annotate src/share/vm/code/relocInfo.cpp @ 1472:c18cbe5936b8

6941466: Oracle rebranding changes for Hotspot repositories Summary: Change all the Sun copyrights to Oracle copyright Reviewed-by: ohair
author trims
date Thu, 27 May 2010 19:08:38 -0700
parents a61af66fc99e
children e9ff18c4ace7
rev   line source
duke@0 1 /*
trims@1472 2 * Copyright (c) 1997, 2007, Oracle and/or its affiliates. All rights reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
trims@1472 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1472 20 * or visit www.oracle.com if you need additional information or have any
trims@1472 21 * questions.
duke@0 22 *
duke@0 23 */
duke@0 24
duke@0 25 # include "incls/_precompiled.incl"
duke@0 26 # include "incls/_relocInfo.cpp.incl"
duke@0 27
duke@0 28
duke@0 29 const RelocationHolder RelocationHolder::none; // its type is relocInfo::none
duke@0 30
duke@0 31
duke@0 32 // Implementation of relocInfo
duke@0 33
duke@0 34 #ifdef ASSERT
duke@0 35 relocInfo::relocInfo(relocType t, int off, int f) {
duke@0 36 assert(t != data_prefix_tag, "cannot build a prefix this way");
duke@0 37 assert((t & type_mask) == t, "wrong type");
duke@0 38 assert((f & format_mask) == f, "wrong format");
duke@0 39 assert(off >= 0 && off < offset_limit(), "offset out off bounds");
duke@0 40 assert((off & (offset_unit-1)) == 0, "misaligned offset");
duke@0 41 (*this) = relocInfo(t, RAW_BITS, off, f);
duke@0 42 }
duke@0 43 #endif
duke@0 44
duke@0 45 void relocInfo::initialize(CodeSection* dest, Relocation* reloc) {
duke@0 46 relocInfo* data = this+1; // here's where the data might go
duke@0 47 dest->set_locs_end(data); // sync end: the next call may read dest.locs_end
duke@0 48 reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end
duke@0 49 relocInfo* data_limit = dest->locs_end();
duke@0 50 if (data_limit > data) {
duke@0 51 relocInfo suffix = (*this);
duke@0 52 data_limit = this->finish_prefix((short*) data_limit);
duke@0 53 // Finish up with the suffix. (Hack note: pack_data_to might edit this.)
duke@0 54 *data_limit = suffix;
duke@0 55 dest->set_locs_end(data_limit+1);
duke@0 56 }
duke@0 57 }
duke@0 58
duke@0 59 relocInfo* relocInfo::finish_prefix(short* prefix_limit) {
duke@0 60 assert(sizeof(relocInfo) == sizeof(short), "change this code");
duke@0 61 short* p = (short*)(this+1);
duke@0 62 assert(prefix_limit >= p, "must be a valid span of data");
duke@0 63 int plen = prefix_limit - p;
duke@0 64 if (plen == 0) {
duke@0 65 debug_only(_value = 0xFFFF);
duke@0 66 return this; // no data: remove self completely
duke@0 67 }
duke@0 68 if (plen == 1 && fits_into_immediate(p[0])) {
duke@0 69 (*this) = immediate_relocInfo(p[0]); // move data inside self
duke@0 70 return this+1;
duke@0 71 }
duke@0 72 // cannot compact, so just update the count and return the limit pointer
duke@0 73 (*this) = prefix_relocInfo(plen); // write new datalen
duke@0 74 assert(data() + datalen() == prefix_limit, "pointers must line up");
duke@0 75 return (relocInfo*)prefix_limit;
duke@0 76 }
duke@0 77
duke@0 78
duke@0 79 void relocInfo::set_type(relocType t) {
duke@0 80 int old_offset = addr_offset();
duke@0 81 int old_format = format();
duke@0 82 (*this) = relocInfo(t, old_offset, old_format);
duke@0 83 assert(type()==(int)t, "sanity check");
duke@0 84 assert(addr_offset()==old_offset, "sanity check");
duke@0 85 assert(format()==old_format, "sanity check");
duke@0 86 }
duke@0 87
duke@0 88
duke@0 89 void relocInfo::set_format(int f) {
duke@0 90 int old_offset = addr_offset();
duke@0 91 assert((f & format_mask) == f, "wrong format");
duke@0 92 _value = (_value & ~(format_mask << offset_width)) | (f << offset_width);
duke@0 93 assert(addr_offset()==old_offset, "sanity check");
duke@0 94 }
duke@0 95
duke@0 96
duke@0 97 void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) {
duke@0 98 bool found = false;
duke@0 99 while (itr->next() && !found) {
duke@0 100 if (itr->addr() == pc) {
duke@0 101 assert(itr->type()==old_type, "wrong relocInfo type found");
duke@0 102 itr->current()->set_type(new_type);
duke@0 103 found=true;
duke@0 104 }
duke@0 105 }
duke@0 106 assert(found, "no relocInfo found for pc");
duke@0 107 }
duke@0 108
duke@0 109
duke@0 110 void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) {
duke@0 111 change_reloc_info_for_address(itr, pc, old_type, none);
duke@0 112 }
duke@0 113
duke@0 114
duke@0 115 // ----------------------------------------------------------------------------------------------------
duke@0 116 // Implementation of RelocIterator
duke@0 117
duke@0 118 void RelocIterator::initialize(CodeBlob* cb, address begin, address limit) {
duke@0 119 initialize_misc();
duke@0 120
duke@0 121 if (cb == NULL && begin != NULL) {
duke@0 122 // allow CodeBlob to be deduced from beginning address
duke@0 123 cb = CodeCache::find_blob(begin);
duke@0 124 }
duke@0 125 assert(cb != NULL, "must be able to deduce nmethod from other arguments");
duke@0 126
duke@0 127 _code = cb;
duke@0 128 _current = cb->relocation_begin()-1;
duke@0 129 _end = cb->relocation_end();
duke@0 130 _addr = (address) cb->instructions_begin();
duke@0 131
duke@0 132 assert(!has_current(), "just checking");
duke@0 133 address code_end = cb->instructions_end();
duke@0 134
duke@0 135 assert(begin == NULL || begin >= cb->instructions_begin(), "in bounds");
duke@0 136 // FIX THIS assert(limit == NULL || limit <= code_end, "in bounds");
duke@0 137 set_limits(begin, limit);
duke@0 138 }
duke@0 139
duke@0 140
duke@0 141 RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) {
duke@0 142 initialize_misc();
duke@0 143
duke@0 144 _current = cs->locs_start()-1;
duke@0 145 _end = cs->locs_end();
duke@0 146 _addr = cs->start();
duke@0 147 _code = NULL; // Not cb->blob();
duke@0 148
duke@0 149 CodeBuffer* cb = cs->outer();
duke@0 150 assert((int)SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal");
duke@0 151 for (int n = 0; n < (int)SECT_LIMIT; n++) {
duke@0 152 _section_start[n] = cb->code_section(n)->start();
duke@0 153 }
duke@0 154
duke@0 155 assert(!has_current(), "just checking");
duke@0 156
duke@0 157 assert(begin == NULL || begin >= cs->start(), "in bounds");
duke@0 158 assert(limit == NULL || limit <= cs->end(), "in bounds");
duke@0 159 set_limits(begin, limit);
duke@0 160 }
duke@0 161
duke@0 162
duke@0 163 enum { indexCardSize = 128 };
duke@0 164 struct RelocIndexEntry {
duke@0 165 jint addr_offset; // offset from header_end of an addr()
duke@0 166 jint reloc_offset; // offset from header_end of a relocInfo (prefix)
duke@0 167 };
duke@0 168
duke@0 169
duke@0 170 static inline int num_cards(int code_size) {
duke@0 171 return (code_size-1) / indexCardSize;
duke@0 172 }
duke@0 173
duke@0 174
duke@0 175 int RelocIterator::locs_and_index_size(int code_size, int locs_size) {
duke@0 176 if (!UseRelocIndex) return locs_size; // no index
duke@0 177 code_size = round_to(code_size, oopSize);
duke@0 178 locs_size = round_to(locs_size, oopSize);
duke@0 179 int index_size = num_cards(code_size) * sizeof(RelocIndexEntry);
duke@0 180 // format of indexed relocs:
duke@0 181 // relocation_begin: relocInfo ...
duke@0 182 // index: (addr,reloc#) ...
duke@0 183 // indexSize :relocation_end
duke@0 184 return locs_size + index_size + BytesPerInt;
duke@0 185 }
duke@0 186
duke@0 187
duke@0 188 void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) {
duke@0 189 address relocation_begin = (address)dest_begin;
duke@0 190 address relocation_end = (address)dest_end;
duke@0 191 int total_size = relocation_end - relocation_begin;
duke@0 192 int locs_size = dest_count * sizeof(relocInfo);
duke@0 193 if (!UseRelocIndex) {
duke@0 194 Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0);
duke@0 195 return;
duke@0 196 }
duke@0 197 int index_size = total_size - locs_size - BytesPerInt; // find out how much space is left
duke@0 198 int ncards = index_size / sizeof(RelocIndexEntry);
duke@0 199 assert(total_size == locs_size + index_size + BytesPerInt, "checkin'");
duke@0 200 assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'");
duke@0 201 jint* index_size_addr = (jint*)relocation_end - 1;
duke@0 202
duke@0 203 assert(sizeof(jint) == BytesPerInt, "change this code");
duke@0 204
duke@0 205 *index_size_addr = index_size;
duke@0 206 if (index_size != 0) {
duke@0 207 assert(index_size > 0, "checkin'");
duke@0 208
duke@0 209 RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size);
duke@0 210 assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'");
duke@0 211
duke@0 212 // walk over the relocations, and fill in index entries as we go
duke@0 213 RelocIterator iter;
duke@0 214 const address initial_addr = NULL;
duke@0 215 relocInfo* const initial_current = dest_begin - 1; // biased by -1 like elsewhere
duke@0 216
duke@0 217 iter._code = NULL;
duke@0 218 iter._addr = initial_addr;
duke@0 219 iter._limit = (address)(intptr_t)(ncards * indexCardSize);
duke@0 220 iter._current = initial_current;
duke@0 221 iter._end = dest_begin + dest_count;
duke@0 222
duke@0 223 int i = 0;
duke@0 224 address next_card_addr = (address)indexCardSize;
duke@0 225 int addr_offset = 0;
duke@0 226 int reloc_offset = 0;
duke@0 227 while (true) {
duke@0 228 // Checkpoint the iterator before advancing it.
duke@0 229 addr_offset = iter._addr - initial_addr;
duke@0 230 reloc_offset = iter._current - initial_current;
duke@0 231 if (!iter.next()) break;
duke@0 232 while (iter.addr() >= next_card_addr) {
duke@0 233 index[i].addr_offset = addr_offset;
duke@0 234 index[i].reloc_offset = reloc_offset;
duke@0 235 i++;
duke@0 236 next_card_addr += indexCardSize;
duke@0 237 }
duke@0 238 }
duke@0 239 while (i < ncards) {
duke@0 240 index[i].addr_offset = addr_offset;
duke@0 241 index[i].reloc_offset = reloc_offset;
duke@0 242 i++;
duke@0 243 }
duke@0 244 }
duke@0 245 }
duke@0 246
duke@0 247
duke@0 248 void RelocIterator::set_limits(address begin, address limit) {
duke@0 249 int index_size = 0;
duke@0 250 if (UseRelocIndex && _code != NULL) {
duke@0 251 index_size = ((jint*)_end)[-1];
duke@0 252 _end = (relocInfo*)( (address)_end - index_size - BytesPerInt );
duke@0 253 }
duke@0 254
duke@0 255 _limit = limit;
duke@0 256
duke@0 257 // the limit affects this next stuff:
duke@0 258 if (begin != NULL) {
duke@0 259 #ifdef ASSERT
duke@0 260 // In ASSERT mode we do not actually use the index, but simply
duke@0 261 // check that its contents would have led us to the right answer.
duke@0 262 address addrCheck = _addr;
duke@0 263 relocInfo* infoCheck = _current;
duke@0 264 #endif // ASSERT
duke@0 265 if (index_size > 0) {
duke@0 266 // skip ahead
duke@0 267 RelocIndexEntry* index = (RelocIndexEntry*)_end;
duke@0 268 RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size);
duke@0 269 assert(_addr == _code->instructions_begin(), "_addr must be unadjusted");
duke@0 270 int card = (begin - _addr) / indexCardSize;
duke@0 271 if (card > 0) {
duke@0 272 if (index+card-1 < index_limit) index += card-1;
duke@0 273 else index = index_limit - 1;
duke@0 274 #ifdef ASSERT
duke@0 275 addrCheck = _addr + index->addr_offset;
duke@0 276 infoCheck = _current + index->reloc_offset;
duke@0 277 #else
duke@0 278 // Advance the iterator immediately to the last valid state
duke@0 279 // for the previous card. Calling "next" will then advance
duke@0 280 // it to the first item on the required card.
duke@0 281 _addr += index->addr_offset;
duke@0 282 _current += index->reloc_offset;
duke@0 283 #endif // ASSERT
duke@0 284 }
duke@0 285 }
duke@0 286
duke@0 287 relocInfo* backup;
duke@0 288 address backup_addr;
duke@0 289 while (true) {
duke@0 290 backup = _current;
duke@0 291 backup_addr = _addr;
duke@0 292 #ifdef ASSERT
duke@0 293 if (backup == infoCheck) {
duke@0 294 assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL;
duke@0 295 } else {
duke@0 296 assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck");
duke@0 297 }
duke@0 298 #endif // ASSERT
duke@0 299 if (!next() || addr() >= begin) break;
duke@0 300 }
duke@0 301 assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck");
duke@0 302 assert(infoCheck == NULL || infoCheck == backup, "must have matched infoCheck");
duke@0 303 // At this point, either we are at the first matching record,
duke@0 304 // or else there is no such record, and !has_current().
duke@0 305 // In either case, revert to the immediatly preceding state.
duke@0 306 _current = backup;
duke@0 307 _addr = backup_addr;
duke@0 308 set_has_current(false);
duke@0 309 }
duke@0 310 }
duke@0 311
duke@0 312
duke@0 313 void RelocIterator::set_limit(address limit) {
duke@0 314 address code_end = (address)code() + code()->size();
duke@0 315 assert(limit == NULL || limit <= code_end, "in bounds");
duke@0 316 _limit = limit;
duke@0 317 }
duke@0 318
duke@0 319
duke@0 320 void PatchingRelocIterator:: prepass() {
duke@0 321 // turn breakpoints off during patching
duke@0 322 _init_state = (*this); // save cursor
duke@0 323 while (next()) {
duke@0 324 if (type() == relocInfo::breakpoint_type) {
duke@0 325 breakpoint_reloc()->set_active(false);
duke@0 326 }
duke@0 327 }
duke@0 328 (RelocIterator&)(*this) = _init_state; // reset cursor for client
duke@0 329 }
duke@0 330
duke@0 331
duke@0 332 void PatchingRelocIterator:: postpass() {
duke@0 333 // turn breakpoints back on after patching
duke@0 334 (RelocIterator&)(*this) = _init_state; // reset cursor again
duke@0 335 while (next()) {
duke@0 336 if (type() == relocInfo::breakpoint_type) {
duke@0 337 breakpoint_Relocation* bpt = breakpoint_reloc();
duke@0 338 bpt->set_active(bpt->enabled());
duke@0 339 }
duke@0 340 }
duke@0 341 }
duke@0 342
duke@0 343
duke@0 344 // All the strange bit-encodings are in here.
duke@0 345 // The idea is to encode relocation data which are small integers
duke@0 346 // very efficiently (a single extra halfword). Larger chunks of
duke@0 347 // relocation data need a halfword header to hold their size.
duke@0 348 void RelocIterator::advance_over_prefix() {
duke@0 349 if (_current->is_datalen()) {
duke@0 350 _data = (short*) _current->data();
duke@0 351 _datalen = _current->datalen();
duke@0 352 _current += _datalen + 1; // skip the embedded data & header
duke@0 353 } else {
duke@0 354 _databuf = _current->immediate();
duke@0 355 _data = &_databuf;
duke@0 356 _datalen = 1;
duke@0 357 _current++; // skip the header
duke@0 358 }
duke@0 359 // The client will see the following relocInfo, whatever that is.
duke@0 360 // It is the reloc to which the preceding data applies.
duke@0 361 }
duke@0 362
duke@0 363
duke@0 364 address RelocIterator::compute_section_start(int n) const {
duke@0 365 // This routine not only computes a section start, but also
duke@0 366 // memoizes it for later.
duke@0 367 #define CACHE ((RelocIterator*)this)->_section_start[n]
duke@0 368 CodeBlob* cb = code();
duke@0 369 guarantee(cb != NULL, "must have a code blob");
duke@0 370 if (n == CodeBuffer::SECT_INSTS)
duke@0 371 return CACHE = cb->instructions_begin();
duke@0 372 assert(cb->is_nmethod(), "only nmethods have these sections");
duke@0 373 nmethod* nm = (nmethod*) cb;
duke@0 374 address res = NULL;
duke@0 375 switch (n) {
duke@0 376 case CodeBuffer::SECT_STUBS:
duke@0 377 res = nm->stub_begin();
duke@0 378 break;
duke@0 379 case CodeBuffer::SECT_CONSTS:
duke@0 380 res = nm->consts_begin();
duke@0 381 break;
duke@0 382 default:
duke@0 383 ShouldNotReachHere();
duke@0 384 }
duke@0 385 assert(nm->contains(res) || res == nm->instructions_end(), "tame pointer");
duke@0 386 CACHE = res;
duke@0 387 return res;
duke@0 388 #undef CACHE
duke@0 389 }
duke@0 390
duke@0 391
duke@0 392 Relocation* RelocIterator::reloc() {
duke@0 393 // (take the "switch" out-of-line)
duke@0 394 relocInfo::relocType t = type();
duke@0 395 if (false) {}
duke@0 396 #define EACH_TYPE(name) \
duke@0 397 else if (t == relocInfo::name##_type) { \
duke@0 398 return name##_reloc(); \
duke@0 399 }
duke@0 400 APPLY_TO_RELOCATIONS(EACH_TYPE);
duke@0 401 #undef EACH_TYPE
duke@0 402 assert(t == relocInfo::none, "must be padding");
duke@0 403 return new(_rh) Relocation();
duke@0 404 }
duke@0 405
duke@0 406
duke@0 407 //////// Methods for flyweight Relocation types
duke@0 408
duke@0 409
duke@0 410 RelocationHolder RelocationHolder::plus(int offset) const {
duke@0 411 if (offset != 0) {
duke@0 412 switch (type()) {
duke@0 413 case relocInfo::none:
duke@0 414 break;
duke@0 415 case relocInfo::oop_type:
duke@0 416 {
duke@0 417 oop_Relocation* r = (oop_Relocation*)reloc();
duke@0 418 return oop_Relocation::spec(r->oop_index(), r->offset() + offset);
duke@0 419 }
duke@0 420 default:
duke@0 421 ShouldNotReachHere();
duke@0 422 }
duke@0 423 }
duke@0 424 return (*this);
duke@0 425 }
duke@0 426
duke@0 427
duke@0 428 void Relocation::guarantee_size() {
duke@0 429 guarantee(false, "Make _relocbuf bigger!");
duke@0 430 }
duke@0 431
duke@0 432 // some relocations can compute their own values
duke@0 433 address Relocation::value() {
duke@0 434 ShouldNotReachHere();
duke@0 435 return NULL;
duke@0 436 }
duke@0 437
duke@0 438
duke@0 439 void Relocation::set_value(address x) {
duke@0 440 ShouldNotReachHere();
duke@0 441 }
duke@0 442
duke@0 443
duke@0 444 RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) {
duke@0 445 if (rtype == relocInfo::none) return RelocationHolder::none;
duke@0 446 relocInfo ri = relocInfo(rtype, 0);
duke@0 447 RelocIterator itr;
duke@0 448 itr.set_current(ri);
duke@0 449 itr.reloc();
duke@0 450 return itr._rh;
duke@0 451 }
duke@0 452
duke@0 453
duke@0 454 static inline bool is_index(intptr_t index) {
duke@0 455 return 0 < index && index < os::vm_page_size();
duke@0 456 }
duke@0 457
duke@0 458
duke@0 459 int32_t Relocation::runtime_address_to_index(address runtime_address) {
duke@0 460 assert(!is_index((intptr_t)runtime_address), "must not look like an index");
duke@0 461
duke@0 462 if (runtime_address == NULL) return 0;
duke@0 463
duke@0 464 StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address);
duke@0 465 if (p != NULL && p->begin() == runtime_address) {
duke@0 466 assert(is_index(p->index()), "there must not be too many stubs");
duke@0 467 return (int32_t)p->index();
duke@0 468 } else {
duke@0 469 // Known "miscellaneous" non-stub pointers:
duke@0 470 // os::get_polling_page(), SafepointSynchronize::address_of_state()
duke@0 471 if (PrintRelocations) {
duke@0 472 tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address);
duke@0 473 }
duke@0 474 #ifndef _LP64
duke@0 475 return (int32_t) (intptr_t)runtime_address;
duke@0 476 #else
duke@0 477 // didn't fit return non-index
duke@0 478 return -1;
duke@0 479 #endif /* _LP64 */
duke@0 480 }
duke@0 481 }
duke@0 482
duke@0 483
duke@0 484 address Relocation::index_to_runtime_address(int32_t index) {
duke@0 485 if (index == 0) return NULL;
duke@0 486
duke@0 487 if (is_index(index)) {
duke@0 488 StubCodeDesc* p = StubCodeDesc::desc_for_index(index);
duke@0 489 assert(p != NULL, "there must be a stub for this index");
duke@0 490 return p->begin();
duke@0 491 } else {
duke@0 492 #ifndef _LP64
duke@0 493 // this only works on 32bit machines
duke@0 494 return (address) ((intptr_t) index);
duke@0 495 #else
duke@0 496 fatal("Relocation::index_to_runtime_address, int32_t not pointer sized");
duke@0 497 return NULL;
duke@0 498 #endif /* _LP64 */
duke@0 499 }
duke@0 500 }
duke@0 501
duke@0 502 address Relocation::old_addr_for(address newa,
duke@0 503 const CodeBuffer* src, CodeBuffer* dest) {
duke@0 504 int sect = dest->section_index_of(newa);
duke@0 505 guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
duke@0 506 address ostart = src->code_section(sect)->start();
duke@0 507 address nstart = dest->code_section(sect)->start();
duke@0 508 return ostart + (newa - nstart);
duke@0 509 }
duke@0 510
duke@0 511 address Relocation::new_addr_for(address olda,
duke@0 512 const CodeBuffer* src, CodeBuffer* dest) {
duke@0 513 debug_only(const CodeBuffer* src0 = src);
duke@0 514 int sect = CodeBuffer::SECT_NONE;
duke@0 515 // Look for olda in the source buffer, and all previous incarnations
duke@0 516 // if the source buffer has been expanded.
duke@0 517 for (; src != NULL; src = src->before_expand()) {
duke@0 518 sect = src->section_index_of(olda);
duke@0 519 if (sect != CodeBuffer::SECT_NONE) break;
duke@0 520 }
duke@0 521 guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
duke@0 522 address ostart = src->code_section(sect)->start();
duke@0 523 address nstart = dest->code_section(sect)->start();
duke@0 524 return nstart + (olda - ostart);
duke@0 525 }
duke@0 526
duke@0 527 void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) {
duke@0 528 address addr0 = addr;
duke@0 529 if (addr0 == NULL || dest->allocates2(addr0)) return;
duke@0 530 CodeBuffer* cb = dest->outer();
duke@0 531 addr = new_addr_for(addr0, cb, cb);
duke@0 532 assert(allow_other_sections || dest->contains2(addr),
duke@0 533 "addr must be in required section");
duke@0 534 }
duke@0 535
duke@0 536
duke@0 537 void CallRelocation::set_destination(address x) {
duke@0 538 pd_set_call_destination(x);
duke@0 539 }
duke@0 540
duke@0 541 void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
duke@0 542 // Usually a self-relative reference to an external routine.
duke@0 543 // On some platforms, the reference is absolute (not self-relative).
duke@0 544 // The enhanced use of pd_call_destination sorts this all out.
duke@0 545 address orig_addr = old_addr_for(addr(), src, dest);
duke@0 546 address callee = pd_call_destination(orig_addr);
duke@0 547 // Reassert the callee address, this time in the new copy of the code.
duke@0 548 pd_set_call_destination(callee);
duke@0 549 }
duke@0 550
duke@0 551
duke@0 552 //// pack/unpack methods
duke@0 553
duke@0 554 void oop_Relocation::pack_data_to(CodeSection* dest) {
duke@0 555 short* p = (short*) dest->locs_end();
duke@0 556 p = pack_2_ints_to(p, _oop_index, _offset);
duke@0 557 dest->set_locs_end((relocInfo*) p);
duke@0 558 }
duke@0 559
duke@0 560
duke@0 561 void oop_Relocation::unpack_data() {
duke@0 562 unpack_2_ints(_oop_index, _offset);
duke@0 563 }
duke@0 564
duke@0 565
duke@0 566 void virtual_call_Relocation::pack_data_to(CodeSection* dest) {
duke@0 567 short* p = (short*) dest->locs_end();
duke@0 568 address point = dest->locs_point();
duke@0 569
duke@0 570 // Try to make a pointer NULL first.
duke@0 571 if (_oop_limit >= point &&
duke@0 572 _oop_limit <= point + NativeCall::instruction_size) {
duke@0 573 _oop_limit = NULL;
duke@0 574 }
duke@0 575 // If the _oop_limit is NULL, it "defaults" to the end of the call.
duke@0 576 // See ic_call_Relocation::oop_limit() below.
duke@0 577
duke@0 578 normalize_address(_first_oop, dest);
duke@0 579 normalize_address(_oop_limit, dest);
duke@0 580 jint x0 = scaled_offset_null_special(_first_oop, point);
duke@0 581 jint x1 = scaled_offset_null_special(_oop_limit, point);
duke@0 582 p = pack_2_ints_to(p, x0, x1);
duke@0 583 dest->set_locs_end((relocInfo*) p);
duke@0 584 }
duke@0 585
duke@0 586
duke@0 587 void virtual_call_Relocation::unpack_data() {
duke@0 588 jint x0, x1; unpack_2_ints(x0, x1);
duke@0 589 address point = addr();
duke@0 590 _first_oop = x0==0? NULL: address_from_scaled_offset(x0, point);
duke@0 591 _oop_limit = x1==0? NULL: address_from_scaled_offset(x1, point);
duke@0 592 }
duke@0 593
duke@0 594
duke@0 595 void static_stub_Relocation::pack_data_to(CodeSection* dest) {
duke@0 596 short* p = (short*) dest->locs_end();
duke@0 597 CodeSection* insts = dest->outer()->insts();
duke@0 598 normalize_address(_static_call, insts);
duke@0 599 p = pack_1_int_to(p, scaled_offset(_static_call, insts->start()));
duke@0 600 dest->set_locs_end((relocInfo*) p);
duke@0 601 }
duke@0 602
duke@0 603 void static_stub_Relocation::unpack_data() {
duke@0 604 address base = binding()->section_start(CodeBuffer::SECT_INSTS);
duke@0 605 _static_call = address_from_scaled_offset(unpack_1_int(), base);
duke@0 606 }
duke@0 607
duke@0 608
duke@0 609 void external_word_Relocation::pack_data_to(CodeSection* dest) {
duke@0 610 short* p = (short*) dest->locs_end();
duke@0 611 int32_t index = runtime_address_to_index(_target);
duke@0 612 #ifndef _LP64
duke@0 613 p = pack_1_int_to(p, index);
duke@0 614 #else
duke@0 615 if (is_index(index)) {
duke@0 616 p = pack_2_ints_to(p, index, 0);
duke@0 617 } else {
duke@0 618 jlong t = (jlong) _target;
duke@0 619 int32_t lo = low(t);
duke@0 620 int32_t hi = high(t);
duke@0 621 p = pack_2_ints_to(p, lo, hi);
duke@0 622 DEBUG_ONLY(jlong t1 = jlong_from(hi, lo));
duke@0 623 assert(!is_index(t1) && (address) t1 == _target, "not symmetric");
duke@0 624 }
duke@0 625 #endif /* _LP64 */
duke@0 626 dest->set_locs_end((relocInfo*) p);
duke@0 627 }
duke@0 628
duke@0 629
duke@0 630 void external_word_Relocation::unpack_data() {
duke@0 631 #ifndef _LP64
duke@0 632 _target = index_to_runtime_address(unpack_1_int());
duke@0 633 #else
duke@0 634 int32_t lo, hi;
duke@0 635 unpack_2_ints(lo, hi);
duke@0 636 jlong t = jlong_from(hi, lo);;
duke@0 637 if (is_index(t)) {
duke@0 638 _target = index_to_runtime_address(t);
duke@0 639 } else {
duke@0 640 _target = (address) t;
duke@0 641 }
duke@0 642 #endif /* _LP64 */
duke@0 643 }
duke@0 644
duke@0 645
duke@0 646 void internal_word_Relocation::pack_data_to(CodeSection* dest) {
duke@0 647 short* p = (short*) dest->locs_end();
duke@0 648 normalize_address(_target, dest, true);
duke@0 649
duke@0 650 // Check whether my target address is valid within this section.
duke@0 651 // If not, strengthen the relocation type to point to another section.
duke@0 652 int sindex = _section;
duke@0 653 if (sindex == CodeBuffer::SECT_NONE && _target != NULL
duke@0 654 && (!dest->allocates(_target) || _target == dest->locs_point())) {
duke@0 655 sindex = dest->outer()->section_index_of(_target);
duke@0 656 guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere");
duke@0 657 relocInfo* base = dest->locs_end() - 1;
duke@0 658 assert(base->type() == this->type(), "sanity");
duke@0 659 // Change the written type, to be section_word_type instead.
duke@0 660 base->set_type(relocInfo::section_word_type);
duke@0 661 }
duke@0 662
duke@0 663 // Note: An internal_word relocation cannot refer to its own instruction,
duke@0 664 // because we reserve "0" to mean that the pointer itself is embedded
duke@0 665 // in the code stream. We use a section_word relocation for such cases.
duke@0 666
duke@0 667 if (sindex == CodeBuffer::SECT_NONE) {
duke@0 668 assert(type() == relocInfo::internal_word_type, "must be base class");
duke@0 669 guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section");
duke@0 670 jint x0 = scaled_offset_null_special(_target, dest->locs_point());
duke@0 671 assert(!(x0 == 0 && _target != NULL), "correct encoding of null target");
duke@0 672 p = pack_1_int_to(p, x0);
duke@0 673 } else {
duke@0 674 assert(_target != NULL, "sanity");
duke@0 675 CodeSection* sect = dest->outer()->code_section(sindex);
duke@0 676 guarantee(sect->allocates2(_target), "must be in correct section");
duke@0 677 address base = sect->start();
duke@0 678 jint offset = scaled_offset(_target, base);
duke@0 679 assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity");
duke@0 680 assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++");
duke@0 681 p = pack_1_int_to(p, (offset << section_width) | sindex);
duke@0 682 }
duke@0 683
duke@0 684 dest->set_locs_end((relocInfo*) p);
duke@0 685 }
duke@0 686
duke@0 687
duke@0 688 void internal_word_Relocation::unpack_data() {
duke@0 689 jint x0 = unpack_1_int();
duke@0 690 _target = x0==0? NULL: address_from_scaled_offset(x0, addr());
duke@0 691 _section = CodeBuffer::SECT_NONE;
duke@0 692 }
duke@0 693
duke@0 694
duke@0 695 void section_word_Relocation::unpack_data() {
duke@0 696 jint x = unpack_1_int();
duke@0 697 jint offset = (x >> section_width);
duke@0 698 int sindex = (x & ((1<<section_width)-1));
duke@0 699 address base = binding()->section_start(sindex);
duke@0 700
duke@0 701 _section = sindex;
duke@0 702 _target = address_from_scaled_offset(offset, base);
duke@0 703 }
duke@0 704
duke@0 705
duke@0 706 void breakpoint_Relocation::pack_data_to(CodeSection* dest) {
duke@0 707 short* p = (short*) dest->locs_end();
duke@0 708 address point = dest->locs_point();
duke@0 709
duke@0 710 *p++ = _bits;
duke@0 711
duke@0 712 assert(_target != NULL, "sanity");
duke@0 713
duke@0 714 if (internal()) normalize_address(_target, dest);
duke@0 715
duke@0 716 jint target_bits =
duke@0 717 (jint)( internal() ? scaled_offset (_target, point)
duke@0 718 : runtime_address_to_index(_target) );
duke@0 719 if (settable()) {
duke@0 720 // save space for set_target later
duke@0 721 p = add_jint(p, target_bits);
duke@0 722 } else {
duke@0 723 p = add_var_int(p, target_bits);
duke@0 724 }
duke@0 725
duke@0 726 for (int i = 0; i < instrlen(); i++) {
duke@0 727 // put placeholder words until bytes can be saved
duke@0 728 p = add_short(p, (short)0x7777);
duke@0 729 }
duke@0 730
duke@0 731 dest->set_locs_end((relocInfo*) p);
duke@0 732 }
duke@0 733
duke@0 734
duke@0 735 void breakpoint_Relocation::unpack_data() {
duke@0 736 _bits = live_bits();
duke@0 737
duke@0 738 int targetlen = datalen() - 1 - instrlen();
duke@0 739 jint target_bits = 0;
duke@0 740 if (targetlen == 0) target_bits = 0;
duke@0 741 else if (targetlen == 1) target_bits = *(data()+1);
duke@0 742 else if (targetlen == 2) target_bits = relocInfo::jint_from_data(data()+1);
duke@0 743 else { ShouldNotReachHere(); }
duke@0 744
duke@0 745 _target = internal() ? address_from_scaled_offset(target_bits, addr())
duke@0 746 : index_to_runtime_address (target_bits);
duke@0 747 }
duke@0 748
duke@0 749
duke@0 750 //// miscellaneous methods
duke@0 751 oop* oop_Relocation::oop_addr() {
duke@0 752 int n = _oop_index;
duke@0 753 if (n == 0) {
duke@0 754 // oop is stored in the code stream
duke@0 755 return (oop*) pd_address_in_code();
duke@0 756 } else {
duke@0 757 // oop is stored in table at CodeBlob::oops_begin
duke@0 758 return code()->oop_addr_at(n);
duke@0 759 }
duke@0 760 }
duke@0 761
duke@0 762
duke@0 763 oop oop_Relocation::oop_value() {
duke@0 764 oop v = *oop_addr();
duke@0 765 // clean inline caches store a special pseudo-null
duke@0 766 if (v == (oop)Universe::non_oop_word()) v = NULL;
duke@0 767 return v;
duke@0 768 }
duke@0 769
duke@0 770
duke@0 771 void oop_Relocation::fix_oop_relocation() {
duke@0 772 if (!oop_is_immediate()) {
duke@0 773 // get the oop from the pool, and re-insert it into the instruction:
duke@0 774 set_value(value());
duke@0 775 }
duke@0 776 }
duke@0 777
duke@0 778
duke@0 779 RelocIterator virtual_call_Relocation::parse_ic(CodeBlob* &code, address &ic_call, address &first_oop,
duke@0 780 oop* &oop_addr, bool *is_optimized) {
duke@0 781 assert(ic_call != NULL, "ic_call address must be set");
duke@0 782 assert(ic_call != NULL || first_oop != NULL, "must supply a non-null input");
duke@0 783 if (code == NULL) {
duke@0 784 if (ic_call != NULL) {
duke@0 785 code = CodeCache::find_blob(ic_call);
duke@0 786 } else if (first_oop != NULL) {
duke@0 787 code = CodeCache::find_blob(first_oop);
duke@0 788 }
duke@0 789 assert(code != NULL, "address to parse must be in CodeBlob");
duke@0 790 }
duke@0 791 assert(ic_call == NULL || code->contains(ic_call), "must be in CodeBlob");
duke@0 792 assert(first_oop == NULL || code->contains(first_oop), "must be in CodeBlob");
duke@0 793
duke@0 794 address oop_limit = NULL;
duke@0 795
duke@0 796 if (ic_call != NULL) {
duke@0 797 // search for the ic_call at the given address
duke@0 798 RelocIterator iter(code, ic_call, ic_call+1);
duke@0 799 bool ret = iter.next();
duke@0 800 assert(ret == true, "relocInfo must exist at this address");
duke@0 801 assert(iter.addr() == ic_call, "must find ic_call");
duke@0 802 if (iter.type() == relocInfo::virtual_call_type) {
duke@0 803 virtual_call_Relocation* r = iter.virtual_call_reloc();
duke@0 804 first_oop = r->first_oop();
duke@0 805 oop_limit = r->oop_limit();
duke@0 806 *is_optimized = false;
duke@0 807 } else {
duke@0 808 assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
duke@0 809 *is_optimized = true;
duke@0 810 oop_addr = NULL;
duke@0 811 first_oop = NULL;
duke@0 812 return iter;
duke@0 813 }
duke@0 814 }
duke@0 815
duke@0 816 // search for the first_oop, to get its oop_addr
duke@0 817 RelocIterator all_oops(code, first_oop);
duke@0 818 RelocIterator iter = all_oops;
duke@0 819 iter.set_limit(first_oop+1);
duke@0 820 bool found_oop = false;
duke@0 821 while (iter.next()) {
duke@0 822 if (iter.type() == relocInfo::oop_type) {
duke@0 823 assert(iter.addr() == first_oop, "must find first_oop");
duke@0 824 oop_addr = iter.oop_reloc()->oop_addr();
duke@0 825 found_oop = true;
duke@0 826 break;
duke@0 827 }
duke@0 828 }
duke@0 829 assert(found_oop, "must find first_oop");
duke@0 830
duke@0 831 bool did_reset = false;
duke@0 832 while (ic_call == NULL) {
duke@0 833 // search forward for the ic_call matching the given first_oop
duke@0 834 while (iter.next()) {
duke@0 835 if (iter.type() == relocInfo::virtual_call_type) {
duke@0 836 virtual_call_Relocation* r = iter.virtual_call_reloc();
duke@0 837 if (r->first_oop() == first_oop) {
duke@0 838 ic_call = r->addr();
duke@0 839 oop_limit = r->oop_limit();
duke@0 840 break;
duke@0 841 }
duke@0 842 }
duke@0 843 }
duke@0 844 guarantee(!did_reset, "cannot find ic_call");
duke@0 845 iter = RelocIterator(code); // search the whole CodeBlob
duke@0 846 did_reset = true;
duke@0 847 }
duke@0 848
duke@0 849 assert(oop_limit != NULL && first_oop != NULL && ic_call != NULL, "");
duke@0 850 all_oops.set_limit(oop_limit);
duke@0 851 return all_oops;
duke@0 852 }
duke@0 853
duke@0 854
duke@0 855 address virtual_call_Relocation::first_oop() {
duke@0 856 assert(_first_oop != NULL && _first_oop < addr(), "must precede ic_call");
duke@0 857 return _first_oop;
duke@0 858 }
duke@0 859
duke@0 860
duke@0 861 address virtual_call_Relocation::oop_limit() {
duke@0 862 if (_oop_limit == NULL)
duke@0 863 return addr() + NativeCall::instruction_size;
duke@0 864 else
duke@0 865 return _oop_limit;
duke@0 866 }
duke@0 867
duke@0 868
duke@0 869
duke@0 870 void virtual_call_Relocation::clear_inline_cache() {
duke@0 871 // No stubs for ICs
duke@0 872 // Clean IC
duke@0 873 ResourceMark rm;
duke@0 874 CompiledIC* icache = CompiledIC_at(this);
duke@0 875 icache->set_to_clean();
duke@0 876 }
duke@0 877
duke@0 878
duke@0 879 void opt_virtual_call_Relocation::clear_inline_cache() {
duke@0 880 // No stubs for ICs
duke@0 881 // Clean IC
duke@0 882 ResourceMark rm;
duke@0 883 CompiledIC* icache = CompiledIC_at(this);
duke@0 884 icache->set_to_clean();
duke@0 885 }
duke@0 886
duke@0 887
duke@0 888 address opt_virtual_call_Relocation::static_stub() {
duke@0 889 // search for the static stub who points back to this static call
duke@0 890 address static_call_addr = addr();
duke@0 891 RelocIterator iter(code());
duke@0 892 while (iter.next()) {
duke@0 893 if (iter.type() == relocInfo::static_stub_type) {
duke@0 894 if (iter.static_stub_reloc()->static_call() == static_call_addr) {
duke@0 895 return iter.addr();
duke@0 896 }
duke@0 897 }
duke@0 898 }
duke@0 899 return NULL;
duke@0 900 }
duke@0 901
duke@0 902
duke@0 903 void static_call_Relocation::clear_inline_cache() {
duke@0 904 // Safe call site info
duke@0 905 CompiledStaticCall* handler = compiledStaticCall_at(this);
duke@0 906 handler->set_to_clean();
duke@0 907 }
duke@0 908
duke@0 909
duke@0 910 address static_call_Relocation::static_stub() {
duke@0 911 // search for the static stub who points back to this static call
duke@0 912 address static_call_addr = addr();
duke@0 913 RelocIterator iter(code());
duke@0 914 while (iter.next()) {
duke@0 915 if (iter.type() == relocInfo::static_stub_type) {
duke@0 916 if (iter.static_stub_reloc()->static_call() == static_call_addr) {
duke@0 917 return iter.addr();
duke@0 918 }
duke@0 919 }
duke@0 920 }
duke@0 921 return NULL;
duke@0 922 }
duke@0 923
duke@0 924
duke@0 925 void static_stub_Relocation::clear_inline_cache() {
duke@0 926 // Call stub is only used when calling the interpreted code.
duke@0 927 // It does not really need to be cleared, except that we want to clean out the methodoop.
duke@0 928 CompiledStaticCall::set_stub_to_clean(this);
duke@0 929 }
duke@0 930
duke@0 931
duke@0 932 void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
duke@0 933 address target = _target;
duke@0 934 if (target == NULL) {
duke@0 935 // An absolute embedded reference to an external location,
duke@0 936 // which means there is nothing to fix here.
duke@0 937 return;
duke@0 938 }
duke@0 939 // Probably this reference is absolute, not relative, so the
duke@0 940 // following is probably a no-op.
duke@0 941 assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity");
duke@0 942 set_value(target);
duke@0 943 }
duke@0 944
duke@0 945
duke@0 946 address external_word_Relocation::target() {
duke@0 947 address target = _target;
duke@0 948 if (target == NULL) {
duke@0 949 target = pd_get_address_from_code();
duke@0 950 }
duke@0 951 return target;
duke@0 952 }
duke@0 953
duke@0 954
duke@0 955 void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
duke@0 956 address target = _target;
duke@0 957 if (target == NULL) {
duke@0 958 if (addr_in_const()) {
duke@0 959 target = new_addr_for(*(address*)addr(), src, dest);
duke@0 960 } else {
duke@0 961 target = new_addr_for(pd_get_address_from_code(), src, dest);
duke@0 962 }
duke@0 963 }
duke@0 964 set_value(target);
duke@0 965 }
duke@0 966
duke@0 967
duke@0 968 address internal_word_Relocation::target() {
duke@0 969 address target = _target;
duke@0 970 if (target == NULL) {
duke@0 971 target = pd_get_address_from_code();
duke@0 972 }
duke@0 973 return target;
duke@0 974 }
duke@0 975
duke@0 976
duke@0 977 breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) {
duke@0 978 bool active = false;
duke@0 979 bool enabled = (kind == initialization);
duke@0 980 bool removable = (kind != safepoint);
duke@0 981 bool settable = (target == NULL);
duke@0 982
duke@0 983 int bits = kind;
duke@0 984 if (enabled) bits |= enabled_state;
duke@0 985 if (internal) bits |= internal_attr;
duke@0 986 if (removable) bits |= removable_attr;
duke@0 987 if (settable) bits |= settable_attr;
duke@0 988
duke@0 989 _bits = bits | high_bit;
duke@0 990 _target = target;
duke@0 991
duke@0 992 assert(this->kind() == kind, "kind encoded");
duke@0 993 assert(this->enabled() == enabled, "enabled encoded");
duke@0 994 assert(this->active() == active, "active encoded");
duke@0 995 assert(this->internal() == internal, "internal encoded");
duke@0 996 assert(this->removable() == removable, "removable encoded");
duke@0 997 assert(this->settable() == settable, "settable encoded");
duke@0 998 }
duke@0 999
duke@0 1000
duke@0 1001 address breakpoint_Relocation::target() const {
duke@0 1002 return _target;
duke@0 1003 }
duke@0 1004
duke@0 1005
duke@0 1006 void breakpoint_Relocation::set_target(address x) {
duke@0 1007 assert(settable(), "must be settable");
duke@0 1008 jint target_bits =
duke@0 1009 (jint)(internal() ? scaled_offset (x, addr())
duke@0 1010 : runtime_address_to_index(x));
duke@0 1011 short* p = &live_bits() + 1;
duke@0 1012 p = add_jint(p, target_bits);
duke@0 1013 assert(p == instrs(), "new target must fit");
duke@0 1014 _target = x;
duke@0 1015 }
duke@0 1016
duke@0 1017
duke@0 1018 void breakpoint_Relocation::set_enabled(bool b) {
duke@0 1019 if (enabled() == b) return;
duke@0 1020
duke@0 1021 if (b) {
duke@0 1022 set_bits(bits() | enabled_state);
duke@0 1023 } else {
duke@0 1024 set_active(false); // remove the actual breakpoint insn, if any
duke@0 1025 set_bits(bits() & ~enabled_state);
duke@0 1026 }
duke@0 1027 }
duke@0 1028
duke@0 1029
duke@0 1030 void breakpoint_Relocation::set_active(bool b) {
duke@0 1031 assert(!b || enabled(), "cannot activate a disabled breakpoint");
duke@0 1032
duke@0 1033 if (active() == b) return;
duke@0 1034
duke@0 1035 // %%% should probably seize a lock here (might not be the right lock)
duke@0 1036 //MutexLockerEx ml_patch(Patching_lock, true);
duke@0 1037 //if (active() == b) return; // recheck state after locking
duke@0 1038
duke@0 1039 if (b) {
duke@0 1040 set_bits(bits() | active_state);
duke@0 1041 if (instrlen() == 0)
duke@0 1042 fatal("breakpoints in original code must be undoable");
duke@0 1043 pd_swap_in_breakpoint (addr(), instrs(), instrlen());
duke@0 1044 } else {
duke@0 1045 set_bits(bits() & ~active_state);
duke@0 1046 pd_swap_out_breakpoint(addr(), instrs(), instrlen());
duke@0 1047 }
duke@0 1048 }
duke@0 1049
duke@0 1050
duke@0 1051 //---------------------------------------------------------------------------------
duke@0 1052 // Non-product code
duke@0 1053
duke@0 1054 #ifndef PRODUCT
duke@0 1055
duke@0 1056 static const char* reloc_type_string(relocInfo::relocType t) {
duke@0 1057 switch (t) {
duke@0 1058 #define EACH_CASE(name) \
duke@0 1059 case relocInfo::name##_type: \
duke@0 1060 return #name;
duke@0 1061
duke@0 1062 APPLY_TO_RELOCATIONS(EACH_CASE);
duke@0 1063 #undef EACH_CASE
duke@0 1064
duke@0 1065 case relocInfo::none:
duke@0 1066 return "none";
duke@0 1067 case relocInfo::data_prefix_tag:
duke@0 1068 return "prefix";
duke@0 1069 default:
duke@0 1070 return "UNKNOWN RELOC TYPE";
duke@0 1071 }
duke@0 1072 }
duke@0 1073
duke@0 1074
duke@0 1075 void RelocIterator::print_current() {
duke@0 1076 if (!has_current()) {
duke@0 1077 tty->print_cr("(no relocs)");
duke@0 1078 return;
duke@0 1079 }
duke@0 1080 tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT,
duke@0 1081 _current, type(), reloc_type_string((relocInfo::relocType) type()), _addr);
duke@0 1082 if (current()->format() != 0)
duke@0 1083 tty->print(" format=%d", current()->format());
duke@0 1084 if (datalen() == 1) {
duke@0 1085 tty->print(" data=%d", data()[0]);
duke@0 1086 } else if (datalen() > 0) {
duke@0 1087 tty->print(" data={");
duke@0 1088 for (int i = 0; i < datalen(); i++) {
duke@0 1089 tty->print("%04x", data()[i] & 0xFFFF);
duke@0 1090 }
duke@0 1091 tty->print("}");
duke@0 1092 }
duke@0 1093 tty->print("]");
duke@0 1094 switch (type()) {
duke@0 1095 case relocInfo::oop_type:
duke@0 1096 {
duke@0 1097 oop_Relocation* r = oop_reloc();
duke@0 1098 oop* oop_addr = NULL;
duke@0 1099 oop raw_oop = NULL;
duke@0 1100 oop oop_value = NULL;
duke@0 1101 if (code() != NULL || r->oop_is_immediate()) {
duke@0 1102 oop_addr = r->oop_addr();
duke@0 1103 raw_oop = *oop_addr;
duke@0 1104 oop_value = r->oop_value();
duke@0 1105 }
duke@0 1106 tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]",
duke@0 1107 oop_addr, (address)raw_oop, r->offset());
duke@0 1108 // Do not print the oop by default--we want this routine to
duke@0 1109 // work even during GC or other inconvenient times.
duke@0 1110 if (WizardMode && oop_value != NULL) {
duke@0 1111 tty->print("oop_value=" INTPTR_FORMAT ": ", (address)oop_value);
duke@0 1112 oop_value->print_value_on(tty);
duke@0 1113 }
duke@0 1114 break;
duke@0 1115 }
duke@0 1116 case relocInfo::external_word_type:
duke@0 1117 case relocInfo::internal_word_type:
duke@0 1118 case relocInfo::section_word_type:
duke@0 1119 {
duke@0 1120 DataRelocation* r = (DataRelocation*) reloc();
duke@0 1121 tty->print(" | [target=" INTPTR_FORMAT "]", r->value()); //value==target
duke@0 1122 break;
duke@0 1123 }
duke@0 1124 case relocInfo::static_call_type:
duke@0 1125 case relocInfo::runtime_call_type:
duke@0 1126 {
duke@0 1127 CallRelocation* r = (CallRelocation*) reloc();
duke@0 1128 tty->print(" | [destination=" INTPTR_FORMAT "]", r->destination());
duke@0 1129 break;
duke@0 1130 }
duke@0 1131 case relocInfo::virtual_call_type:
duke@0 1132 {
duke@0 1133 virtual_call_Relocation* r = (virtual_call_Relocation*) reloc();
duke@0 1134 tty->print(" | [destination=" INTPTR_FORMAT " first_oop=" INTPTR_FORMAT " oop_limit=" INTPTR_FORMAT "]",
duke@0 1135 r->destination(), r->first_oop(), r->oop_limit());
duke@0 1136 break;
duke@0 1137 }
duke@0 1138 case relocInfo::static_stub_type:
duke@0 1139 {
duke@0 1140 static_stub_Relocation* r = (static_stub_Relocation*) reloc();
duke@0 1141 tty->print(" | [static_call=" INTPTR_FORMAT "]", r->static_call());
duke@0 1142 break;
duke@0 1143 }
duke@0 1144 }
duke@0 1145 tty->cr();
duke@0 1146 }
duke@0 1147
duke@0 1148
duke@0 1149 void RelocIterator::print() {
duke@0 1150 RelocIterator save_this = (*this);
duke@0 1151 relocInfo* scan = _current;
duke@0 1152 if (!has_current()) scan += 1; // nothing to scan here!
duke@0 1153
duke@0 1154 bool skip_next = has_current();
duke@0 1155 bool got_next;
duke@0 1156 while (true) {
duke@0 1157 got_next = (skip_next || next());
duke@0 1158 skip_next = false;
duke@0 1159
duke@0 1160 tty->print(" @" INTPTR_FORMAT ": ", scan);
duke@0 1161 relocInfo* newscan = _current+1;
duke@0 1162 if (!has_current()) newscan -= 1; // nothing to scan here!
duke@0 1163 while (scan < newscan) {
duke@0 1164 tty->print("%04x", *(short*)scan & 0xFFFF);
duke@0 1165 scan++;
duke@0 1166 }
duke@0 1167 tty->cr();
duke@0 1168
duke@0 1169 if (!got_next) break;
duke@0 1170 print_current();
duke@0 1171 }
duke@0 1172
duke@0 1173 (*this) = save_this;
duke@0 1174 }
duke@0 1175
duke@0 1176 // For the debugger:
duke@0 1177 extern "C"
duke@0 1178 void print_blob_locs(CodeBlob* cb) {
duke@0 1179 cb->print();
duke@0 1180 RelocIterator iter(cb);
duke@0 1181 iter.print();
duke@0 1182 }
duke@0 1183 extern "C"
duke@0 1184 void print_buf_locs(CodeBuffer* cb) {
duke@0 1185 FlagSetting fs(PrintRelocations, true);
duke@0 1186 cb->print();
duke@0 1187 }
duke@0 1188 #endif // !PRODUCT