changeset 4493:a5f825ef8587

Merge
author lana
date Sun, 07 Aug 2011 17:03:46 -0700
parents 3f3a59423a7e b9fffbe98230
children 94934ebbb654
files src/share/native/java/lang/fdlibm/src/e_acosh.c src/share/native/java/lang/fdlibm/src/e_gamma.c src/share/native/java/lang/fdlibm/src/e_gamma_r.c src/share/native/java/lang/fdlibm/src/e_j0.c src/share/native/java/lang/fdlibm/src/e_j1.c src/share/native/java/lang/fdlibm/src/e_jn.c src/share/native/java/lang/fdlibm/src/e_lgamma.c src/share/native/java/lang/fdlibm/src/e_lgamma_r.c src/share/native/java/lang/fdlibm/src/s_asinh.c src/share/native/java/lang/fdlibm/src/s_erf.c src/share/native/java/lang/fdlibm/src/w_acosh.c src/share/native/java/lang/fdlibm/src/w_gamma.c src/share/native/java/lang/fdlibm/src/w_gamma_r.c src/share/native/java/lang/fdlibm/src/w_j0.c src/share/native/java/lang/fdlibm/src/w_j1.c src/share/native/java/lang/fdlibm/src/w_jn.c src/share/native/java/lang/fdlibm/src/w_lgamma.c src/share/native/java/lang/fdlibm/src/w_lgamma_r.c
diffstat 21 files changed, 0 insertions(+), 2786 deletions(-) [+]
line wrap: on
line diff
--- a/make/java/fdlibm/FILES_c.gmk	Fri Aug 05 16:03:00 2011 -0700
+++ b/make/java/fdlibm/FILES_c.gmk	Sun Aug 07 17:03:46 2011 -0700
@@ -30,21 +30,13 @@
 	k_sin.c \
 	k_tan.c \
 	e_acos.c \
-	e_acosh.c \
 	e_asin.c \
 	e_atan2.c \
 	e_atanh.c \
 	e_cosh.c \
 	e_exp.c \
 	e_fmod.c \
-	e_gamma.c \
-	e_gamma_r.c \
 	e_hypot.c \
-	e_j0.c \
-	e_j1.c \
-	e_jn.c \
-	e_lgamma.c \
-	e_lgamma_r.c \
 	e_log.c \
 	e_log10.c \
 	e_pow.c \
@@ -54,21 +46,13 @@
 	e_sinh.c \
 	e_sqrt.c \
 	w_acos.c \
-	w_acosh.c \
 	w_asin.c \
 	w_atan2.c \
 	w_atanh.c \
 	w_cosh.c \
 	w_exp.c \
 	w_fmod.c \
-	w_gamma.c \
-	w_gamma_r.c \
 	w_hypot.c \
-	w_j0.c \
-	w_j1.c \
-	w_jn.c \
-	w_lgamma.c \
-	w_lgamma_r.c \
 	w_log.c \
 	w_log10.c \
 	w_pow.c \
@@ -76,13 +60,11 @@
 	w_scalb.c \
 	w_sinh.c \
 	w_sqrt.c \
-	s_asinh.c \
 	s_atan.c \
 	s_cbrt.c \
 	s_ceil.c \
 	s_copysign.c \
 	s_cos.c \
-	s_erf.c \
 	s_expm1.c \
 	s_fabs.c \
 	s_finite.c \
--- a/src/share/native/java/lang/fdlibm/include/fdlibm.h	Fri Aug 05 16:03:00 2011 -0700
+++ b/src/share/native/java/lang/fdlibm/include/fdlibm.h	Sun Aug 07 17:03:46 2011 -0700
@@ -135,22 +135,10 @@
 extern double floor __P((double));
 extern double fmod __P((double, double));
 
-extern double erf __P((double));
-extern double erfc __P((double));
-extern double gamma __P((double));
 extern double hypot __P((double, double));
 extern int isnan __P((double));
 extern int finite __P((double));
-extern double j0 __P((double));
-extern double j1 __P((double));
-extern double jn __P((int, double));
-extern double lgamma __P((double));
-extern double y0 __P((double));
-extern double y1 __P((double));
-extern double yn __P((int, double));
 
-extern double acosh __P((double));
-extern double asinh __P((double));
 extern double atanh __P((double));
 extern double cbrt __P((double));
 extern double logb __P((double));
@@ -183,19 +171,9 @@
 extern double expm1 __P((double));
 extern double log1p __P((double));
 
-/*
- * Reentrant version of gamma & lgamma; passes signgam back by reference
- * as the second argument; user must allocate space for signgam.
- */
-#ifdef _REENTRANT
-extern double gamma_r __P((double, int *));
-extern double lgamma_r __P((double, int *));
-#endif  /* _REENTRANT */
-
 /* ieee style elementary functions */
 extern double __ieee754_sqrt __P((double));
 extern double __ieee754_acos __P((double));
-extern double __ieee754_acosh __P((double));
 extern double __ieee754_log __P((double));
 extern double __ieee754_atanh __P((double));
 extern double __ieee754_asin __P((double));
@@ -204,19 +182,9 @@
 extern double __ieee754_cosh __P((double));
 extern double __ieee754_fmod __P((double,double));
 extern double __ieee754_pow __P((double,double));
-extern double __ieee754_lgamma_r __P((double,int *));
-extern double __ieee754_gamma_r __P((double,int *));
-extern double __ieee754_lgamma __P((double));
-extern double __ieee754_gamma __P((double));
 extern double __ieee754_log10 __P((double));
 extern double __ieee754_sinh __P((double));
 extern double __ieee754_hypot __P((double,double));
-extern double __ieee754_j0 __P((double));
-extern double __ieee754_j1 __P((double));
-extern double __ieee754_y0 __P((double));
-extern double __ieee754_y1 __P((double));
-extern double __ieee754_jn __P((int,double));
-extern double __ieee754_yn __P((int,double));
 extern double __ieee754_remainder __P((double,double));
 extern int    __ieee754_rem_pio2 __P((double,double*));
 #ifdef _SCALB_INT
--- a/src/share/native/java/lang/fdlibm/include/jfdlibm.h	Fri Aug 05 16:03:00 2011 -0700
+++ b/src/share/native/java/lang/fdlibm/include/jfdlibm.h	Sun Aug 07 17:03:46 2011 -0700
@@ -64,7 +64,6 @@
 #ifdef __linux__
 #define __ieee754_sqrt          __j__ieee754_sqrt
 #define __ieee754_acos          __j__ieee754_acos
-#define __ieee754_acosh         __j__ieee754_acosh
 #define __ieee754_log           __j__ieee754_log
 #define __ieee754_atanh         __j__ieee754_atanh
 #define __ieee754_asin          __j__ieee754_asin
@@ -73,19 +72,9 @@
 #define __ieee754_cosh          __j__ieee754_cosh
 #define __ieee754_fmod          __j__ieee754_fmod
 #define __ieee754_pow           __j__ieee754_pow
-#define __ieee754_lgamma_r      __j__ieee754_lgamma_r
-#define __ieee754_gamma_r       __j__ieee754_gamma_r
-#define __ieee754_lgamma        __j__ieee754_lgamma
-#define __ieee754_gamma         __j__ieee754_gamma
 #define __ieee754_log10         __j__ieee754_log10
 #define __ieee754_sinh          __j__ieee754_sinh
 #define __ieee754_hypot         __j__ieee754_hypot
-#define __ieee754_j0            __j__ieee754_j0
-#define __ieee754_j1            __j__ieee754_j1
-#define __ieee754_y0            __j__ieee754_y0
-#define __ieee754_y1            __j__ieee754_y1
-#define __ieee754_jn            __j__ieee754_jn
-#define __ieee754_yn            __j__ieee754_yn
 #define __ieee754_remainder     __j__ieee754_remainder
 #define __ieee754_rem_pio2      __j__ieee754_rem_pio2
 #define __ieee754_scalb         __j__ieee754_scalb
--- a/src/share/native/java/lang/fdlibm/src/e_acosh.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,77 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* __ieee754_acosh(x)
- * Method :
- *      Based on
- *              acosh(x) = log [ x + sqrt(x*x-1) ]
- *      we have
- *              acosh(x) := log(x)+ln2, if x is large; else
- *              acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
- *              acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
- *
- * Special cases:
- *      acosh(x) is NaN with signal if x<1.
- *      acosh(NaN) is NaN without signal.
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-one     = 1.0,
-ln2     = 6.93147180559945286227e-01;  /* 0x3FE62E42, 0xFEFA39EF */
-
-#ifdef __STDC__
-        double __ieee754_acosh(double x)
-#else
-        double __ieee754_acosh(x)
-        double x;
-#endif
-{
-        double t;
-        int hx;
-        hx = __HI(x);
-        if(hx<0x3ff00000) {             /* x < 1 */
-            return (x-x)/(x-x);
-        } else if(hx >=0x41b00000) {    /* x > 2**28 */
-            if(hx >=0x7ff00000) {       /* x is inf of NaN */
-                return x+x;
-            } else
-                return __ieee754_log(x)+ln2;    /* acosh(huge)=log(2x) */
-        } else if(((hx-0x3ff00000)|__LO(x))==0) {
-            return 0.0;                 /* acosh(1) = 0 */
-        } else if (hx > 0x40000000) {   /* 2**28 > x > 2 */
-            t=x*x;
-            return __ieee754_log(2.0*x-one/(x+sqrt(t-one)));
-        } else {                        /* 1<x<2 */
-            t = x-one;
-            return log1p(t+sqrt(2.0*t+t*t));
-        }
-}
--- a/src/share/native/java/lang/fdlibm/src/e_gamma.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,45 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* __ieee754_gamma(x)
- * Return the logarithm of the Gamma function of x.
- *
- * Method: call __ieee754_gamma_r
- */
-
-#include "fdlibm.h"
-
-extern int signgam;
-
-#ifdef __STDC__
-        double __ieee754_gamma(double x)
-#else
-        double __ieee754_gamma(x)
-        double x;
-#endif
-{
-        return __ieee754_gamma_r(x,&signgam);
-}
--- a/src/share/native/java/lang/fdlibm/src/e_gamma_r.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,44 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* __ieee754_gamma_r(x, signgamp)
- * Reentrant version of the logarithm of the Gamma function
- * with user provide pointer for the sign of Gamma(x).
- *
- * Method: See __ieee754_lgamma_r
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-        double __ieee754_gamma_r(double x, int *signgamp)
-#else
-        double __ieee754_gamma_r(x,signgamp)
-        double x; int *signgamp;
-#endif
-{
-        return __ieee754_lgamma_r(x,signgamp);
-}
--- a/src/share/native/java/lang/fdlibm/src/e_j0.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,491 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* __ieee754_j0(x), __ieee754_y0(x)
- * Bessel function of the first and second kinds of order zero.
- * Method -- j0(x):
- *      1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
- *      2. Reduce x to |x| since j0(x)=j0(-x),  and
- *         for x in (0,2)
- *              j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
- *         (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
- *         for x in (2,inf)
- *              j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
- *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
- *         as follow:
- *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
- *                      = 1/sqrt(2) * (cos(x) + sin(x))
- *              sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
- *                      = 1/sqrt(2) * (sin(x) - cos(x))
- *         (To avoid cancellation, use
- *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
- *          to compute the worse one.)
- *
- *      3 Special cases
- *              j0(nan)= nan
- *              j0(0) = 1
- *              j0(inf) = 0
- *
- * Method -- y0(x):
- *      1. For x<2.
- *         Since
- *              y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
- *         therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
- *         We use the following function to approximate y0,
- *              y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
- *         where
- *              U(z) = u00 + u01*z + ... + u06*z^6
- *              V(z) = 1  + v01*z + ... + v04*z^4
- *         with absolute approximation error bounded by 2**-72.
- *         Note: For tiny x, U/V = u0 and j0(x)~1, hence
- *              y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
- *      2. For x>=2.
- *              y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
- *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
- *         by the method mentioned above.
- *      3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static double pzero(double), qzero(double);
-#else
-static double pzero(), qzero();
-#endif
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-huge    = 1e300,
-one     = 1.0,
-invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
-tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
-                /* R0/S0 on [0, 2.00] */
-R02  =  1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
-R03  = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
-R04  =  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
-R05  = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
-S01  =  1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
-S02  =  1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
-S03  =  5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
-S04  =  1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
-
-static double zero = 0.0;
-
-#ifdef __STDC__
-        double __ieee754_j0(double x)
-#else
-        double __ieee754_j0(x)
-        double x;
-#endif
-{
-        double z, s,c,ss,cc,r,u,v;
-        int hx,ix;
-
-        hx = __HI(x);
-        ix = hx&0x7fffffff;
-        if(ix>=0x7ff00000) return one/(x*x);
-        x = fabs(x);
-        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
-                s = sin(x);
-                c = cos(x);
-                ss = s-c;
-                cc = s+c;
-                if(ix<0x7fe00000) {  /* make sure x+x not overflow */
-                    z = -cos(x+x);
-                    if ((s*c)<zero) cc = z/ss;
-                    else            ss = z/cc;
-                }
-        /*
-         * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
-         * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
-         */
-                if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x);
-                else {
-                    u = pzero(x); v = qzero(x);
-                    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
-                }
-                return z;
-        }
-        if(ix<0x3f200000) {     /* |x| < 2**-13 */
-            if(huge+x>one) {    /* raise inexact if x != 0 */
-                if(ix<0x3e400000) return one;   /* |x|<2**-27 */
-                else          return one - 0.25*x*x;
-            }
-        }
-        z = x*x;
-        r =  z*(R02+z*(R03+z*(R04+z*R05)));
-        s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
-        if(ix < 0x3FF00000) {   /* |x| < 1.00 */
-            return one + z*(-0.25+(r/s));
-        } else {
-            u = 0.5*x;
-            return((one+u)*(one-u)+z*(r/s));
-        }
-}
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-u00  = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
-u01  =  1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
-u02  = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
-u03  =  3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
-u04  = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
-u05  =  1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
-u06  = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
-v01  =  1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
-v02  =  7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
-v03  =  2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
-v04  =  4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
-
-#ifdef __STDC__
-        double __ieee754_y0(double x)
-#else
-        double __ieee754_y0(x)
-        double x;
-#endif
-{
-        double z, s,c,ss,cc,u,v;
-        int hx,ix,lx;
-
-        hx = __HI(x);
-        ix = 0x7fffffff&hx;
-        lx = __LO(x);
-    /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
-        if(ix>=0x7ff00000) return  one/(x+x*x);
-        if((ix|lx)==0) return -one/zero;
-        if(hx<0) return zero/zero;
-        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
-        /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
-         * where x0 = x-pi/4
-         *      Better formula:
-         *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
-         *                      =  1/sqrt(2) * (sin(x) + cos(x))
-         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
-         *                      =  1/sqrt(2) * (sin(x) - cos(x))
-         * To avoid cancellation, use
-         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
-         * to compute the worse one.
-         */
-                s = sin(x);
-                c = cos(x);
-                ss = s-c;
-                cc = s+c;
-        /*
-         * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
-         * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
-         */
-                if(ix<0x7fe00000) {  /* make sure x+x not overflow */
-                    z = -cos(x+x);
-                    if ((s*c)<zero) cc = z/ss;
-                    else            ss = z/cc;
-                }
-                if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
-                else {
-                    u = pzero(x); v = qzero(x);
-                    z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
-                }
-                return z;
-        }
-        if(ix<=0x3e400000) {    /* x < 2**-27 */
-            return(u00 + tpi*__ieee754_log(x));
-        }
-        z = x*x;
-        u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
-        v = one+z*(v01+z*(v02+z*(v03+z*v04)));
-        return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x)));
-}
-
-/* The asymptotic expansions of pzero is
- *      1 - 9/128 s^2 + 11025/98304 s^4 - ...,  where s = 1/x.
- * For x >= 2, We approximate pzero by
- *      pzero(x) = 1 + (R/S)
- * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
- *        S = 1 + pS0*s^2 + ... + pS4*s^10
- * and
- *      | pzero(x)-1-R/S | <= 2  ** ( -60.26)
- */
-#ifdef __STDC__
-static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#else
-static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#endif
-  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
- -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
- -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
- -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
- -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
- -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
-};
-#ifdef __STDC__
-static const double pS8[5] = {
-#else
-static double pS8[5] = {
-#endif
-  1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
-  3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
-  4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
-  1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
-  4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
-};
-
-#ifdef __STDC__
-static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#else
-static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#endif
- -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
- -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
- -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
- -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
- -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
- -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
-};
-#ifdef __STDC__
-static const double pS5[5] = {
-#else
-static double pS5[5] = {
-#endif
-  6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
-  1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
-  5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
-  9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
-  2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
-};
-
-#ifdef __STDC__
-static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#else
-static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#endif
- -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
- -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
- -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
- -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
- -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
- -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
-};
-#ifdef __STDC__
-static const double pS3[5] = {
-#else
-static double pS3[5] = {
-#endif
-  3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
-  3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
-  1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
-  1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
-  1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
-};
-
-#ifdef __STDC__
-static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#else
-static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#endif
- -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
- -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
- -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
- -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
- -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
- -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
-};
-#ifdef __STDC__
-static const double pS2[5] = {
-#else
-static double pS2[5] = {
-#endif
-  2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
-  1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
-  2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
-  1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
-  1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
-};
-
-#ifdef __STDC__
-        static double pzero(double x)
-#else
-        static double pzero(x)
-        double x;
-#endif
-{
-#ifdef __STDC__
-        const double *p=(void*)0,*q=(void*)0;
-#else
-        double *p,*q;
-#endif
-        double z,r,s;
-        int ix;
-        ix = 0x7fffffff&__HI(x);
-        if(ix>=0x40200000)     {p = pR8; q= pS8;}
-        else if(ix>=0x40122E8B){p = pR5; q= pS5;}
-        else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
-        else if(ix>=0x40000000){p = pR2; q= pS2;}
-        z = one/(x*x);
-        r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
-        s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
-        return one+ r/s;
-}
-
-
-/* For x >= 8, the asymptotic expansions of qzero is
- *      -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
- * We approximate pzero by
- *      qzero(x) = s*(-1.25 + (R/S))
- * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
- *        S = 1 + qS0*s^2 + ... + qS5*s^12
- * and
- *      | qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
- */
-#ifdef __STDC__
-static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#else
-static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#endif
-  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
-  7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
-  1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
-  5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
-  8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
-  3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
-};
-#ifdef __STDC__
-static const double qS8[6] = {
-#else
-static double qS8[6] = {
-#endif
-  1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
-  8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
-  1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
-  8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
-  8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
- -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
-};
-
-#ifdef __STDC__
-static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#else
-static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#endif
-  1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
-  7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
-  5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
-  1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
-  1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
-  1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
-};
-#ifdef __STDC__
-static const double qS5[6] = {
-#else
-static double qS5[6] = {
-#endif
-  8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
-  2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
-  1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
-  5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
-  3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
- -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
-};
-
-#ifdef __STDC__
-static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#else
-static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#endif
-  4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
-  7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
-  3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
-  4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
-  1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
-  1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
-};
-#ifdef __STDC__
-static const double qS3[6] = {
-#else
-static double qS3[6] = {
-#endif
-  4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
-  7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
-  3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
-  6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
-  2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
- -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
-};
-
-#ifdef __STDC__
-static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#else
-static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#endif
-  1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
-  7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
-  1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
-  1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
-  3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
-  1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
-};
-#ifdef __STDC__
-static const double qS2[6] = {
-#else
-static double qS2[6] = {
-#endif
-  3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
-  2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
-  8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
-  8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
-  2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
- -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
-};
-
-#ifdef __STDC__
-        static double qzero(double x)
-#else
-        static double qzero(x)
-        double x;
-#endif
-{
-#ifdef __STDC__
-        const double *p=(void*)0,*q=(void*)0;
-#else
-        double *p,*q;
-#endif
-        double s,r,z;
-        int ix;
-        ix = 0x7fffffff&__HI(x);
-        if(ix>=0x40200000)     {p = qR8; q= qS8;}
-        else if(ix>=0x40122E8B){p = qR5; q= qS5;}
-        else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
-        else if(ix>=0x40000000){p = qR2; q= qS2;}
-        z = one/(x*x);
-        r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
-        s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
-        return (-.125 + r/s)/x;
-}
--- a/src/share/native/java/lang/fdlibm/src/e_j1.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,490 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* __ieee754_j1(x), __ieee754_y1(x)
- * Bessel function of the first and second kinds of order zero.
- * Method -- j1(x):
- *      1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
- *      2. Reduce x to |x| since j1(x)=-j1(-x),  and
- *         for x in (0,2)
- *              j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
- *         (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
- *         for x in (2,inf)
- *              j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
- *              y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
- *         where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
- *         as follow:
- *              cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
- *                      =  1/sqrt(2) * (sin(x) - cos(x))
- *              sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
- *                      = -1/sqrt(2) * (sin(x) + cos(x))
- *         (To avoid cancellation, use
- *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
- *          to compute the worse one.)
- *
- *      3 Special cases
- *              j1(nan)= nan
- *              j1(0) = 0
- *              j1(inf) = 0
- *
- * Method -- y1(x):
- *      1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
- *      2. For x<2.
- *         Since
- *              y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
- *         therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
- *         We use the following function to approximate y1,
- *              y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
- *         where for x in [0,2] (abs err less than 2**-65.89)
- *              U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
- *              V(z) = 1  + v0[0]*z + ... + v0[4]*z^5
- *         Note: For tiny x, 1/x dominate y1 and hence
- *              y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
- *      3. For x>=2.
- *              y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
- *         where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
- *         by method mentioned above.
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static double pone(double), qone(double);
-#else
-static double pone(), qone();
-#endif
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-huge    = 1e300,
-one     = 1.0,
-invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
-tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
-        /* R0/S0 on [0,2] */
-r00  = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
-r01  =  1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
-r02  = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
-r03  =  4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
-s01  =  1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
-s02  =  1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
-s03  =  1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
-s04  =  5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
-s05  =  1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
-
-static double zero    = 0.0;
-
-#ifdef __STDC__
-        double __ieee754_j1(double x)
-#else
-        double __ieee754_j1(x)
-        double x;
-#endif
-{
-        double z, s,c,ss,cc,r,u,v,y;
-        int hx,ix;
-
-        hx = __HI(x);
-        ix = hx&0x7fffffff;
-        if(ix>=0x7ff00000) return one/x;
-        y = fabs(x);
-        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
-                s = sin(y);
-                c = cos(y);
-                ss = -s-c;
-                cc = s-c;
-                if(ix<0x7fe00000) {  /* make sure y+y not overflow */
-                    z = cos(y+y);
-                    if ((s*c)>zero) cc = z/ss;
-                    else            ss = z/cc;
-                }
-        /*
-         * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
-         * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
-         */
-                if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(y);
-                else {
-                    u = pone(y); v = qone(y);
-                    z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
-                }
-                if(hx<0) return -z;
-                else     return  z;
-        }
-        if(ix<0x3e400000) {     /* |x|<2**-27 */
-            if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
-        }
-        z = x*x;
-        r =  z*(r00+z*(r01+z*(r02+z*r03)));
-        s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
-        r *= x;
-        return(x*0.5+r/s);
-}
-
-#ifdef __STDC__
-static const double U0[5] = {
-#else
-static double U0[5] = {
-#endif
- -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
-  5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
- -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
-  2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
- -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
-};
-#ifdef __STDC__
-static const double V0[5] = {
-#else
-static double V0[5] = {
-#endif
-  1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
-  2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
-  1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
-  6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
-  1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
-};
-
-#ifdef __STDC__
-        double __ieee754_y1(double x)
-#else
-        double __ieee754_y1(x)
-        double x;
-#endif
-{
-        double z, s,c,ss,cc,u,v;
-        int hx,ix,lx;
-
-        hx = __HI(x);
-        ix = 0x7fffffff&hx;
-        lx = __LO(x);
-    /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
-        if(ix>=0x7ff00000) return  one/(x+x*x);
-        if((ix|lx)==0) return -one/zero;
-        if(hx<0) return zero/zero;
-        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
-                s = sin(x);
-                c = cos(x);
-                ss = -s-c;
-                cc = s-c;
-                if(ix<0x7fe00000) {  /* make sure x+x not overflow */
-                    z = cos(x+x);
-                    if ((s*c)>zero) cc = z/ss;
-                    else            ss = z/cc;
-                }
-        /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
-         * where x0 = x-3pi/4
-         *      Better formula:
-         *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
-         *                      =  1/sqrt(2) * (sin(x) - cos(x))
-         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
-         *                      = -1/sqrt(2) * (cos(x) + sin(x))
-         * To avoid cancellation, use
-         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
-         * to compute the worse one.
-         */
-                if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
-                else {
-                    u = pone(x); v = qone(x);
-                    z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
-                }
-                return z;
-        }
-        if(ix<=0x3c900000) {    /* x < 2**-54 */
-            return(-tpi/x);
-        }
-        z = x*x;
-        u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
-        v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
-        return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
-}
-
-/* For x >= 8, the asymptotic expansions of pone is
- *      1 + 15/128 s^2 - 4725/2^15 s^4 - ...,   where s = 1/x.
- * We approximate pone by
- *      pone(x) = 1 + (R/S)
- * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
- *        S = 1 + ps0*s^2 + ... + ps4*s^10
- * and
- *      | pone(x)-1-R/S | <= 2  ** ( -60.06)
- */
-
-#ifdef __STDC__
-static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#else
-static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#endif
-  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
-  1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
-  1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
-  4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
-  3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
-  7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
-};
-#ifdef __STDC__
-static const double ps8[5] = {
-#else
-static double ps8[5] = {
-#endif
-  1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
-  3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
-  3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
-  9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
-  3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
-};
-
-#ifdef __STDC__
-static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#else
-static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#endif
-  1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
-  1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
-  6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
-  1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
-  5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
-  5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
-};
-#ifdef __STDC__
-static const double ps5[5] = {
-#else
-static double ps5[5] = {
-#endif
-  5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
-  9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
-  5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
-  7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
-  1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
-};
-
-#ifdef __STDC__
-static const double pr3[6] = {
-#else
-static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#endif
-  3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
-  1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
-  3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
-  3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
-  9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
-  4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
-};
-#ifdef __STDC__
-static const double ps3[5] = {
-#else
-static double ps3[5] = {
-#endif
-  3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
-  3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
-  1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
-  8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
-  1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
-};
-
-#ifdef __STDC__
-static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#else
-static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#endif
-  1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
-  1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
-  2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
-  1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
-  1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
-  5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
-};
-#ifdef __STDC__
-static const double ps2[5] = {
-#else
-static double ps2[5] = {
-#endif
-  2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
-  1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
-  2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
-  1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
-  8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
-};
-
-#ifdef __STDC__
-        static double pone(double x)
-#else
-        static double pone(x)
-        double x;
-#endif
-{
-#ifdef __STDC__
-        const double *p=(void*)0,*q=(void*)0;
-#else
-        double *p,*q;
-#endif
-        double z,r,s;
-        int ix;
-        ix = 0x7fffffff&__HI(x);
-        if(ix>=0x40200000)     {p = pr8; q= ps8;}
-        else if(ix>=0x40122E8B){p = pr5; q= ps5;}
-        else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
-        else if(ix>=0x40000000){p = pr2; q= ps2;}
-        z = one/(x*x);
-        r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
-        s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
-        return one+ r/s;
-}
-
-
-/* For x >= 8, the asymptotic expansions of qone is
- *      3/8 s - 105/1024 s^3 - ..., where s = 1/x.
- * We approximate pone by
- *      qone(x) = s*(0.375 + (R/S))
- * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
- *        S = 1 + qs1*s^2 + ... + qs6*s^12
- * and
- *      | qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
- */
-
-#ifdef __STDC__
-static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#else
-static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#endif
-  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
- -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
- -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
- -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
- -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
- -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
-};
-#ifdef __STDC__
-static const double qs8[6] = {
-#else
-static double qs8[6] = {
-#endif
-  1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
-  7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
-  1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
-  7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
-  6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
- -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
-};
-
-#ifdef __STDC__
-static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#else
-static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#endif
- -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
- -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
- -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
- -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
- -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
- -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
-};
-#ifdef __STDC__
-static const double qs5[6] = {
-#else
-static double qs5[6] = {
-#endif
-  8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
-  1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
-  1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
-  4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
-  2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
- -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
-};
-
-#ifdef __STDC__
-static const double qr3[6] = {
-#else
-static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#endif
- -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
- -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
- -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
- -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
- -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
- -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
-};
-#ifdef __STDC__
-static const double qs3[6] = {
-#else
-static double qs3[6] = {
-#endif
-  4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
-  6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
-  3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
-  5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
-  1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
- -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
-};
-
-#ifdef __STDC__
-static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#else
-static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#endif
- -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
- -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
- -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
- -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
- -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
- -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
-};
-#ifdef __STDC__
-static const double qs2[6] = {
-#else
-static double qs2[6] = {
-#endif
-  2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
-  2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
-  7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
-  7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
-  1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
- -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
-};
-
-#ifdef __STDC__
-        static double qone(double x)
-#else
-        static double qone(x)
-        double x;
-#endif
-{
-#ifdef __STDC__
-        const double *p=(void*)0,*q=(void*)0;
-#else
-        double *p,*q;
-#endif
-        double  s,r,z;
-        int ix;
-        ix = 0x7fffffff&__HI(x);
-        if(ix>=0x40200000)     {p = qr8; q= qs8;}
-        else if(ix>=0x40122E8B){p = qr5; q= qs5;}
-        else if(ix>=0x4006DB6D){p = qr3; q= qs3;}
-        else if(ix>=0x40000000){p = qr2; q= qs2;}
-        z = one/(x*x);
-        r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
-        s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
-        return (.375 + r/s)/x;
-}
--- a/src/share/native/java/lang/fdlibm/src/e_jn.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,285 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/*
- * __ieee754_jn(n, x), __ieee754_yn(n, x)
- * floating point Bessel's function of the 1st and 2nd kind
- * of order n
- *
- * Special cases:
- *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
- *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
- * Note 2. About jn(n,x), yn(n,x)
- *      For n=0, j0(x) is called,
- *      for n=1, j1(x) is called,
- *      for n<x, forward recursion us used starting
- *      from values of j0(x) and j1(x).
- *      for n>x, a continued fraction approximation to
- *      j(n,x)/j(n-1,x) is evaluated and then backward
- *      recursion is used starting from a supposed value
- *      for j(n,x). The resulting value of j(0,x) is
- *      compared with the actual value to correct the
- *      supposed value of j(n,x).
- *
- *      yn(n,x) is similar in all respects, except
- *      that forward recursion is used for all
- *      values of n>1.
- *
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
-two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
-one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
-
-static double zero  =  0.00000000000000000000e+00;
-
-#ifdef __STDC__
-        double __ieee754_jn(int n, double x)
-#else
-        double __ieee754_jn(n,x)
-        int n; double x;
-#endif
-{
-        int i,hx,ix,lx, sgn;
-        double a, b, temp = 0, di;
-        double z, w;
-
-    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
-     * Thus, J(-n,x) = J(n,-x)
-     */
-        hx = __HI(x);
-        ix = 0x7fffffff&hx;
-        lx = __LO(x);
-    /* if J(n,NaN) is NaN */
-        if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
-        if(n<0){
-                n = -n;
-                x = -x;
-                hx ^= 0x80000000;
-        }
-        if(n==0) return(__ieee754_j0(x));
-        if(n==1) return(__ieee754_j1(x));
-        sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
-        x = fabs(x);
-        if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
-            b = zero;
-        else if((double)n<=x) {
-                /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
-            if(ix>=0x52D00000) { /* x > 2**302 */
-    /* (x >> n**2)
-     *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-     *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-     *      Let s=sin(x), c=cos(x),
-     *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
-     *
-     *             n    sin(xn)*sqt2    cos(xn)*sqt2
-     *          ----------------------------------
-     *             0     s-c             c+s
-     *             1    -s-c            -c+s
-     *             2    -s+c            -c-s
-     *             3     s+c             c-s
-     */
-                switch(n&3) {
-                    case 0: temp =  cos(x)+sin(x); break;
-                    case 1: temp = -cos(x)+sin(x); break;
-                    case 2: temp = -cos(x)-sin(x); break;
-                    case 3: temp =  cos(x)-sin(x); break;
-                }
-                b = invsqrtpi*temp/sqrt(x);
-            } else {
-                a = __ieee754_j0(x);
-                b = __ieee754_j1(x);
-                for(i=1;i<n;i++){
-                    temp = b;
-                    b = b*((double)(i+i)/x) - a; /* avoid underflow */
-                    a = temp;
-                }
-            }
-        } else {
-            if(ix<0x3e100000) { /* x < 2**-29 */
-    /* x is tiny, return the first Taylor expansion of J(n,x)
-     * J(n,x) = 1/n!*(x/2)^n  - ...
-     */
-                if(n>33)        /* underflow */
-                    b = zero;
-                else {
-                    temp = x*0.5; b = temp;
-                    for (a=one,i=2;i<=n;i++) {
-                        a *= (double)i;         /* a = n! */
-                        b *= temp;              /* b = (x/2)^n */
-                    }
-                    b = b/a;
-                }
-            } else {
-                /* use backward recurrence */
-                /*                      x      x^2      x^2
-                 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
-                 *                      2n  - 2(n+1) - 2(n+2)
-                 *
-                 *                      1      1        1
-                 *  (for large x)   =  ----  ------   ------   .....
-                 *                      2n   2(n+1)   2(n+2)
-                 *                      -- - ------ - ------ -
-                 *                       x     x         x
-                 *
-                 * Let w = 2n/x and h=2/x, then the above quotient
-                 * is equal to the continued fraction:
-                 *                  1
-                 *      = -----------------------
-                 *                     1
-                 *         w - -----------------
-                 *                        1
-                 *              w+h - ---------
-                 *                     w+2h - ...
-                 *
-                 * To determine how many terms needed, let
-                 * Q(0) = w, Q(1) = w(w+h) - 1,
-                 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
-                 * When Q(k) > 1e4      good for single
-                 * When Q(k) > 1e9      good for double
-                 * When Q(k) > 1e17     good for quadruple
-                 */
-            /* determine k */
-                double t,v;
-                double q0,q1,h,tmp; int k,m;
-                w  = (n+n)/(double)x; h = 2.0/(double)x;
-                q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
-                while(q1<1.0e9) {
-                        k += 1; z += h;
-                        tmp = z*q1 - q0;
-                        q0 = q1;
-                        q1 = tmp;
-                }
-                m = n+n;
-                for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
-                a = t;
-                b = one;
-                /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
-                 *  Hence, if n*(log(2n/x)) > ...
-                 *  single 8.8722839355e+01
-                 *  double 7.09782712893383973096e+02
-                 *  long double 1.1356523406294143949491931077970765006170e+04
-                 *  then recurrent value may overflow and the result is
-                 *  likely underflow to zero
-                 */
-                tmp = n;
-                v = two/x;
-                tmp = tmp*__ieee754_log(fabs(v*tmp));
-                if(tmp<7.09782712893383973096e+02) {
-                    for(i=n-1,di=(double)(i+i);i>0;i--){
-                        temp = b;
-                        b *= di;
-                        b  = b/x - a;
-                        a = temp;
-                        di -= two;
-                    }
-                } else {
-                    for(i=n-1,di=(double)(i+i);i>0;i--){
-                        temp = b;
-                        b *= di;
-                        b  = b/x - a;
-                        a = temp;
-                        di -= two;
-                    /* scale b to avoid spurious overflow */
-                        if(b>1e100) {
-                            a /= b;
-                            t /= b;
-                            b  = one;
-                        }
-                    }
-                }
-                b = (t*__ieee754_j0(x)/b);
-            }
-        }
-        if(sgn==1) return -b; else return b;
-}
-
-#ifdef __STDC__
-        double __ieee754_yn(int n, double x)
-#else
-        double __ieee754_yn(n,x)
-        int n; double x;
-#endif
-{
-        int i,hx,ix,lx;
-        int sign;
-        double a, b, temp = 0;
-
-        hx = __HI(x);
-        ix = 0x7fffffff&hx;
-        lx = __LO(x);
-    /* if Y(n,NaN) is NaN */
-        if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
-        if((ix|lx)==0) return -one/zero;
-        if(hx<0) return zero/zero;
-        sign = 1;
-        if(n<0){
-                n = -n;
-                sign = 1 - ((n&1)<<1);
-        }
-        if(n==0) return(__ieee754_y0(x));
-        if(n==1) return(sign*__ieee754_y1(x));
-        if(ix==0x7ff00000) return zero;
-        if(ix>=0x52D00000) { /* x > 2**302 */
-    /* (x >> n**2)
-     *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-     *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-     *      Let s=sin(x), c=cos(x),
-     *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
-     *
-     *             n    sin(xn)*sqt2    cos(xn)*sqt2
-     *          ----------------------------------
-     *             0     s-c             c+s
-     *             1    -s-c            -c+s
-     *             2    -s+c            -c-s
-     *             3     s+c             c-s
-     */
-                switch(n&3) {
-                    case 0: temp =  sin(x)-cos(x); break;
-                    case 1: temp = -sin(x)-cos(x); break;
-                    case 2: temp = -sin(x)+cos(x); break;
-                    case 3: temp =  sin(x)+cos(x); break;
-                }
-                b = invsqrtpi*temp/sqrt(x);
-        } else {
-            a = __ieee754_y0(x);
-            b = __ieee754_y1(x);
-        /* quit if b is -inf */
-            for(i=1;i<n&&(__HI(b) != 0xfff00000);i++){
-                temp = b;
-                b = ((double)(i+i)/x)*b - a;
-                a = temp;
-            }
-        }
-        if(sign>0) return b; else return -b;
-}
--- a/src/share/native/java/lang/fdlibm/src/e_lgamma.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,45 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* __ieee754_lgamma(x)
- * Return the logarithm of the Gamma function of x.
- *
- * Method: call __ieee754_lgamma_r
- */
-
-#include "fdlibm.h"
-
-extern int signgam;
-
-#ifdef __STDC__
-        double __ieee754_lgamma(double x)
-#else
-        double __ieee754_lgamma(x)
-        double x;
-#endif
-{
-        return __ieee754_lgamma_r(x,&signgam);
-}
--- a/src/share/native/java/lang/fdlibm/src/e_lgamma_r.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,316 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* __ieee754_lgamma_r(x, signgamp)
- * Reentrant version of the logarithm of the Gamma function
- * with user provide pointer for the sign of Gamma(x).
- *
- * Method:
- *   1. Argument Reduction for 0 < x <= 8
- *      Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
- *      reduce x to a number in [1.5,2.5] by
- *              lgamma(1+s) = log(s) + lgamma(s)
- *      for example,
- *              lgamma(7.3) = log(6.3) + lgamma(6.3)
- *                          = log(6.3*5.3) + lgamma(5.3)
- *                          = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
- *   2. Polynomial approximation of lgamma around its
- *      minimun ymin=1.461632144968362245 to maintain monotonicity.
- *      On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
- *              Let z = x-ymin;
- *              lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
- *      where
- *              poly(z) is a 14 degree polynomial.
- *   2. Rational approximation in the primary interval [2,3]
- *      We use the following approximation:
- *              s = x-2.0;
- *              lgamma(x) = 0.5*s + s*P(s)/Q(s)
- *      with accuracy
- *              |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
- *      Our algorithms are based on the following observation
- *
- *                             zeta(2)-1    2    zeta(3)-1    3
- * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
- *                                 2                 3
- *
- *      where Euler = 0.5771... is the Euler constant, which is very
- *      close to 0.5.
- *
- *   3. For x>=8, we have
- *      lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
- *      (better formula:
- *         lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
- *      Let z = 1/x, then we approximation
- *              f(z) = lgamma(x) - (x-0.5)(log(x)-1)
- *      by
- *                                  3       5             11
- *              w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
- *      where
- *              |w - f(z)| < 2**-58.74
- *
- *   4. For negative x, since (G is gamma function)
- *              -x*G(-x)*G(x) = pi/sin(pi*x),
- *      we have
- *              G(x) = pi/(sin(pi*x)*(-x)*G(-x))
- *      since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
- *      Hence, for x<0, signgam = sign(sin(pi*x)) and
- *              lgamma(x) = log(|Gamma(x)|)
- *                        = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
- *      Note: one should avoid compute pi*(-x) directly in the
- *            computation of sin(pi*(-x)).
- *
- *   5. Special Cases
- *              lgamma(2+s) ~ s*(1-Euler) for tiny s
- *              lgamma(1)=lgamma(2)=0
- *              lgamma(x) ~ -log(x) for tiny x
- *              lgamma(0) = lgamma(inf) = inf
- *              lgamma(-integer) = +-inf
- *
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-two52=  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
-half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
-one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
-pi  =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
-a0  =  7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
-a1  =  3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
-a2  =  6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
-a3  =  2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
-a4  =  7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
-a5  =  2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
-a6  =  1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
-a7  =  5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
-a8  =  2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
-a9  =  1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
-a10 =  2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
-a11 =  4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
-tc  =  1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
-tf  = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
-/* tt = -(tail of tf) */
-tt  = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
-t0  =  4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
-t1  = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
-t2  =  6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
-t3  = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
-t4  =  1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
-t5  = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
-t6  =  6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
-t7  = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
-t8  =  2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
-t9  = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
-t10 =  8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
-t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
-t12 =  3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
-t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
-t14 =  3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
-u0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
-u1  =  6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
-u2  =  1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
-u3  =  9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
-u4  =  2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
-u5  =  1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
-v1  =  2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
-v2  =  2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
-v3  =  7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
-v4  =  1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
-v5  =  3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
-s0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
-s1  =  2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
-s2  =  3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
-s3  =  1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
-s4  =  2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
-s5  =  1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
-s6  =  3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
-r1  =  1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
-r2  =  7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
-r3  =  1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
-r4  =  1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
-r5  =  7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
-r6  =  7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
-w0  =  4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
-w1  =  8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
-w2  = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
-w3  =  7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
-w4  = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
-w5  =  8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
-w6  = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
-
-static double zero=  0.00000000000000000000e+00;
-
-#ifdef __STDC__
-        static double sin_pi(double x)
-#else
-        static double sin_pi(x)
-        double x;
-#endif
-{
-        double y,z;
-        int n,ix;
-
-        ix = 0x7fffffff&__HI(x);
-
-        if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
-        y = -x;         /* x is assume negative */
-
-    /*
-     * argument reduction, make sure inexact flag not raised if input
-     * is an integer
-     */
-        z = floor(y);
-        if(z!=y) {                              /* inexact anyway */
-            y  *= 0.5;
-            y   = 2.0*(y - floor(y));           /* y = |x| mod 2.0 */
-            n   = (int) (y*4.0);
-        } else {
-            if(ix>=0x43400000) {
-                y = zero; n = 0;                 /* y must be even */
-            } else {
-                if(ix<0x43300000) z = y+two52;  /* exact */
-                n   = __LO(z)&1;        /* lower word of z */
-                y  = n;
-                n<<= 2;
-            }
-        }
-        switch (n) {
-            case 0:   y =  __kernel_sin(pi*y,zero,0); break;
-            case 1:
-            case 2:   y =  __kernel_cos(pi*(0.5-y),zero); break;
-            case 3:
-            case 4:   y =  __kernel_sin(pi*(one-y),zero,0); break;
-            case 5:
-            case 6:   y = -__kernel_cos(pi*(y-1.5),zero); break;
-            default:  y =  __kernel_sin(pi*(y-2.0),zero,0); break;
-            }
-        return -y;
-}
-
-
-#ifdef __STDC__
-        double __ieee754_lgamma_r(double x, int *signgamp)
-#else
-        double __ieee754_lgamma_r(x,signgamp)
-        double x; int *signgamp;
-#endif
-{
-        double t,y,z,nadj=0,p,p1,p2,p3,q,r,w;
-        int i,hx,lx,ix;
-
-        hx = __HI(x);
-        lx = __LO(x);
-
-    /* purge off +-inf, NaN, +-0, and negative arguments */
-        *signgamp = 1;
-        ix = hx&0x7fffffff;
-        if(ix>=0x7ff00000) return x*x;
-        if((ix|lx)==0) return one/zero;
-        if(ix<0x3b900000) {     /* |x|<2**-70, return -log(|x|) */
-            if(hx<0) {
-                *signgamp = -1;
-                return -__ieee754_log(-x);
-            } else return -__ieee754_log(x);
-        }
-        if(hx<0) {
-            if(ix>=0x43300000)  /* |x|>=2**52, must be -integer */
-                return one/zero;
-            t = sin_pi(x);
-            if(t==zero) return one/zero; /* -integer */
-            nadj = __ieee754_log(pi/fabs(t*x));
-            if(t<zero) *signgamp = -1;
-            x = -x;
-        }
-
-    /* purge off 1 and 2 */
-        if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
-    /* for x < 2.0 */
-        else if(ix<0x40000000) {
-            if(ix<=0x3feccccc) {        /* lgamma(x) = lgamma(x+1)-log(x) */
-                r = -__ieee754_log(x);
-                if(ix>=0x3FE76944) {y = one-x; i= 0;}
-                else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
-                else {y = x; i=2;}
-            } else {
-                r = zero;
-                if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
-                else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
-                else {y=x-one;i=2;}
-            }
-            switch(i) {
-              case 0:
-                z = y*y;
-                p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
-                p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
-                p  = y*p1+p2;
-                r  += (p-0.5*y); break;
-              case 1:
-                z = y*y;
-                w = z*y;
-                p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));    /* parallel comp */
-                p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
-                p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
-                p  = z*p1-(tt-w*(p2+y*p3));
-                r += (tf + p); break;
-              case 2:
-                p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
-                p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
-                r += (-0.5*y + p1/p2);
-            }
-        }
-        else if(ix<0x40200000) {                        /* x < 8.0 */
-            i = (int)x;
-            t = zero;
-            y = x-(double)i;
-            p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
-            q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
-            r = half*y+p/q;
-            z = one;    /* lgamma(1+s) = log(s) + lgamma(s) */
-            switch(i) {
-            case 7: z *= (y+6.0);       /* FALLTHRU */
-            case 6: z *= (y+5.0);       /* FALLTHRU */
-            case 5: z *= (y+4.0);       /* FALLTHRU */
-            case 4: z *= (y+3.0);       /* FALLTHRU */
-            case 3: z *= (y+2.0);       /* FALLTHRU */
-                    r += __ieee754_log(z); break;
-            }
-    /* 8.0 <= x < 2**58 */
-        } else if (ix < 0x43900000) {
-            t = __ieee754_log(x);
-            z = one/x;
-            y = z*z;
-            w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
-            r = (x-half)*(t-one)+w;
-        } else
-    /* 2**58 <= x <= inf */
-            r =  x*(__ieee754_log(x)-one);
-        if(hx<0) r = nadj - r;
-        return r;
-}
--- a/src/share/native/java/lang/fdlibm/src/s_asinh.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,74 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* asinh(x)
- * Method :
- *      Based on
- *              asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
- *      we have
- *      asinh(x) := x  if  1+x*x=1,
- *               := sign(x)*(log(x)+ln2)) for large |x|, else
- *               := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
- *               := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
-ln2 =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
-huge=  1.00000000000000000000e+300;
-
-#ifdef __STDC__
-        double asinh(double x)
-#else
-        double asinh(x)
-        double x;
-#endif
-{
-        double t,w;
-        int hx,ix;
-        hx = __HI(x);
-        ix = hx&0x7fffffff;
-        if(ix>=0x7ff00000) return x+x;  /* x is inf or NaN */
-        if(ix< 0x3e300000) {    /* |x|<2**-28 */
-            if(huge+x>one) return x;    /* return x inexact except 0 */
-        }
-        if(ix>0x41b00000) {     /* |x| > 2**28 */
-            w = __ieee754_log(fabs(x))+ln2;
-        } else if (ix>0x40000000) {     /* 2**28 > |x| > 2.0 */
-            t = fabs(x);
-            w = __ieee754_log(2.0*t+one/(sqrt(x*x+one)+t));
-        } else {                /* 2.0 > |x| > 2**-28 */
-            t = x*x;
-            w =log1p(fabs(x)+t/(one+sqrt(one+t)));
-        }
-        if(hx>0) return w; else return -w;
-}
--- a/src/share/native/java/lang/fdlibm/src/s_erf.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,323 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* double erf(double x)
- * double erfc(double x)
- *                           x
- *                    2      |\
- *     erf(x)  =  ---------  | exp(-t*t)dt
- *                 sqrt(pi) \|
- *                           0
- *
- *     erfc(x) =  1-erf(x)
- *  Note that
- *              erf(-x) = -erf(x)
- *              erfc(-x) = 2 - erfc(x)
- *
- * Method:
- *      1. For |x| in [0, 0.84375]
- *          erf(x)  = x + x*R(x^2)
- *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
- *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
- *         where R = P/Q where P is an odd poly of degree 8 and
- *         Q is an odd poly of degree 10.
- *                                               -57.90
- *                      | R - (erf(x)-x)/x | <= 2
- *
- *
- *         Remark. The formula is derived by noting
- *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
- *         and that
- *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
- *         is close to one. The interval is chosen because the fix
- *         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
- *         near 0.6174), and by some experiment, 0.84375 is chosen to
- *         guarantee the error is less than one ulp for erf.
- *
- *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
- *         c = 0.84506291151 rounded to single (24 bits)
- *              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
- *              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
- *                        1+(c+P1(s)/Q1(s))    if x < 0
- *              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
- *         Remark: here we use the taylor series expansion at x=1.
- *              erf(1+s) = erf(1) + s*Poly(s)
- *                       = 0.845.. + P1(s)/Q1(s)
- *         That is, we use rational approximation to approximate
- *                      erf(1+s) - (c = (single)0.84506291151)
- *         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
- *         where
- *              P1(s) = degree 6 poly in s
- *              Q1(s) = degree 6 poly in s
- *
- *      3. For x in [1.25,1/0.35(~2.857143)],
- *              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
- *              erf(x)  = 1 - erfc(x)
- *         where
- *              R1(z) = degree 7 poly in z, (z=1/x^2)
- *              S1(z) = degree 8 poly in z
- *
- *      4. For x in [1/0.35,28]
- *              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
- *                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
- *                      = 2.0 - tiny            (if x <= -6)
- *              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
- *              erf(x)  = sign(x)*(1.0 - tiny)
- *         where
- *              R2(z) = degree 6 poly in z, (z=1/x^2)
- *              S2(z) = degree 7 poly in z
- *
- *      Note1:
- *         To compute exp(-x*x-0.5625+R/S), let s be a single
- *         precision number and s := x; then
- *              -x*x = -s*s + (s-x)*(s+x)
- *              exp(-x*x-0.5626+R/S) =
- *                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
- *      Note2:
- *         Here 4 and 5 make use of the asymptotic series
- *                        exp(-x*x)
- *              erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
- *                        x*sqrt(pi)
- *         We use rational approximation to approximate
- *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
- *         Here is the error bound for R1/S1 and R2/S2
- *              |R1/S1 - f(x)|  < 2**(-62.57)
- *              |R2/S2 - f(x)|  < 2**(-61.52)
- *
- *      5. For inf > x >= 28
- *              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
- *              erfc(x) = tiny*tiny (raise underflow) if x > 0
- *                      = 2 - tiny if x<0
- *
- *      7. Special case:
- *              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
- *              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
- *              erfc/erf(NaN) is NaN
- */
-
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-tiny        = 1e-300,
-half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
-one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
-two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
-        /* c = (float)0.84506291151 */
-erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
-/*
- * Coefficients for approximation to  erf on [0,0.84375]
- */
-efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
-efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
-pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
-pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
-pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
-pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
-pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
-qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
-qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
-qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
-qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
-qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
-/*
- * Coefficients for approximation to  erf  in [0.84375,1.25]
- */
-pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
-pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
-pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
-pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
-pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
-pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
-pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
-qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
-qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
-qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
-qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
-qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
-qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
-/*
- * Coefficients for approximation to  erfc in [1.25,1/0.35]
- */
-ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
-ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
-ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
-ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
-ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
-ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
-ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
-ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
-sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
-sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
-sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
-sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
-sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
-sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
-sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
-sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
-/*
- * Coefficients for approximation to  erfc in [1/.35,28]
- */
-rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
-rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
-rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
-rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
-rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
-rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
-rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
-sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
-sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
-sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
-sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
-sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
-sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
-sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
-
-#ifdef __STDC__
-        double erf(double x)
-#else
-        double erf(x)
-        double x;
-#endif
-{
-        int hx,ix,i;
-        double R,S,P,Q,s,y,z,r;
-        hx = __HI(x);
-        ix = hx&0x7fffffff;
-        if(ix>=0x7ff00000) {            /* erf(nan)=nan */
-            i = ((unsigned)hx>>31)<<1;
-            return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
-        }
-
-        if(ix < 0x3feb0000) {           /* |x|<0.84375 */
-            if(ix < 0x3e300000) {       /* |x|<2**-28 */
-                if (ix < 0x00800000)
-                    return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
-                return x + efx*x;
-            }
-            z = x*x;
-            r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
-            s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
-            y = r/s;
-            return x + x*y;
-        }
-        if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */
-            s = fabs(x)-one;
-            P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
-            Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
-            if(hx>=0) return erx + P/Q; else return -erx - P/Q;
-        }
-        if (ix >= 0x40180000) {         /* inf>|x|>=6 */
-            if(hx>=0) return one-tiny; else return tiny-one;
-        }
-        x = fabs(x);
-        s = one/(x*x);
-        if(ix< 0x4006DB6E) {    /* |x| < 1/0.35 */
-            R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
-                                ra5+s*(ra6+s*ra7))))));
-            S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
-                                sa5+s*(sa6+s*(sa7+s*sa8)))))));
-        } else {        /* |x| >= 1/0.35 */
-            R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
-                                rb5+s*rb6)))));
-            S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
-                                sb5+s*(sb6+s*sb7))))));
-        }
-        z  = x;
-        __LO(z) = 0;
-        r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
-        if(hx>=0) return one-r/x; else return  r/x-one;
-}
-
-#ifdef __STDC__
-        double erfc(double x)
-#else
-        double erfc(x)
-        double x;
-#endif
-{
-        int hx,ix;
-        double R,S,P,Q,s,y,z,r;
-        hx = __HI(x);
-        ix = hx&0x7fffffff;
-        if(ix>=0x7ff00000) {                    /* erfc(nan)=nan */
-                                                /* erfc(+-inf)=0,2 */
-            return (double)(((unsigned)hx>>31)<<1)+one/x;
-        }
-
-        if(ix < 0x3feb0000) {           /* |x|<0.84375 */
-            if(ix < 0x3c700000)         /* |x|<2**-56 */
-                return one-x;
-            z = x*x;
-            r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
-            s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
-            y = r/s;
-            if(hx < 0x3fd00000) {       /* x<1/4 */
-                return one-(x+x*y);
-            } else {
-                r = x*y;
-                r += (x-half);
-                return half - r ;
-            }
-        }
-        if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */
-            s = fabs(x)-one;
-            P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
-            Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
-            if(hx>=0) {
-                z  = one-erx; return z - P/Q;
-            } else {
-                z = erx+P/Q; return one+z;
-            }
-        }
-        if (ix < 0x403c0000) {          /* |x|<28 */
-            x = fabs(x);
-            s = one/(x*x);
-            if(ix< 0x4006DB6D) {        /* |x| < 1/.35 ~ 2.857143*/
-                R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
-                                ra5+s*(ra6+s*ra7))))));
-                S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
-                                sa5+s*(sa6+s*(sa7+s*sa8)))))));
-            } else {                    /* |x| >= 1/.35 ~ 2.857143 */
-                if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
-                R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
-                                rb5+s*rb6)))));
-                S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
-                                sb5+s*(sb6+s*sb7))))));
-            }
-            z  = x;
-            __LO(z)  = 0;
-            r  =  __ieee754_exp(-z*z-0.5625)*
-                        __ieee754_exp((z-x)*(z+x)+R/S);
-            if(hx>0) return r/x; else return two-r/x;
-        } else {
-            if(hx>0) return tiny*tiny; else return two-tiny;
-        }
-}
--- a/src/share/native/java/lang/fdlibm/src/w_acosh.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,51 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/*
- * wrapper acosh(x)
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-        double acosh(double x)          /* wrapper acosh */
-#else
-        double acosh(x)                 /* wrapper acosh */
-        double x;
-#endif
-{
-#ifdef _IEEE_LIBM
-        return __ieee754_acosh(x);
-#else
-        double z;
-        z = __ieee754_acosh(x);
-        if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
-        if(x<1.0) {
-                return __kernel_standard(x,x,29); /* acosh(x<1) */
-        } else
-            return z;
-#endif
-}
--- a/src/share/native/java/lang/fdlibm/src/w_gamma.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,58 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* double gamma(double x)
- * Return the logarithm of the Gamma function of x.
- *
- * Method: call gamma_r
- */
-
-#include "fdlibm.h"
-
-extern int signgam;
-
-#ifdef __STDC__
-        double gamma(double x)
-#else
-        double gamma(x)
-        double x;
-#endif
-{
-#ifdef _IEEE_LIBM
-        return __ieee754_gamma_r(x,&signgam);
-#else
-        double y;
-        y = __ieee754_gamma_r(x,&signgam);
-        if(_LIB_VERSION == _IEEE_) return y;
-        if(!finite(y)&&finite(x)) {
-            if(floor(x)==x&&x<=0.0)
-                return __kernel_standard(x,x,41); /* gamma pole */
-            else
-                return __kernel_standard(x,x,40); /* gamma overflow */
-        } else
-            return y;
-#endif
-}
--- a/src/share/native/java/lang/fdlibm/src/w_gamma_r.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,55 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/*
- * wrapper double gamma_r(double x, int *signgamp)
- */
-
-#include "fdlibm.h"
-
-
-#ifdef __STDC__
-        double gamma_r(double x, int *signgamp) /* wrapper lgamma_r */
-#else
-        double gamma_r(x,signgamp)              /* wrapper lgamma_r */
-        double x; int *signgamp;
-#endif
-{
-#ifdef _IEEE_LIBM
-        return __ieee754_gamma_r(x,signgamp);
-#else
-        double y;
-        y = __ieee754_gamma_r(x,signgamp);
-        if(_LIB_VERSION == _IEEE_) return y;
-        if(!finite(y)&&finite(x)) {
-            if(floor(x)==x&&x<=0.0)
-                return __kernel_standard(x,x,41); /* gamma pole */
-            else
-                return __kernel_standard(x,x,40); /* gamma overflow */
-        } else
-            return y;
-#endif
-}
--- a/src/share/native/java/lang/fdlibm/src/w_j0.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,78 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/*
- * wrapper j0(double x), y0(double x)
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-        double j0(double x)             /* wrapper j0 */
-#else
-        double j0(x)                    /* wrapper j0 */
-        double x;
-#endif
-{
-#ifdef _IEEE_LIBM
-        return __ieee754_j0(x);
-#else
-        double z = __ieee754_j0(x);
-        if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
-        if(fabs(x)>X_TLOSS) {
-                return __kernel_standard(x,x,34); /* j0(|x|>X_TLOSS) */
-        } else
-            return z;
-#endif
-}
-
-#ifdef __STDC__
-        double y0(double x)             /* wrapper y0 */
-#else
-        double y0(x)                    /* wrapper y0 */
-        double x;
-#endif
-{
-#ifdef _IEEE_LIBM
-        return __ieee754_y0(x);
-#else
-        double z;
-        z = __ieee754_y0(x);
-        if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z;
-        if(x <= 0.0){
-                if(x==0.0)
-                    /* d= -one/(x-x); */
-                    return __kernel_standard(x,x,8);
-                else
-                    /* d = zero/(x-x); */
-                    return __kernel_standard(x,x,9);
-        }
-        if(x>X_TLOSS) {
-                return __kernel_standard(x,x,35); /* y0(x>X_TLOSS) */
-        } else
-            return z;
-#endif
-}
--- a/src/share/native/java/lang/fdlibm/src/w_j1.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,79 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/*
- * wrapper of j1,y1
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-        double j1(double x)             /* wrapper j1 */
-#else
-        double j1(x)                    /* wrapper j1 */
-        double x;
-#endif
-{
-#ifdef _IEEE_LIBM
-        return __ieee754_j1(x);
-#else
-        double z;
-        z = __ieee754_j1(x);
-        if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z;
-        if(fabs(x)>X_TLOSS) {
-                return __kernel_standard(x,x,36); /* j1(|x|>X_TLOSS) */
-        } else
-            return z;
-#endif
-}
-
-#ifdef __STDC__
-        double y1(double x)             /* wrapper y1 */
-#else
-        double y1(x)                    /* wrapper y1 */
-        double x;
-#endif
-{
-#ifdef _IEEE_LIBM
-        return __ieee754_y1(x);
-#else
-        double z;
-        z = __ieee754_y1(x);
-        if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z;
-        if(x <= 0.0){
-                if(x==0.0)
-                    /* d= -one/(x-x); */
-                    return __kernel_standard(x,x,10);
-                else
-                    /* d = zero/(x-x); */
-                    return __kernel_standard(x,x,11);
-        }
-        if(x>X_TLOSS) {
-                return __kernel_standard(x,x,37); /* y1(x>X_TLOSS) */
-        } else
-            return z;
-#endif
-}
--- a/src/share/native/java/lang/fdlibm/src/w_jn.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,101 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/*
- * wrapper jn(int n, double x), yn(int n, double x)
- * floating point Bessel's function of the 1st and 2nd kind
- * of order n
- *
- * Special cases:
- *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
- *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
- * Note 2. About jn(n,x), yn(n,x)
- *      For n=0, j0(x) is called,
- *      for n=1, j1(x) is called,
- *      for n<x, forward recursion us used starting
- *      from values of j0(x) and j1(x).
- *      for n>x, a continued fraction approximation to
- *      j(n,x)/j(n-1,x) is evaluated and then backward
- *      recursion is used starting from a supposed value
- *      for j(n,x). The resulting value of j(0,x) is
- *      compared with the actual value to correct the
- *      supposed value of j(n,x).
- *
- *      yn(n,x) is similar in all respects, except
- *      that forward recursion is used for all
- *      values of n>1.
- *
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-        double jn(int n, double x)      /* wrapper jn */
-#else
-        double jn(n,x)                  /* wrapper jn */
-        double x; int n;
-#endif
-{
-#ifdef _IEEE_LIBM
-        return __ieee754_jn(n,x);
-#else
-        double z;
-        z = __ieee754_jn(n,x);
-        if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z;
-        if(fabs(x)>X_TLOSS) {
-            return __kernel_standard((double)n,x,38); /* jn(|x|>X_TLOSS,n) */
-        } else
-            return z;
-#endif
-}
-
-#ifdef __STDC__
-        double yn(int n, double x)      /* wrapper yn */
-#else
-        double yn(n,x)                  /* wrapper yn */
-        double x; int n;
-#endif
-{
-#ifdef _IEEE_LIBM
-        return __ieee754_yn(n,x);
-#else
-        double z;
-        z = __ieee754_yn(n,x);
-        if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z;
-        if(x <= 0.0){
-                if(x==0.0)
-                    /* d= -one/(x-x); */
-                    return __kernel_standard((double)n,x,12);
-                else
-                    /* d = zero/(x-x); */
-                    return __kernel_standard((double)n,x,13);
-        }
-        if(x>X_TLOSS) {
-            return __kernel_standard((double)n,x,39); /* yn(x>X_TLOSS,n) */
-        } else
-            return z;
-#endif
-}
--- a/src/share/native/java/lang/fdlibm/src/w_lgamma.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,58 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* double lgamma(double x)
- * Return the logarithm of the Gamma function of x.
- *
- * Method: call __ieee754_lgamma_r
- */
-
-#include "fdlibm.h"
-
-extern int signgam;
-
-#ifdef __STDC__
-        double lgamma(double x)
-#else
-        double lgamma(x)
-        double x;
-#endif
-{
-#ifdef _IEEE_LIBM
-        return __ieee754_lgamma_r(x,&signgam);
-#else
-        double y;
-        y = __ieee754_lgamma_r(x,&signgam);
-        if(_LIB_VERSION == _IEEE_) return y;
-        if(!finite(y)&&finite(x)) {
-            if(floor(x)==x&&x<=0.0)
-                return __kernel_standard(x,x,15); /* lgamma pole */
-            else
-                return __kernel_standard(x,x,14); /* lgamma overflow */
-        } else
-            return y;
-#endif
-}
--- a/src/share/native/java/lang/fdlibm/src/w_lgamma_r.c	Fri Aug 05 16:03:00 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,55 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/*
- * wrapper double lgamma_r(double x, int *signgamp)
- */
-
-#include "fdlibm.h"
-
-
-#ifdef __STDC__
-        double lgamma_r(double x, int *signgamp) /* wrapper lgamma_r */
-#else
-        double lgamma_r(x,signgamp)              /* wrapper lgamma_r */
-        double x; int *signgamp;
-#endif
-{
-#ifdef _IEEE_LIBM
-        return __ieee754_lgamma_r(x,signgamp);
-#else
-        double y;
-        y = __ieee754_lgamma_r(x,signgamp);
-        if(_LIB_VERSION == _IEEE_) return y;
-        if(!finite(y)&&finite(x)) {
-            if(floor(x)==x&&x<=0.0)
-                return __kernel_standard(x,x,15); /* lgamma pole */
-            else
-                return __kernel_standard(x,x,14); /* lgamma overflow */
-        } else
-            return y;
-#endif
-}