffer::SECT_INSTS)
duke@0 372 return CACHE = cb->instructions_begin();
duke@0 373 assert(cb->is_nmethod(), "only nmethods have these sections");
duke@0 374 nmethod* nm = (nmethod*) cb;
duke@0 375 address res = NULL;
duke@0 376 switch (n) {
duke@0 377 case CodeBuffer::SECT_STUBS:
duke@0 378 res = nm->stub_begin();
duke@0 379 break;
duke@0 380 case CodeBuffer::SECT_CONSTS:
duke@0 381 res = nm->consts_begin();
duke@0 382 break;
duke@0 383 default:
duke@0 384 ShouldNotReachHere();
duke@0 385 }
duke@0 386 assert(nm->contains(res) || res == nm->instructions_end(), "tame pointer");
duke@0 387 CACHE = res;
duke@0 388 return res;
duke@0 389 #undef CACHE
duke@0 390 }
duke@0 391
duke@0 392
duke@0 393 Relocation* RelocIterator::reloc() {
duke@0 394 // (take the "switch" out-of-line)
duke@0 395 relocInfo::relocType t = type();
duke@0 396 if (false) {}
duke@0 397 #define EACH_TYPE(name) \
duke@0 398 else if (t == relocInfo::name##_type) { \
duke@0 399 return name##_reloc(); \
duke@0 400 }
duke@0 401 APPLY_TO_RELOCATIONS(EACH_TYPE);
duke@0 402 #undef EACH_TYPE
duke@0 403 assert(t == relocInfo::none, "must be padding");
duke@0 404 return new(_rh) Relocation();
duke@0 405 }
duke@0 406
duke@0 407
duke@0 408 //////// Methods for flyweight Relocation types
duke@0 409
duke@0 410
duke@0 411 RelocationHolder RelocationHolder::plus(int offset) const {
duke@0 412 if (offset != 0) {
duke@0 413 switch (type()) {
duke@0 414 case relocInfo::none:
duke@0 415 break;
duke@0 416 case relocInfo::oop_type:
duke@0 417 {
duke@0 418 oop_Relocation* r = (oop_Relocation*)reloc();
duke@0 419 return oop_Relocation::spec(r->oop_index(), r->offset() + offset);
duke@0 420 }
duke@0 421 default:
duke@0 422 ShouldNotReachHere();
duke@0 423 }
duke@0 424 }
duke@0 425 return (*this);
duke@0 426 }
duke@0 427
duke@0 428
duke@0 429 void Relocation::guarantee_size() {
duke@0 430 guarantee(false, "Make _relocbuf bigger!");
duke@0 431 }
duke@0 432
duke@0 433 // some relocations can compute their own values
duke@0 434 address Relocation::value() {
duke@0 435 ShouldNotReachHere();
duke@0 436 return NULL;
duke@0 437 }
duke@0 438
duke@0 439
duke@0 440 void Relocation::set_value(address x) {
duke@0 441 ShouldNotReachHere();
duke@0 442 }
duke@0 443
duke@0 444
duke@0 445 RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) {
duke@0 446 if (rtype == relocInfo::none) return RelocationHolder::none;
duke@0 447 relocInfo ri = relocInfo(rtype, 0);
duke@0 448 RelocIterator itr;
duke@0 449 itr.set_current(ri);
duke@0 450 itr.reloc();
duke@0 451 return itr._rh;
duke@0 452 }
duke@0 453
duke@0 454
duke@0 455 static inline bool is_index(intptr_t index) {
duke@0 456 return 0 < index && index < os::vm_page_size();
duke@0 457 }
duke@0 458
duke@0 459
duke@0 460 int32_t Relocation::runtime_address_to_index(address runtime_address) {
duke@0 461 assert(!is_index((intptr_t)runtime_address), "must not look like an index");
duke@0 462
duke@0 463 if (runtime_address == NULL) return 0;
duke@0 464
duke@0 465 StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address);
duke@0 466 if (p != NULL && p->begin() == runtime_address) {
duke@0 467 assert(is_index(p->index()), "there must not be too many stubs");
duke@0 468 return (int32_t)p->index();
duke@0 469 } else {
duke@0 470 // Known "miscellaneous" non-stub pointers:
duke@0 471 // os::get_polling_page(), SafepointSynchronize::address_of_state()
duke@0 472 if (PrintRelocations) {
duke@0 473 tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address);
duke@0 474 }
duke@0 475 #ifndef _LP64
duke@0 476 return (int32_t) (intptr_t)runtime_address;
duke@0 477 #else
duke@0 478 // didn't fit return non-index
duke@0 479 return -1;
duke@0 480 #endif /* _LP64 */
duke@0 481 }
duke@0 482 }
duke@0 483
duke@0 484
duke@0 485 address Relocation::index_to_runtime_address(int32_t index) {
duke@0 486 if (index == 0) return NULL;
duke@0 487
duke@0 488 if (is_index(index)) {
duke@0 489 StubCodeDesc* p = StubCodeDesc::desc_for_index(index);
duke@0 490 assert(p != NULL, "there must be a stub for this index");
duke@0 491 return p->begin();
duke@0 492 } else {
duke@0 493 #ifndef _LP64
duke@0 494 // this only works on 32bit machines
duke@0 495 return (address) ((intptr_t) index);
duke@0 496 #else
duke@0 497 fatal("Relocation::index_to_runtime_address, int32_t not pointer sized");
duke@0 498 return NULL;
duke@0 499 #endif /* _LP64 */
duke@0 500 }
duke@0 501 }
duke@0 502
duke@0 503 address Relocation::old_addr_for(address newa,
duke@0 504 const CodeBuffer* src, CodeBuffer* dest) {
duke@0 505 int sect = dest->section_index_of(newa);
duke@0 506 guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
duke@0 507 address ostart = src->code_section(sect)->start();
duke@0 508 address nstart = dest->code_section(sect)->start();
duke@0 509 return ostart + (newa - nstart);
duke@0 510 }
duke@0 511
duke@0 512 address Relocation::new_addr_for(address olda,
duke@0 513 const CodeBuffer* src, CodeBuffer* dest) {
duke@0 514 debug_only(const CodeBuffer* src0 = src);
duke@0 515 int sect = CodeBuffer::SECT_NONE;
duke@0 516 // Look for olda in the source buffer, and all previous incarnations
duke@0 517 // if the source buffer has been expanded.
duke@0 518 for (; src != NULL; src = src->before_expand()) {
duke@0 519 sect = src->section_index_of(olda);
duke@0 520 if (sect != CodeBuffer::SECT_NONE) break;
duke@0 521 }
duke@0 522 guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
duke@0 523 address ostart = src->code_section(sect)->start();
duke@0 524 address nstart = dest->code_section(sect)->start();
duke@0 525 return nstart + (olda - ostart);
duke@0 526 }
duke@0 527
duke@0 528 void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) {
duke@0 529 address addr0 = addr;
duke@0 530 if (addr0 == NULL || dest->allocates2(addr0)) return;
duke@0 531 CodeBuffer* cb = dest->outer();
duke@0 532 addr = new_addr_for(addr0, cb, cb);
duke@0 533 assert(allow_other_sections || dest->contains2(addr),
duke@0 534 "addr must be in required section");
duke@0 535 }
duke@0 536
duke@0 537
duke@0 538 void CallRelocation::set_destination(address x) {
duke@0 539 pd_set_call_destination(x);
duke@0 540 }
duke@0 541
duke@0 542 void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
duke@0 543 // Usually a self-relative reference to an external routine.
duke@0 544 // On some platforms, the reference is absolute (not self-relative).
duke@0 545 // The enhanced use of pd_call_destination sorts this all out.
duke@0 546 address orig_addr = old_addr_for(addr(), src, dest);
duke@0 547 address callee = pd_call_destination(orig_addr);
duke@0 548 // Reassert the callee address, this time in the new copy of the code.
duke@0 549 pd_set_call_destination(callee);
duke@0 550 }
duke@0 551
duke@0 552
duke@0 553 //// pack/unpack methods
duke@0 554
duke@0 555 void oop_Relocation::pack_data_to(CodeSection* dest) {
duke@0 556 short* p = (short*) dest->locs_end();
duke@0 557 p = pack_2_ints_to(p, _oop_index, _offset);
duke@0 558 dest->set_locs_end((relocInfo*) p);
duke@0 559 }
duke@0 560
duke@0 561
duke@0 562 void oop_Relocation::unpack_data() {
duke@0 563 unpack_2_ints(_oop_index, _offset);
duke@0 564 }
duke@0 565
duke@0 566
duke@0 567 void virtual_call_Relocation::pack_data_to(CodeSection* dest) {
duke@0 568 short* p = (short*) dest->locs_end();
duke@0 569 address point = dest->locs_point();
duke@0 570
duke@0 571 // Try to make a pointer NULL first.
duke@0 572 if (_oop_limit >= point &&
duke@0 573 _oop_limit <= point + NativeCall::instruction_size) {
duke@0 574 _oop_limit = NULL;
duke@0 575 }
duke@0 576 // If the _oop_limit is NULL, it "defaults" to the end of the call.
duke@0 577 // See ic_call_Relocation::oop_limit() below.
duke@0 578
duke@0 579 normalize_address(_first_oop, dest);
duke@0 580 normalize_address(_oop_limit, dest);
duke@0 581 jint x0 = scaled_offset_null_special(_first_oop, point);
duke@0 582 jint x1 = scaled_offset_null_special(_oop_limit, point);
duke@0 583 p = pack_2_ints_to(p, x0, x1);
duke@0 584 dest->set_locs_end((relocInfo*) p);
duke@0 585 }
duke@0 586
duke@0 587
duke@0 588 void virtual_call_Relocation::unpack_data() {
duke@0 589 jint x0, x1; unpack_2_ints(x0, x1);
duke@0 590 address point = addr();
duke@0 591 _first_oop = x0==0? NULL: address_from_scaled_offset(x0, point);
duke@0 592 _oop_limit = x1==0? NULL: address_from_scaled_offset(x1, point);
duke@0 593 }
duke@0 594
duke@0 595
duke@0 596 void static_stub_Relocation::pack_data_to(CodeSection* dest) {
duke@0 597 short* p = (short*) dest->locs_end();
duke@0 598 CodeSection* insts = dest->outer()->insts();
duke@0 599 normalize_address(_static_call, insts);
duke@0 600 p = pack_1_int_to(p, scaled_offset(_static_call, insts->start()));
duke@0 601 dest->set_locs_end((relocInfo*) p);
duke@0 602 }
duke@0 603
duke@0 604 void static_stub_Relocation::unpack_data() {
duke@0 605 address base = binding()->section_start(CodeBuffer::SECT_INSTS);
duke@0 606 _static_call = address_from_scaled_offset(unpack_1_int(), base);
duke@0 607 }
duke@0 608
duke@0 609
duke@0 610 void external_word_Relocation::pack_data_to(CodeSection* dest) {
duke@0 611 short* p = (short*) dest->locs_end();
duke@0 612 int32_t index = runtime_address_to_index(_target);
duke@0 613 #ifndef _LP64
duke@0 614 p = pack_1_int_to(p, index);
duke@0 615 #else
duke@0 616 if (is_index(index)) {
duke@0 617 p = pack_2_ints_to(p, index, 0);
duke@0 618 } else {
duke@0 619 jlong t = (jlong) _target;
duke@0 620 int32_t lo = low(t);
duke@0 621 int32_t hi = high(t);
duke@0 622 p = pack_2_ints_to(p, lo, hi);
duke@0 623 DEBUG_ONLY(jlong t1 = jlong_from(hi, lo));
duke@0 624 assert(!is_index(t1) && (address) t1 == _target, "not symmetric");
duke@0 625 }
duke@0 626 #endif /* _LP64 */
duke@0 627 dest->set_locs_end((relocInfo*) p);
duke@0 628 }
duke@0 629
duke@0 630
duke@0 631 void external_word_Relocation::unpack_data() {
duke@0 632 #ifndef _LP64
duke@0 633 _target = index_to_runtime_address(unpack_1_int());
duke@0 634 #else
duke@0 635 int32_t lo, hi;
duke@0 636 unpack_2_ints(lo, hi);
duke@0 637 jlong t = jlong_from(hi, lo);;
duke@0 638 if (is_index(t)) {
duke@0 639 _target = index_to_runtime_address(t);
duke@0 640 } else {
duke@0 641 _target = (address) t;
duke@0 642 }
duke@0 643 #endif /* _LP64 */
duke@0 644 }
duke@0 645
duke@0 646
duke@0 647 void internal_word_Relocation::pack_data_to(CodeSection* dest) {
duke@0 648 short* p = (short*) dest->locs_end();
duke@0 649 normalize_address(_target, dest, true);
duke@0 650
duke@0 651 // Check whether my target address is valid within this section.
duke@0 652 // If not, strengthen the relocation type to point to another section.
duke@0 653 int sindex = _section;
duke@0 654 if (sindex == CodeBuffer::SECT_NONE && _target != NULL
duke@0 655 && (!dest->allocates(_target) || _target == dest->locs_point())) {
duke@0 656 sindex = dest->outer()->section_index_of(_target);
duke@0 657 guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere");
duke@0 658 relocInfo* base = dest->locs_end() - 1;
duke@0 659 assert(base->type() == this->type(), "sanity");
duke@0 660 // Change the written type, to be section_word_type instead.
duke@0 661 base->set_type(relocInfo::section_word_type);
duke@0 662 }
duke@0 663
duke@0 664 // Note: An internal_word relocation cannot refer to its own instruction,
duke@0 665 // because we reserve "0" to mean that the pointer itself is embedded
duke@0 666 // in the code stream. We use a section_word relocation for such cases.
duke@0 667
duke@0 668 if (sindex == CodeBuffer::SECT_NONE) {
duke@0 669 assert(type() == relocInfo::internal_word_type, "must be base class");
duke@0 670 guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section");
duke@0 671 jint x0 = scaled_offset_null_special(_target, dest->locs_point());
duke@0 672 assert(!(x0 == 0 && _target != NULL), "correct encoding of null target");
duke@0 673 p = pack_1_int_to(p, x0);
duke@0 674 } else {
duke@0 675 assert(_target != NULL, "sanity");
duke@0 676 CodeSection* sect = dest->outer()->code_section(sindex);
duke@0 677 guarantee(sect->allocates2(_target), "must be in correct section");
duke@0 678 address base = sect->start();
duke@0 679 jint offset = scaled_offset(_target, base);
duke@0 680 assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity");
duke@0 681 assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++");
duke@0 682 p = pack_1_int_to(p, (offset << section_width) | sindex);
duke@0 683 }
duke@0 684
duke@0 685 dest->set_locs_end((relocInfo*) p);
duke@0 686 }
duke@0 687
duke@0 688
duke@0 689 void internal_word_Relocation::unpack_data() {
duke@0 690 jint x0 = unpack_1_int();
duke@0 691 _target = x0==0? NULL: address_from_scaled_offset(x0, addr());
duke@0 692 _section = CodeBuffer::SECT_NONE;
duke@0 693 }
duke@0 694
duke@0 695
duke@0 696 void section_word_Relocation::unpack_data() {
duke@0 697 jint x = unpack_1_int();
duke@0 698 jint offset = (x >> section_width);
duke@0 699 int sindex = (x & ((1<<section_width)-1));
duke@0 700 address base = binding()->section_start(sindex);
duke@0 701
duke@0 702 _section = sindex;
duke@0 703 _target = address_from_scaled_offset(offset, base);
duke@0 704 }
duke@0 705
duke@0 706
duke@0 707 void breakpoint_Relocation::pack_data_to(CodeSection* dest) {
duke@0 708 short* p = (short*) dest->locs_end();
duke@0 709 address point = dest->locs_point();
duke@0 710
duke@0 711 *p++ = _bits;
duke@0 712
duke@0 713 assert(_target != NULL, "sanity");
duke@0 714
duke@0 715 if (internal()) normalize_address(_target, dest);
duke@0 716
duke@0 717 jint target_bits =
duke@0 718 (jint)( internal() ? scaled_offset (_target, point)
duke@0 719 : runtime_address_to_index(_target) );
duke@0 720 if (settable()) {
duke@0 721 // save space for set_target later
duke@0 722 p = add_jint(p, target_bits);
duke@0 723 } else {
duke@0 724 p = add_var_int(p, target_bits);
duke@0 725 }
duke@0 726
duke@0 727 for (int i = 0; i < instrlen(); i++) {
duke@0 728 // put placeholder words until bytes can be saved
duke@0 729 p = add_short(p, (short)0x7777);
duke@0 730 }
duke@0 731
duke@0 732 dest->set_locs_end((relocInfo*) p);
duke@0 733 }
duke@0 734
duke@0 735
duke@0 736 void breakpoint_Relocation::unpack_data() {
duke@0 737 _bits = live_bits();
duke@0 738
duke@0 739 int targetlen = datalen() - 1 - instrlen();
duke@0 740 jint target_bits = 0;
duke@0 741 if (targetlen == 0) target_bits = 0;
duke@0 742 else if (targetlen == 1) target_bits = *(data()+1);
duke@0 743 else if (targetlen == 2) target_bits = relocInfo::jint_from_data(data()+1);
duke@0 744 else { ShouldNotReachHere(); }
duke@0 745
duke@0 746 _target = internal() ? address_from_scaled_offset(target_bits, addr())
duke@0 747 : index_to_runtime_address (target_bits);
duke@0 748 }
duke@0 749
duke@0 750
duke@0 751 //// miscellaneous methods
duke@0 752 oop* oop_Relocation::oop_addr() {
duke@0 753 int n = _oop_index;
duke@0 754 if (n == 0) {
duke@0 755 // oop is stored in the code stream
duke@0 756 return (oop*) pd_address_in_code();
duke@0 757 } else {
twisti@1483 758 // oop is stored in table at nmethod::oops_begin
duke@0 759 return code()->oop_addr_at(n);
duke@0 760 }
duke@0 761 }
duke@0 762
duke@0 763
duke@0 764 oop oop_Relocation::oop_value() {
duke@0 765 oop v = *oop_addr();
duke@0 766 // clean inline caches store a special pseudo-null
duke@0 767 if (v == (oop)Universe::non_oop_word()) v = NULL;
duke@0 768 return v;
duke@0 769 }
duke@0 770
duke@0 771
duke@0 772 void oop_Relocation::fix_oop_relocation() {
duke@0 773 if (!oop_is_immediate()) {
duke@0 774 // get the oop from the pool, and re-insert it into the instruction:
duke@0 775 set_value(value());
duke@0 776 }
duke@0 777 }
duke@0 778
duke@0 779
twisti@1483 780 RelocIterator virtual_call_Relocation::parse_ic(nmethod* &nm, address &ic_call, address &first_oop,
duke@0 781 oop* &oop_addr, bool *is_optimized) {
duke@0 782 assert(ic_call != NULL, "ic_call address must be set");
duke@0 783 assert(ic_call != NULL || first_oop != NULL, "must supply a non-null input");
twisti@1483 784 if (nm == NULL) {
twisti@1483 785 CodeBlob* code;
duke@0 786 if (ic_call != NULL) {
duke@0 787 code = CodeCache::find_blob(ic_call);
duke@0 788 } else if (first_oop != NULL) {
duke@0 789 code = CodeCache::find_blob(first_oop);
duke@0 790 }
twisti@1483 791 nm = code->as_nmethod_or_null();
twisti@1483 792 assert(nm != NULL, "address to parse must be in nmethod");
duke@0 793 }
twisti@1483 794 assert(ic_call == NULL || nm->contains(ic_call), "must be in nmethod");
twisti@1483 795 assert(first_oop == NULL || nm->contains(first_oop), "must be in nmethod");
duke@0 796
duke@0 797 address oop_limit = NULL;
duke@0 798
duke@0 799 if (ic_call != NULL) {
duke@0 800 // search for the ic_call at the given address
twisti@1483 801 RelocIterator iter(nm, ic_call, ic_call+1);
duke@0 802 bool ret = iter.next();
duke@0 803 assert(ret == true, "relocInfo must exist at this address");
duke@0 804 assert(iter.addr() == ic_call, "must find ic_call");
duke@0 805 if (iter.type() == relocInfo::virtual_call_type) {
duke@0 806 virtual_call_Relocation* r = iter.virtual_call_reloc();
duke@0 807 first_oop = r->first_oop();
duke@0 808 oop_limit = r->oop_limit();
duke@0 809 *is_optimized = false;
duke@0 810 } else {
duke@0 811 assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
duke@0 812 *is_optimized = true;
duke@0 813 oop_addr = NULL;
duke@0 814 first_oop = NULL;
duke@0 815 return iter;
duke@0 816 }
duke@0 817 }
duke@0 818
duke@0 819 // search for the first_oop, to get its oop_addr
twisti@1483 820 RelocIterator all_oops(nm, first_oop);
duke@0 821 RelocIterator iter = all_oops;
duke@0 822 iter.set_limit(first_oop+1);
duke@0 823 bool found_oop = false;
duke@0 824 while (iter.next()) {
duke@0 825 if (iter.type() == relocInfo::oop_type) {
duke@0 826 assert(iter.addr() == first_oop, "must find first_oop");
duke@0 827 oop_addr = iter.oop_reloc()->oop_addr();
duke@0 828 found_oop = true;
duke@0 829 break;
duke@0 830 }
duke@0 831 }
duke@0 832 assert(found_oop, "must find first_oop");
duke@0 833
duke@0 834 bool did_reset = false;
duke@0 835 while (ic_call == NULL) {
duke@0 836 // search forward for the ic_call matching the given first_oop
duke@0 837 while (iter.next()) {
duke@0 838 if (iter.type() == relocInfo::virtual_call_type) {
duke@0 839 virtual_call_Relocation* r = iter.virtual_call_reloc();
duke@0 840 if (r->first_oop() == first_oop) {
duke@0 841 ic_call = r->addr();
duke@0 842 oop_limit = r->oop_limit();
duke@0 843 break;
duke@0 844 }
duke@0 845 }
duke@0 846 }
duke@0 847 guarantee(!did_reset, "cannot find ic_call");
twisti@1483 848 iter = RelocIterator(nm); // search the whole nmethod
duke@0 849 did_reset = true;
duke@0 850 }
duke@0 851
duke@0 852 assert(oop_limit != NULL && first_oop != NULL && ic_call != NULL, "");
duke@0 853 all_oops.set_limit(oop_limit);
duke@0 854 return all_oops;
duke@0 855 }
duke@0 856
duke@0 857
duke@0 858 address virtual_call_Relocation::first_oop() {
duke@0 859 assert(_first_oop != NULL && _first_oop < addr(), "must precede ic_call");
duke@0 860 return _first_oop;
duke@0 861 }
duke@0 862
duke@0 863
duke@0 864 address virtual_call_Relocation::oop_limit() {
duke@0 865 if (_oop_limit == NULL)
duke@0 866 return addr() + NativeCall::instruction_size;
duke@0 867 else
duke@0 868 return _oop_limit;
duke@0 869 }
duke@0 870
duke@0 871
duke@0 872
duke@0 873 void virtual_call_Relocation::clear_inline_cache() {
duke@0 874 // No stubs for ICs
duke@0 875 // Clean IC
duke@0 876 ResourceMark rm;
duke@0 877 CompiledIC* icache = CompiledIC_at(this);
duke@0 878 icache->set_to_clean();
duke@0 879 }
duke@0 880
duke@0 881
duke@0 882 void opt_virtual_call_Relocation::clear_inline_cache() {
duke@0 883 // No stubs for ICs
duke@0 884 // Clean IC
duke@0 885 ResourceMark rm;
duke@0 886 CompiledIC* icache = CompiledIC_at(this);
duke@0 887 icache->set_to_clean();
duke@0 888 }
duke@0 889
duke@0 890
duke@0 891 address opt_virtual_call_Relocation::static_stub() {
duke@0 892 // search for the static stub who points back to this static call
duke@0 893 address static_call_addr = addr();
duke@0 894 RelocIterator iter(code());
duke@0 895 while (iter.next()) {
duke@0 896 if (iter.type() == relocInfo::static_stub_type) {
duke@0 897 if (iter.static_stub_reloc()->static_call() == static_call_addr) {
duke@0 898 return iter.addr();
duke@0 899 }
duke@0 900 }
duke@0 901 }
duke@0 902 return NULL;
duke@0 903 }
duke@0 904
duke@0 905
duke@0 906 void static_call_Relocation::clear_inline_cache() {
duke@0 907 // Safe call site info
duke@0 908 CompiledStaticCall* handler = compiledStaticCall_at(this);
duke@0 909 handler->set_to_clean();
duke@0 910 }
duke@0 911
duke@0 912
duke@0 913 address static_call_Relocation::static_stub() {
duke@0 914 // search for the static stub who points back to this static call
duke@0 915 address static_call_addr = addr();
duke@0 916 RelocIterator iter(code());
duke@0 917 while (iter.next()) {
duke@0 918 if (iter.type() == relocInfo::static_stub_type) {
duke@0 919 if (iter.static_stub_reloc()->static_call() == static_call_addr) {
duke@0 920 return iter.addr();
duke@0 921 }
duke@0 922 }
duke@0 923 }
duke@0 924 return NULL;
duke@0 925 }
duke@0 926
duke@0 927
duke@0 928 void static_stub_Relocation::clear_inline_cache() {
duke@0 929 // Call stub is only used when calling the interpreted code.
duke@0 930 // It does not really need to be cleared, except that we want to clean out the methodoop.
duke@0 931 CompiledStaticCall::set_stub_to_clean(this);
duke@0 932 }
duke@0 933
duke@0 934
duke@0 935 void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
duke@0 936 address target = _target;
duke@0 937 if (target == NULL) {
duke@0 938 // An absolute embedded reference to an external location,
duke@0 939 // which means there is nothing to fix here.
duke@0 940 return;
duke@0 941 }
duke@0 942 // Probably this reference is absolute, not relative, so the
duke@0 943 // following is probably a no-op.
duke@0 944 assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity");
duke@0 945 set_value(target);
duke@0 946 }
duke@0 947
duke@0 948
duke@0 949 address external_word_Relocation::target() {
duke@0 950 address target = _target;
duke@0 951 if (target == NULL) {
duke@0 952 target = pd_get_address_from_code();
duke@0 953 }
duke@0 954 return target;
duke@0 955 }
duke@0 956
duke@0 957
duke@0 958 void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
duke@0 959 address target = _target;
duke@0 960 if (target == NULL) {
duke@0 961 if (addr_in_const()) {
duke@0 962 target = new_addr_for(*(address*)addr(), src, dest);
duke@0 963 } else {
duke@0 964 target = new_addr_for(pd_get_address_from_code(), src, dest);
duke@0 965 }
duke@0 966 }
duke@0 967 set_value(target);
duke@0 968 }
duke@0 969
duke@0 970
duke@0 971 address internal_word_Relocation::target() {
duke@0 972 address target = _target;
duke@0 973 if (target == NULL) {
duke@0 974 target = pd_get_address_from_code();
duke@0 975 }
duke@0 976 return target;
duke@0 977 }
duke@0 978
duke@0 979
duke@0 980 breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) {
duke@0 981 bool active = false;
duke@0 982 bool enabled = (kind == initialization);
duke@0 983 bool removable = (kind != safepoint);
duke@0 984 bool settable = (target == NULL);
duke@0 985
duke@0 986 int bits = kind;
duke@0 987 if (enabled) bits |= enabled_state;
duke@0 988 if (internal) bits |= internal_attr;
duke@0 989 if (removable) bits |= removable_attr;
duke@0 990 if (settable) bits |= settable_attr;
duke@0 991
duke@0 992 _bits = bits | high_bit;
duke@0 993 _target = target;
duke@0 994
duke@0 995 assert(this->kind() == kind, "kind encoded");
duke@0 996 assert(this->enabled() == enabled, "enabled encoded");
duke@0 997 assert(this->active() == active, "active encoded");
duke@0 998 assert(this->internal() == internal, "internal encoded");
duke@0 999 assert(this->removable() == removable, "removable encoded");
duke@0 1000 assert(this->settable() == settable, "settable encoded");
duke@0 1001 }
duke@0 1002
duke@0 1003
duke@0 1004 address breakpoint_Relocation::target() const {
duke@0 1005 return _target;
duke@0 1006 }
duke@0 1007
duke@0 1008
duke@0 1009 void breakpoint_Relocation::set_target(address x) {
duke@0 1010 assert(settable(), "must be settable");
duke@0 1011 jint target_bits =
duke@0 1012 (jint)(internal() ? scaled_offset (x, addr())
duke@0 1013 : runtime_address_to_index(x));
duke@0 1014 short* p = &live_bits() + 1;
duke@0 1015 p = add_jint(p, target_bits);
duke@0 1016 assert(p == instrs(), "new target must fit");
duke@0 1017 _target = x;
duke@0 1018 }
duke@0 1019
duke@0 1020
duke@0 1021 void breakpoint_Relocation::set_enabled(bool b) {
duke@0 1022 if (enabled() == b) return;
duke@0 1023
duke@0 1024 if (b) {
duke@0 1025 set_bits(bits() | enabled_state);
duke@0 1026 } else {
duke@0 1027 set_active(false); // remove the actual breakpoint insn, if any
duke@0 1028 set_bits(bits() & ~enabled_state);
duke@0 1029 }
duke@0 1030 }
duke@0 1031
duke@0 1032
duke@0 1033 void breakpoint_Relocation::set_active(bool b) {
duke@0 1034 assert(!b || enabled(), "cannot activate a disabled breakpoint");
duke@0 1035
duke@0 1036 if (active() == b) return;
duke@0 1037
duke@0 1038 // %%% should probably seize a lock here (might not be the right lock)
duke@0 1039 //MutexLockerEx ml_patch(Patching_lock, true);
duke@0 1040 //if (active() == b) return; // recheck state after locking
duke@0 1041
duke@0 1042 if (b) {
duke@0 1043 set_bits(bits() | active_state);
duke@0 1044 if (instrlen() == 0)
duke@0 1045 fatal("breakpoints in original code must be undoable");
duke@0 1046 pd_swap_in_breakpoint (addr(), instrs(), instrlen());
duke@0 1047 } else {
duke@0 1048 set_bits(bits() & ~active_state);
duke@0 1049 pd_swap_out_breakpoint(addr(), instrs(), instrlen());
duke@0 1050 }
duke@0 1051 }
duke@0 1052
duke@0 1053
duke@0 1054 //---------------------------------------------------------------------------------
duke@0 1055 // Non-product code
duke@0 1056
duke@0 1057 #ifndef PRODUCT
duke@0 1058
duke@0 1059 static const char* reloc_type_string(relocInfo::relocType t) {
duke@0 1060 switch (t) {
duke@0 1061 #define EACH_CASE(name) \
duke@0 1062 case relocInfo::name##_type: \
duke@0 1063 return #name;
duke@0 1064
duke@0 1065 APPLY_TO_RELOCATIONS(EACH_CASE);
duke@0 1066 #undef EACH_CASE
duke@0 1067
duke@0 1068 case relocInfo::none:
duke@0 1069 return "none";
duke@0 1070 case relocInfo::data_prefix_tag:
duke@0 1071 return "prefix";
duke@0 1072 default:
duke@0 1073 return "UNKNOWN RELOC TYPE";
duke@0 1074 }
duke@0 1075 }
duke@0 1076
duke@0 1077
duke@0 1078 void RelocIterator::print_current() {
duke@0 1079 if (!has_current()) {
duke@0 1080 tty->print_cr("(no relocs)");
duke@0 1081 return;
duke@0 1082 }
duke@0 1083 tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT,
duke@0 1084 _current, type(), reloc_type_string((relocInfo::relocType) type()), _addr);
duke@0 1085 if (current()->format() != 0)
duke@0 1086 tty->print(" format=%d", current()->format());
duke@0 1087 if (datalen() == 1) {
duke@0 1088 tty->print(" data=%d", data()[0]);
duke@0 1089 } else if (datalen() > 0) {
duke@0 1090 tty->print(" data={");
duke@0 1091 for (int i = 0; i < datalen(); i++) {
duke@0 1092 tty->print("%04x", data()[i] & 0xFFFF);
duke@0 1093 }
duke@0 1094 tty->print("}");
duke@0 1095 }
duke@0 1096 tty->print("]");
duke@0 1097 switch (type()) {
duke@0 1098 case relocInfo::oop_type:
duke@0 1099 {
duke@0 1100 oop_Relocation* r = oop_reloc();
duke@0 1101 oop* oop_addr = NULL;
duke@0 1102 oop raw_oop = NULL;
duke@0 1103 oop oop_value = NULL;
duke@0 1104 if (code() != NULL || r->oop_is_immediate()) {
duke@0 1105 oop_addr = r->oop_addr();
duke@0 1106 raw_oop = *oop_addr;
duke@0 1107 oop_value = r->oop_value();
duke@0 1108 }
duke@0 1109 tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]",
duke@0 1110 oop_addr, (address)raw_oop, r->offset());
duke@0 1111 // Do not print the oop by default--we want this routine to
duke@0 1112 // work even during GC or other inconvenient times.
duke@0 1113 if (WizardMode && oop_value != NULL) {
duke@0 1114 tty->print("oop_value=" INTPTR_FORMAT ": ", (address)oop_value);
duke@0 1115 oop_value->print_value_on(tty);
duke@0 1116 }
duke@0 1117 break;
duke@0 1118 }
duke@0 1119 case relocInfo::external_word_type:
duke@0 1120 case relocInfo::internal_word_type:
duke@0 1121 case relocInfo::section_word_type:
duke@0 1122 {
duke@0 1123 DataRelocation* r = (DataRelocation*) reloc();
duke@0 1124 tty->print(" | [target=" INTPTR_FORMAT "]", r->value()); //value==target
duke@0 1125 break;
duke@0 1126 }
duke@0 1127 case relocInfo::static_call_type:
duke@0 1128 case relocInfo::runtime_call_type:
duke@0 1129 {
duke@0 1130 CallRelocation* r = (CallRelocation*) reloc();
duke@0 1131 tty->print(" | [destination=" INTPTR_FORMAT "]", r->destination());
duke@0 1132 break;
duke@0 1133 }
duke@0 1134 case relocInfo::virtual_call_type:
duke@0 1135 {
duke@0 1136 virtual_call_Relocation* r = (virtual_call_Relocation*) reloc();
duke@0 1137 tty->print(" | [destination=" INTPTR_FORMAT " first_oop=" INTPTR_FORMAT " oop_limit=" INTPTR_FORMAT "]",
duke@0 1138 r->destination(), r->first_oop(), r->oop_limit());
duke@0 1139 break;
duke@0 1140 }
duke@0 1141 case relocInfo::static_stub_type:
duke@0 1142 {
duke@0 1143 static_stub_Relocation* r = (static_stub_Relocation*) reloc();
duke@0 1144 tty->print(" | [static_call=" INTPTR_FORMAT "]", r->static_call());
duke@0 1145 break;
duke@0 1146 }
duke@0 1147 }
duke@0 1148 tty->cr();
duke@0 1149 }
duke@0 1150
duke@0 1151
duke@0 1152 void RelocIterator::print() {
duke@0 1153 RelocIterator save_this = (*this);
duke@0 1154 relocInfo* scan = _current;
duke@0 1155 if (!has_current()) scan += 1; // nothing to scan here!
duke@0 1156
duke@0 1157 bool skip_next = has_current();
duke@0 1158 bool got_next;
duke@0 1159 while (true) {
duke@0 1160 got_next = (skip_next || next());
duke@0 1161 skip_next = false;
duke@0 1162
duke@0 1163 tty->print(" @" INTPTR_FORMAT ": ", scan);
duke@0 1164 relocInfo* newscan = _current+1;
duke@0 1165 if (!has_current()) newscan -= 1; // nothing to scan here!
duke@0 1166 while (scan < newscan) {
duke@0 1167 tty->print("%04x", *(short*)scan & 0xFFFF);
duke@0 1168 scan++;
duke@0 1169 }
duke@0 1170 tty->cr();
duke@0 1171
duke@0 1172 if (!got_next) break;
duke@0 1173 print_current();
duke@0 1174 }
duke@0 1175
duke@0 1176 (*this) = save_this;
duke@0 1177 }
duke@0 1178
duke@0 1179 // For the debugger:
duke@0 1180 extern "C"
twisti@1483 1181 void print_blob_locs(nmethod* nm) {
twisti@1483 1182 nm->print();
twisti@1483 1183 RelocIterator iter(nm);
duke@0 1184 iter.print();
duke@0 1185 }
duke@0 1186 extern "C"
duke@0 1187 void print_buf_locs(CodeBuffer* cb) {
duke@0 1188 FlagSetting fs(PrintRelocations, true);
duke@0 1189 cb->print();
duke@0 1190 }
duke@0 1191 #endif // !PRODUCT