annotate src/cpu/x86/vm/interp_masm_x86_64.cpp @ 342:37f87013dfd8

6711316: Open source the Garbage-First garbage collector Summary: First mercurial integration of the code for the Garbage-First garbage collector. Reviewed-by: apetrusenko, iveresov, jmasa, sgoldman, tonyp, ysr
author ysr
date Thu, 05 Jun 2008 15:57:56 -0700
parents ba764ed4b6f2
children 6aae2f9d0294
rev   line source
duke@0 1 /*
duke@0 2 * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
duke@0 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@0 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@0 21 * have any questions.
duke@0 22 *
duke@0 23 */
duke@0 24
duke@0 25 #include "incls/_precompiled.incl"
duke@0 26 #include "incls/_interp_masm_x86_64.cpp.incl"
duke@0 27
duke@0 28
duke@0 29 // Implementation of InterpreterMacroAssembler
duke@0 30
duke@0 31 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
duke@0 32 int number_of_arguments) {
duke@0 33 // interpreter specific
duke@0 34 //
duke@0 35 // Note: No need to save/restore bcp & locals (r13 & r14) pointer
duke@0 36 // since these are callee saved registers and no blocking/
duke@0 37 // GC can happen in leaf calls.
ysr@342 38 // Further Note: DO NOT save/restore bcp/locals. If a caller has
ysr@342 39 // already saved them so that it can use esi/edi as temporaries
ysr@342 40 // then a save/restore here will DESTROY the copy the caller
ysr@342 41 // saved! There used to be a save_bcp() that only happened in
ysr@342 42 // the ASSERT path (no restore_bcp). Which caused bizarre failures
ysr@342 43 // when jvm built with ASSERTs.
duke@0 44 #ifdef ASSERT
duke@0 45 {
duke@0 46 Label L;
duke@0 47 cmpq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int)NULL_WORD);
duke@0 48 jcc(Assembler::equal, L);
duke@0 49 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
duke@0 50 " last_sp != NULL");
duke@0 51 bind(L);
duke@0 52 }
duke@0 53 #endif
duke@0 54 // super call
duke@0 55 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
duke@0 56 // interpreter specific
ysr@342 57 // Used to ASSERT that r13/r14 were equal to frame's bcp/locals
ysr@342 58 // but since they may not have been saved (and we don't want to
ysr@342 59 // save thme here (see note above) the assert is invalid.
duke@0 60 }
duke@0 61
duke@0 62 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
duke@0 63 Register java_thread,
duke@0 64 Register last_java_sp,
duke@0 65 address entry_point,
duke@0 66 int number_of_arguments,
duke@0 67 bool check_exceptions) {
duke@0 68 // interpreter specific
duke@0 69 //
duke@0 70 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
duke@0 71 // really make a difference for these runtime calls, since they are
duke@0 72 // slow anyway. Btw., bcp must be saved/restored since it may change
duke@0 73 // due to GC.
duke@0 74 // assert(java_thread == noreg , "not expecting a precomputed java thread");
duke@0 75 save_bcp();
duke@0 76 #ifdef ASSERT
duke@0 77 {
duke@0 78 Label L;
duke@0 79 cmpq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int)NULL_WORD);
duke@0 80 jcc(Assembler::equal, L);
duke@0 81 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
duke@0 82 " last_sp != NULL");
duke@0 83 bind(L);
duke@0 84 }
duke@0 85 #endif /* ASSERT */
duke@0 86 // super call
duke@0 87 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
duke@0 88 entry_point, number_of_arguments,
duke@0 89 check_exceptions);
duke@0 90 // interpreter specific
duke@0 91 restore_bcp();
duke@0 92 restore_locals();
duke@0 93 }
duke@0 94
duke@0 95
duke@0 96 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
duke@0 97 if (JvmtiExport::can_pop_frame()) {
duke@0 98 Label L;
duke@0 99 // Initiate popframe handling only if it is not already being
duke@0 100 // processed. If the flag has the popframe_processing bit set, it
duke@0 101 // means that this code is called *during* popframe handling - we
duke@0 102 // don't want to reenter.
duke@0 103 // This method is only called just after the call into the vm in
duke@0 104 // call_VM_base, so the arg registers are available.
duke@0 105 movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
duke@0 106 testl(c_rarg0, JavaThread::popframe_pending_bit);
duke@0 107 jcc(Assembler::zero, L);
duke@0 108 testl(c_rarg0, JavaThread::popframe_processing_bit);
duke@0 109 jcc(Assembler::notZero, L);
duke@0 110 // Call Interpreter::remove_activation_preserving_args_entry() to get the
duke@0 111 // address of the same-named entrypoint in the generated interpreter code.
duke@0 112 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
duke@0 113 jmp(rax);
duke@0 114 bind(L);
duke@0 115 }
duke@0 116 }
duke@0 117
duke@0 118
duke@0 119 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
duke@0 120 movq(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
duke@0 121 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
duke@0 122 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
duke@0 123 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
duke@0 124 switch (state) {
duke@0 125 case atos: movq(rax, oop_addr);
duke@0 126 movptr(oop_addr, NULL_WORD);
duke@0 127 verify_oop(rax, state); break;
duke@0 128 case ltos: movq(rax, val_addr); break;
duke@0 129 case btos: // fall through
duke@0 130 case ctos: // fall through
duke@0 131 case stos: // fall through
duke@0 132 case itos: movl(rax, val_addr); break;
duke@0 133 case ftos: movflt(xmm0, val_addr); break;
duke@0 134 case dtos: movdbl(xmm0, val_addr); break;
duke@0 135 case vtos: /* nothing to do */ break;
duke@0 136 default : ShouldNotReachHere();
duke@0 137 }
duke@0 138 // Clean up tos value in the thread object
duke@0 139 movl(tos_addr, (int) ilgl);
duke@0 140 movl(val_addr, (int) NULL_WORD);
duke@0 141 }
duke@0 142
duke@0 143
duke@0 144 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
duke@0 145 if (JvmtiExport::can_force_early_return()) {
duke@0 146 Label L;
duke@0 147 movq(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
duke@0 148 testq(c_rarg0, c_rarg0);
duke@0 149 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
duke@0 150
duke@0 151 // Initiate earlyret handling only if it is not already being processed.
duke@0 152 // If the flag has the earlyret_processing bit set, it means that this code
duke@0 153 // is called *during* earlyret handling - we don't want to reenter.
duke@0 154 movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
duke@0 155 cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
duke@0 156 jcc(Assembler::notEqual, L);
duke@0 157
duke@0 158 // Call Interpreter::remove_activation_early_entry() to get the address of the
duke@0 159 // same-named entrypoint in the generated interpreter code.
duke@0 160 movq(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
duke@0 161 movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
duke@0 162 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
duke@0 163 jmp(rax);
duke@0 164 bind(L);
duke@0 165 }
duke@0 166 }
duke@0 167
duke@0 168
duke@0 169 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
duke@0 170 Register reg,
duke@0 171 int bcp_offset) {
duke@0 172 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
duke@0 173 movl(reg, Address(r13, bcp_offset));
duke@0 174 bswapl(reg);
duke@0 175 shrl(reg, 16);
duke@0 176 }
duke@0 177
duke@0 178
duke@0 179 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
duke@0 180 Register index,
duke@0 181 int bcp_offset) {
duke@0 182 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@0 183 assert(cache != index, "must use different registers");
duke@0 184 load_unsigned_word(index, Address(r13, bcp_offset));
duke@0 185 movq(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
duke@0 186 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
duke@0 187 // convert from field index to ConstantPoolCacheEntry index
duke@0 188 shll(index, 2);
duke@0 189 }
duke@0 190
duke@0 191
duke@0 192 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
duke@0 193 Register tmp,
duke@0 194 int bcp_offset) {
duke@0 195 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@0 196 assert(cache != tmp, "must use different register");
duke@0 197 load_unsigned_word(tmp, Address(r13, bcp_offset));
duke@0 198 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
duke@0 199 // convert from field index to ConstantPoolCacheEntry index
duke@0 200 // and from word offset to byte offset
duke@0 201 shll(tmp, 2 + LogBytesPerWord);
duke@0 202 movq(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
duke@0 203 // skip past the header
duke@0 204 addq(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
duke@0 205 addq(cache, tmp); // construct pointer to cache entry
duke@0 206 }
duke@0 207
duke@0 208
duke@0 209 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
duke@0 210 // subtype of super_klass.
duke@0 211 //
duke@0 212 // Args:
duke@0 213 // rax: superklass
duke@0 214 // Rsub_klass: subklass
duke@0 215 //
duke@0 216 // Kills:
duke@0 217 // rcx, rdi
duke@0 218 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
duke@0 219 Label& ok_is_subtype) {
duke@0 220 assert(Rsub_klass != rax, "rax holds superklass");
duke@0 221 assert(Rsub_klass != r14, "r14 holds locals");
duke@0 222 assert(Rsub_klass != r13, "r13 holds bcp");
duke@0 223 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
duke@0 224 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
duke@0 225
duke@0 226 Label not_subtype, loop;
duke@0 227
duke@0 228 // Profile the not-null value's klass.
duke@0 229 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, rdi
duke@0 230
duke@0 231 // Load the super-klass's check offset into rcx
duke@0 232 movl(rcx, Address(rax, sizeof(oopDesc) +
duke@0 233 Klass::super_check_offset_offset_in_bytes()));
duke@0 234 // Load from the sub-klass's super-class display list, or a 1-word
duke@0 235 // cache of the secondary superclass list, or a failing value with a
duke@0 236 // sentinel offset if the super-klass is an interface or
duke@0 237 // exceptionally deep in the Java hierarchy and we have to scan the
duke@0 238 // secondary superclass list the hard way. See if we get an
duke@0 239 // immediate positive hit
duke@0 240 cmpq(rax, Address(Rsub_klass, rcx, Address::times_1));
duke@0 241 jcc(Assembler::equal,ok_is_subtype);
duke@0 242
duke@0 243 // Check for immediate negative hit
duke@0 244 cmpl(rcx, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
duke@0 245 jcc( Assembler::notEqual, not_subtype );
duke@0 246 // Check for self
duke@0 247 cmpq(Rsub_klass, rax);
duke@0 248 jcc(Assembler::equal, ok_is_subtype);
duke@0 249
duke@0 250 // Now do a linear scan of the secondary super-klass chain.
duke@0 251 movq(rdi, Address(Rsub_klass, sizeof(oopDesc) +
duke@0 252 Klass::secondary_supers_offset_in_bytes()));
duke@0 253 // rdi holds the objArrayOop of secondary supers.
duke@0 254 // Load the array length
duke@0 255 movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
duke@0 256 // Skip to start of data; also clear Z flag incase rcx is zero
duke@0 257 addq(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
duke@0 258 // Scan rcx words at [rdi] for occurance of rax
duke@0 259 // Set NZ/Z based on last compare
coleenp@113 260
coleenp@113 261 // this part is kind tricky, as values in supers array could be 32 or 64 bit wide
coleenp@113 262 // and we store values in objArrays always encoded, thus we need to encode value
coleenp@113 263 // before repne
coleenp@113 264 if (UseCompressedOops) {
coleenp@113 265 encode_heap_oop(rax);
coleenp@113 266 repne_scanl();
coleenp@113 267 // Not equal?
coleenp@113 268 jcc(Assembler::notEqual, not_subtype);
coleenp@113 269 // decode heap oop here for movq
coleenp@113 270 decode_heap_oop(rax);
coleenp@113 271 } else {
coleenp@113 272 repne_scanq();
coleenp@113 273 jcc(Assembler::notEqual, not_subtype);
coleenp@113 274 }
duke@0 275 // Must be equal but missed in cache. Update cache.
duke@0 276 movq(Address(Rsub_klass, sizeof(oopDesc) +
duke@0 277 Klass::secondary_super_cache_offset_in_bytes()), rax);
duke@0 278 jmp(ok_is_subtype);
duke@0 279
duke@0 280 bind(not_subtype);
coleenp@113 281 // decode heap oop here for miss
coleenp@113 282 if (UseCompressedOops) decode_heap_oop(rax);
duke@0 283 profile_typecheck_failed(rcx); // blows rcx
duke@0 284 }
duke@0 285
duke@0 286
duke@0 287 // Java Expression Stack
duke@0 288
duke@0 289 #ifdef ASSERT
duke@0 290 // Verifies that the stack tag matches. Must be called before the stack
duke@0 291 // value is popped off the stack.
duke@0 292 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
duke@0 293 if (TaggedStackInterpreter) {
duke@0 294 frame::Tag tag = t;
duke@0 295 if (t == frame::TagCategory2) {
duke@0 296 tag = frame::TagValue;
duke@0 297 Label hokay;
duke@0 298 cmpq(Address(rsp, 3*wordSize), (int)tag);
duke@0 299 jcc(Assembler::equal, hokay);
duke@0 300 stop("Java Expression stack tag high value is bad");
duke@0 301 bind(hokay);
duke@0 302 }
duke@0 303 Label okay;
duke@0 304 cmpq(Address(rsp, wordSize), (int)tag);
duke@0 305 jcc(Assembler::equal, okay);
duke@0 306 // Also compare if the stack value is zero, then the tag might
duke@0 307 // not have been set coming from deopt.
duke@0 308 cmpq(Address(rsp, 0), 0);
duke@0 309 jcc(Assembler::equal, okay);
duke@0 310 stop("Java Expression stack tag value is bad");
duke@0 311 bind(okay);
duke@0 312 }
duke@0 313 }
duke@0 314 #endif // ASSERT
duke@0 315
duke@0 316 void InterpreterMacroAssembler::pop_ptr(Register r) {
duke@0 317 debug_only(verify_stack_tag(frame::TagReference));
duke@0 318 popq(r);
duke@0 319 if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
duke@0 320 }
duke@0 321
duke@0 322 void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
duke@0 323 popq(r);
duke@0 324 if (TaggedStackInterpreter) popq(tag);
duke@0 325 }
duke@0 326
duke@0 327 void InterpreterMacroAssembler::pop_i(Register r) {
duke@0 328 // XXX can't use popq currently, upper half non clean
duke@0 329 debug_only(verify_stack_tag(frame::TagValue));
duke@0 330 movl(r, Address(rsp, 0));
duke@0 331 addq(rsp, wordSize);
duke@0 332 if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
duke@0 333 }
duke@0 334
duke@0 335 void InterpreterMacroAssembler::pop_l(Register r) {
duke@0 336 debug_only(verify_stack_tag(frame::TagCategory2));
duke@0 337 movq(r, Address(rsp, 0));
duke@0 338 addq(rsp, 2 * Interpreter::stackElementSize());
duke@0 339 }
duke@0 340
duke@0 341 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
duke@0 342 debug_only(verify_stack_tag(frame::TagValue));
duke@0 343 movflt(r, Address(rsp, 0));
duke@0 344 addq(rsp, wordSize);
duke@0 345 if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
duke@0 346 }
duke@0 347
duke@0 348 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
duke@0 349 debug_only(verify_stack_tag(frame::TagCategory2));
duke@0 350 movdbl(r, Address(rsp, 0));
duke@0 351 addq(rsp, 2 * Interpreter::stackElementSize());
duke@0 352 }
duke@0 353
duke@0 354 void InterpreterMacroAssembler::push_ptr(Register r) {
duke@0 355 if (TaggedStackInterpreter) pushq(frame::TagReference);
duke@0 356 pushq(r);
duke@0 357 }
duke@0 358
duke@0 359 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
duke@0 360 if (TaggedStackInterpreter) pushq(tag);
duke@0 361 pushq(r);
duke@0 362 }
duke@0 363
duke@0 364 void InterpreterMacroAssembler::push_i(Register r) {
duke@0 365 if (TaggedStackInterpreter) pushq(frame::TagValue);
duke@0 366 pushq(r);
duke@0 367 }
duke@0 368
duke@0 369 void InterpreterMacroAssembler::push_l(Register r) {
duke@0 370 if (TaggedStackInterpreter) {
duke@0 371 pushq(frame::TagValue);
duke@0 372 subq(rsp, 1 * wordSize);
duke@0 373 pushq(frame::TagValue);
duke@0 374 subq(rsp, 1 * wordSize);
duke@0 375 } else {
duke@0 376 subq(rsp, 2 * wordSize);
duke@0 377 }
duke@0 378 movq(Address(rsp, 0), r);
duke@0 379 }
duke@0 380
duke@0 381 void InterpreterMacroAssembler::push_f(XMMRegister r) {
duke@0 382 if (TaggedStackInterpreter) pushq(frame::TagValue);
duke@0 383 subq(rsp, wordSize);
duke@0 384 movflt(Address(rsp, 0), r);
duke@0 385 }
duke@0 386
duke@0 387 void InterpreterMacroAssembler::push_d(XMMRegister r) {
duke@0 388 if (TaggedStackInterpreter) {
duke@0 389 pushq(frame::TagValue);
duke@0 390 subq(rsp, 1 * wordSize);
duke@0 391 pushq(frame::TagValue);
duke@0 392 subq(rsp, 1 * wordSize);
duke@0 393 } else {
duke@0 394 subq(rsp, 2 * wordSize);
duke@0 395 }
duke@0 396 movdbl(Address(rsp, 0), r);
duke@0 397 }
duke@0 398
duke@0 399 void InterpreterMacroAssembler::pop(TosState state) {
duke@0 400 switch (state) {
duke@0 401 case atos: pop_ptr(); break;
duke@0 402 case btos:
duke@0 403 case ctos:
duke@0 404 case stos:
duke@0 405 case itos: pop_i(); break;
duke@0 406 case ltos: pop_l(); break;
duke@0 407 case ftos: pop_f(); break;
duke@0 408 case dtos: pop_d(); break;
duke@0 409 case vtos: /* nothing to do */ break;
duke@0 410 default: ShouldNotReachHere();
duke@0 411 }
duke@0 412 verify_oop(rax, state);
duke@0 413 }
duke@0 414
duke@0 415 void InterpreterMacroAssembler::push(TosState state) {
duke@0 416 verify_oop(rax, state);
duke@0 417 switch (state) {
duke@0 418 case atos: push_ptr(); break;
duke@0 419 case btos:
duke@0 420 case ctos:
duke@0 421 case stos:
duke@0 422 case itos: push_i(); break;
duke@0 423 case ltos: push_l(); break;
duke@0 424 case ftos: push_f(); break;
duke@0 425 case dtos: push_d(); break;
duke@0 426 case vtos: /* nothing to do */ break;
duke@0 427 default : ShouldNotReachHere();
duke@0 428 }
duke@0 429 }
duke@0 430
duke@0 431
duke@0 432 // Tagged stack helpers for swap and dup
duke@0 433 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
duke@0 434 Register tag) {
duke@0 435 movq(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
duke@0 436 if (TaggedStackInterpreter) {
duke@0 437 movq(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
duke@0 438 }
duke@0 439 }
duke@0 440
duke@0 441 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
duke@0 442 Register tag) {
duke@0 443 movq(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
duke@0 444 if (TaggedStackInterpreter) {
duke@0 445 movq(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
duke@0 446 }
duke@0 447 }
duke@0 448
duke@0 449
duke@0 450 // Tagged local support
duke@0 451 void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
duke@0 452 if (TaggedStackInterpreter) {
duke@0 453 if (tag == frame::TagCategory2) {
duke@0 454 mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)),
duke@0 455 (intptr_t)frame::TagValue);
duke@0 456 mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n)),
duke@0 457 (intptr_t)frame::TagValue);
duke@0 458 } else {
duke@0 459 mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (intptr_t)tag);
duke@0 460 }
duke@0 461 }
duke@0 462 }
duke@0 463
duke@0 464 void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
duke@0 465 if (TaggedStackInterpreter) {
duke@0 466 if (tag == frame::TagCategory2) {
duke@0 467 mov64(Address(r14, idx, Address::times_8,
duke@0 468 Interpreter::local_tag_offset_in_bytes(1)), (intptr_t)frame::TagValue);
duke@0 469 mov64(Address(r14, idx, Address::times_8,
duke@0 470 Interpreter::local_tag_offset_in_bytes(0)), (intptr_t)frame::TagValue);
duke@0 471 } else {
duke@0 472 mov64(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)),
duke@0 473 (intptr_t)tag);
duke@0 474 }
duke@0 475 }
duke@0 476 }
duke@0 477
duke@0 478 void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
duke@0 479 if (TaggedStackInterpreter) {
duke@0 480 // can only be TagValue or TagReference
duke@0 481 movq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), tag);
duke@0 482 }
duke@0 483 }
duke@0 484
duke@0 485
duke@0 486 void InterpreterMacroAssembler::tag_local(Register tag, int n) {
duke@0 487 if (TaggedStackInterpreter) {
duke@0 488 // can only be TagValue or TagReference
duke@0 489 movq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), tag);
duke@0 490 }
duke@0 491 }
duke@0 492
duke@0 493 #ifdef ASSERT
duke@0 494 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
duke@0 495 if (TaggedStackInterpreter) {
duke@0 496 frame::Tag t = tag;
duke@0 497 if (tag == frame::TagCategory2) {
duke@0 498 Label nbl;
duke@0 499 t = frame::TagValue; // change to what is stored in locals
duke@0 500 cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)), (int)t);
duke@0 501 jcc(Assembler::equal, nbl);
duke@0 502 stop("Local tag is bad for long/double");
duke@0 503 bind(nbl);
duke@0 504 }
duke@0 505 Label notBad;
duke@0 506 cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int)t);
duke@0 507 jcc(Assembler::equal, notBad);
duke@0 508 // Also compare if the local value is zero, then the tag might
duke@0 509 // not have been set coming from deopt.
duke@0 510 cmpq(Address(r14, Interpreter::local_offset_in_bytes(n)), 0);
duke@0 511 jcc(Assembler::equal, notBad);
duke@0 512 stop("Local tag is bad");
duke@0 513 bind(notBad);
duke@0 514 }
duke@0 515 }
duke@0 516
duke@0 517 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
duke@0 518 if (TaggedStackInterpreter) {
duke@0 519 frame::Tag t = tag;
duke@0 520 if (tag == frame::TagCategory2) {
duke@0 521 Label nbl;
duke@0 522 t = frame::TagValue; // change to what is stored in locals
duke@0 523 cmpq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(1)), (int)t);
duke@0 524 jcc(Assembler::equal, nbl);
duke@0 525 stop("Local tag is bad for long/double");
duke@0 526 bind(nbl);
duke@0 527 }
duke@0 528 Label notBad;
duke@0 529 cmpq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), (int)t);
duke@0 530 jcc(Assembler::equal, notBad);
duke@0 531 // Also compare if the local value is zero, then the tag might
duke@0 532 // not have been set coming from deopt.
duke@0 533 cmpq(Address(r14, idx, Address::times_8, Interpreter::local_offset_in_bytes(0)), 0);
duke@0 534 jcc(Assembler::equal, notBad);
duke@0 535 stop("Local tag is bad");
duke@0 536 bind(notBad);
duke@0 537 }
duke@0 538 }
duke@0 539 #endif // ASSERT
duke@0 540
duke@0 541
duke@0 542 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
duke@0 543 MacroAssembler::call_VM_leaf_base(entry_point, 0);
duke@0 544 }
duke@0 545
duke@0 546
duke@0 547 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
duke@0 548 Register arg_1) {
duke@0 549 if (c_rarg0 != arg_1) {
duke@0 550 movq(c_rarg0, arg_1);
duke@0 551 }
duke@0 552 MacroAssembler::call_VM_leaf_base(entry_point, 1);
duke@0 553 }
duke@0 554
duke@0 555
duke@0 556 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
duke@0 557 Register arg_1,
duke@0 558 Register arg_2) {
duke@0 559 assert(c_rarg0 != arg_2, "smashed argument");
duke@0 560 assert(c_rarg1 != arg_1, "smashed argument");
duke@0 561 if (c_rarg0 != arg_1) {
duke@0 562 movq(c_rarg0, arg_1);
duke@0 563 }
duke@0 564 if (c_rarg1 != arg_2) {
duke@0 565 movq(c_rarg1, arg_2);
duke@0 566 }
duke@0 567 MacroAssembler::call_VM_leaf_base(entry_point, 2);
duke@0 568 }
duke@0 569
duke@0 570 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
duke@0 571 Register arg_1,
duke@0 572 Register arg_2,
duke@0 573 Register arg_3) {
duke@0 574 assert(c_rarg0 != arg_2, "smashed argument");
duke@0 575 assert(c_rarg0 != arg_3, "smashed argument");
duke@0 576 assert(c_rarg1 != arg_1, "smashed argument");
duke@0 577 assert(c_rarg1 != arg_3, "smashed argument");
duke@0 578 assert(c_rarg2 != arg_1, "smashed argument");
duke@0 579 assert(c_rarg2 != arg_2, "smashed argument");
duke@0 580 if (c_rarg0 != arg_1) {
duke@0 581 movq(c_rarg0, arg_1);
duke@0 582 }
duke@0 583 if (c_rarg1 != arg_2) {
duke@0 584 movq(c_rarg1, arg_2);
duke@0 585 }
duke@0 586 if (c_rarg2 != arg_3) {
duke@0 587 movq(c_rarg2, arg_3);
duke@0 588 }
duke@0 589 MacroAssembler::call_VM_leaf_base(entry_point, 3);
duke@0 590 }
duke@0 591
duke@0 592 // Jump to from_interpreted entry of a call unless single stepping is possible
duke@0 593 // in this thread in which case we must call the i2i entry
duke@0 594 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
duke@0 595 // set sender sp
duke@0 596 leaq(r13, Address(rsp, wordSize));
duke@0 597 // record last_sp
duke@0 598 movq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
duke@0 599
duke@0 600 if (JvmtiExport::can_post_interpreter_events()) {
duke@0 601 Label run_compiled_code;
duke@0 602 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
duke@0 603 // compiled code in threads for which the event is enabled. Check here for
duke@0 604 // interp_only_mode if these events CAN be enabled.
duke@0 605 get_thread(temp);
duke@0 606 // interp_only is an int, on little endian it is sufficient to test the byte only
duke@0 607 // Is a cmpl faster (ce
duke@0 608 cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
duke@0 609 jcc(Assembler::zero, run_compiled_code);
duke@0 610 jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
duke@0 611 bind(run_compiled_code);
duke@0 612 }
duke@0 613
duke@0 614 jmp(Address(method, methodOopDesc::from_interpreted_offset()));
duke@0 615
duke@0 616 }
duke@0 617
duke@0 618
duke@0 619 // The following two routines provide a hook so that an implementation
duke@0 620 // can schedule the dispatch in two parts. amd64 does not do this.
duke@0 621 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
duke@0 622 // Nothing amd64 specific to be done here
duke@0 623 }
duke@0 624
duke@0 625 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
duke@0 626 dispatch_next(state, step);
duke@0 627 }
duke@0 628
duke@0 629 void InterpreterMacroAssembler::dispatch_base(TosState state,
duke@0 630 address* table,
duke@0 631 bool verifyoop) {
duke@0 632 verify_FPU(1, state);
duke@0 633 if (VerifyActivationFrameSize) {
duke@0 634 Label L;
duke@0 635 movq(rcx, rbp);
duke@0 636 subq(rcx, rsp);
duke@0 637 int min_frame_size =
duke@0 638 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
duke@0 639 wordSize;
duke@0 640 cmpq(rcx, min_frame_size);
duke@0 641 jcc(Assembler::greaterEqual, L);
duke@0 642 stop("broken stack frame");
duke@0 643 bind(L);
duke@0 644 }
duke@0 645 if (verifyoop) {
duke@0 646 verify_oop(rax, state);
duke@0 647 }
duke@0 648 lea(rscratch1, ExternalAddress((address)table));
duke@0 649 jmp(Address(rscratch1, rbx, Address::times_8));
duke@0 650 }
duke@0 651
duke@0 652 void InterpreterMacroAssembler::dispatch_only(TosState state) {
duke@0 653 dispatch_base(state, Interpreter::dispatch_table(state));
duke@0 654 }
duke@0 655
duke@0 656 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
duke@0 657 dispatch_base(state, Interpreter::normal_table(state));
duke@0 658 }
duke@0 659
duke@0 660 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
duke@0 661 dispatch_base(state, Interpreter::normal_table(state), false);
duke@0 662 }
duke@0 663
duke@0 664
duke@0 665 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
duke@0 666 // load next bytecode (load before advancing r13 to prevent AGI)
duke@0 667 load_unsigned_byte(rbx, Address(r13, step));
duke@0 668 // advance r13
duke@0 669 incrementq(r13, step);
duke@0 670 dispatch_base(state, Interpreter::dispatch_table(state));
duke@0 671 }
duke@0 672
duke@0 673 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
duke@0 674 // load current bytecode
duke@0 675 load_unsigned_byte(rbx, Address(r13, 0));
duke@0 676 dispatch_base(state, table);
duke@0 677 }
duke@0 678
duke@0 679 // remove activation
duke@0 680 //
duke@0 681 // Unlock the receiver if this is a synchronized method.
duke@0 682 // Unlock any Java monitors from syncronized blocks.
duke@0 683 // Remove the activation from the stack.
duke@0 684 //
duke@0 685 // If there are locked Java monitors
duke@0 686 // If throw_monitor_exception
duke@0 687 // throws IllegalMonitorStateException
duke@0 688 // Else if install_monitor_exception
duke@0 689 // installs IllegalMonitorStateException
duke@0 690 // Else
duke@0 691 // no error processing
duke@0 692 void InterpreterMacroAssembler::remove_activation(
duke@0 693 TosState state,
duke@0 694 Register ret_addr,
duke@0 695 bool throw_monitor_exception,
duke@0 696 bool install_monitor_exception,
duke@0 697 bool notify_jvmdi) {
duke@0 698 // Note: Registers rdx xmm0 may be in use for the
duke@0 699 // result check if synchronized method
duke@0 700 Label unlocked, unlock, no_unlock;
duke@0 701
duke@0 702 // get the value of _do_not_unlock_if_synchronized into rdx
duke@0 703 const Address do_not_unlock_if_synchronized(r15_thread,
duke@0 704 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
duke@0 705 movbool(rdx, do_not_unlock_if_synchronized);
duke@0 706 movbool(do_not_unlock_if_synchronized, false); // reset the flag
duke@0 707
duke@0 708 // get method access flags
duke@0 709 movq(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
duke@0 710 movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
duke@0 711 testl(rcx, JVM_ACC_SYNCHRONIZED);
duke@0 712 jcc(Assembler::zero, unlocked);
duke@0 713
duke@0 714 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
duke@0 715 // is set.
duke@0 716 testbool(rdx);
duke@0 717 jcc(Assembler::notZero, no_unlock);
duke@0 718
duke@0 719 // unlock monitor
duke@0 720 push(state); // save result
duke@0 721
duke@0 722 // BasicObjectLock will be first in list, since this is a
duke@0 723 // synchronized method. However, need to check that the object has
duke@0 724 // not been unlocked by an explicit monitorexit bytecode.
duke@0 725 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
duke@0 726 wordSize - (int) sizeof(BasicObjectLock));
duke@0 727 // We use c_rarg1 so that if we go slow path it will be the correct
duke@0 728 // register for unlock_object to pass to VM directly
duke@0 729 leaq(c_rarg1, monitor); // address of first monitor
duke@0 730
duke@0 731 movq(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
duke@0 732 testq(rax, rax);
duke@0 733 jcc(Assembler::notZero, unlock);
duke@0 734
duke@0 735 pop(state);
duke@0 736 if (throw_monitor_exception) {
duke@0 737 // Entry already unlocked, need to throw exception
duke@0 738 call_VM(noreg, CAST_FROM_FN_PTR(address,
duke@0 739 InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@0 740 should_not_reach_here();
duke@0 741 } else {
duke@0 742 // Monitor already unlocked during a stack unroll. If requested,
duke@0 743 // install an illegal_monitor_state_exception. Continue with
duke@0 744 // stack unrolling.
duke@0 745 if (install_monitor_exception) {
duke@0 746 call_VM(noreg, CAST_FROM_FN_PTR(address,
duke@0 747 InterpreterRuntime::new_illegal_monitor_state_exception));
duke@0 748 }
duke@0 749 jmp(unlocked);
duke@0 750 }
duke@0 751
duke@0 752 bind(unlock);
duke@0 753 unlock_object(c_rarg1);
duke@0 754 pop(state);
duke@0 755
duke@0 756 // Check that for block-structured locking (i.e., that all locked
duke@0 757 // objects has been unlocked)
duke@0 758 bind(unlocked);
duke@0 759
duke@0 760 // rax: Might contain return value
duke@0 761
duke@0 762 // Check that all monitors are unlocked
duke@0 763 {
duke@0 764 Label loop, exception, entry, restart;
duke@0 765 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
duke@0 766 const Address monitor_block_top(
duke@0 767 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
duke@0 768 const Address monitor_block_bot(
duke@0 769 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
duke@0 770
duke@0 771 bind(restart);
duke@0 772 // We use c_rarg1 so that if we go slow path it will be the correct
duke@0 773 // register for unlock_object to pass to VM directly
duke@0 774 movq(c_rarg1, monitor_block_top); // points to current entry, starting
duke@0 775 // with top-most entry
duke@0 776 leaq(rbx, monitor_block_bot); // points to word before bottom of
duke@0 777 // monitor block
duke@0 778 jmp(entry);
duke@0 779
duke@0 780 // Entry already locked, need to throw exception
duke@0 781 bind(exception);
duke@0 782
duke@0 783 if (throw_monitor_exception) {
duke@0 784 // Throw exception
duke@0 785 MacroAssembler::call_VM(noreg,
duke@0 786 CAST_FROM_FN_PTR(address, InterpreterRuntime::
duke@0 787 throw_illegal_monitor_state_exception));
duke@0 788 should_not_reach_here();
duke@0 789 } else {
duke@0 790 // Stack unrolling. Unlock object and install illegal_monitor_exception.
duke@0 791 // Unlock does not block, so don't have to worry about the frame.
duke@0 792 // We don't have to preserve c_rarg1 since we are going to throw an exception.
duke@0 793
duke@0 794 push(state);
duke@0 795 unlock_object(c_rarg1);
duke@0 796 pop(state);
duke@0 797
duke@0 798 if (install_monitor_exception) {
duke@0 799 call_VM(noreg, CAST_FROM_FN_PTR(address,
duke@0 800 InterpreterRuntime::
duke@0 801 new_illegal_monitor_state_exception));
duke@0 802 }
duke@0 803
duke@0 804 jmp(restart);
duke@0 805 }
duke@0 806
duke@0 807 bind(loop);
duke@0 808 // check if current entry is used
duke@0 809 cmpq(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int) NULL);
duke@0 810 jcc(Assembler::notEqual, exception);
duke@0 811
duke@0 812 addq(c_rarg1, entry_size); // otherwise advance to next entry
duke@0 813 bind(entry);
duke@0 814 cmpq(c_rarg1, rbx); // check if bottom reached
duke@0 815 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
duke@0 816 }
duke@0 817
duke@0 818 bind(no_unlock);
duke@0 819
duke@0 820 // jvmti support
duke@0 821 if (notify_jvmdi) {
duke@0 822 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
duke@0 823 } else {
duke@0 824 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
duke@0 825 }
duke@0 826
duke@0 827 // remove activation
duke@0 828 // get sender sp
duke@0 829 movq(rbx,
duke@0 830 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
duke@0 831 leave(); // remove frame anchor
duke@0 832 popq(ret_addr); // get return address
duke@0 833 movq(rsp, rbx); // set sp to sender sp
duke@0 834 }
duke@0 835
duke@0 836 // Lock object
duke@0 837 //
duke@0 838 // Args:
duke@0 839 // c_rarg1: BasicObjectLock to be used for locking
duke@0 840 //
duke@0 841 // Kills:
duke@0 842 // rax
duke@0 843 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
duke@0 844 // rscratch1, rscratch2 (scratch regs)
duke@0 845 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
duke@0 846 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
duke@0 847
duke@0 848 if (UseHeavyMonitors) {
duke@0 849 call_VM(noreg,
duke@0 850 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
duke@0 851 lock_reg);
duke@0 852 } else {
duke@0 853 Label done;
duke@0 854
duke@0 855 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
duke@0 856 const Register obj_reg = c_rarg3; // Will contain the oop
duke@0 857
duke@0 858 const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
duke@0 859 const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
duke@0 860 const int mark_offset = lock_offset +
duke@0 861 BasicLock::displaced_header_offset_in_bytes();
duke@0 862
duke@0 863 Label slow_case;
duke@0 864
duke@0 865 // Load object pointer into obj_reg %c_rarg3
duke@0 866 movq(obj_reg, Address(lock_reg, obj_offset));
duke@0 867
duke@0 868 if (UseBiasedLocking) {
duke@0 869 biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
duke@0 870 }
duke@0 871
duke@0 872 // Load immediate 1 into swap_reg %rax
duke@0 873 movl(swap_reg, 1);
duke@0 874
duke@0 875 // Load (object->mark() | 1) into swap_reg %rax
duke@0 876 orq(swap_reg, Address(obj_reg, 0));
duke@0 877
duke@0 878 // Save (object->mark() | 1) into BasicLock's displaced header
duke@0 879 movq(Address(lock_reg, mark_offset), swap_reg);
duke@0 880
duke@0 881 assert(lock_offset == 0,
duke@0 882 "displached header must be first word in BasicObjectLock");
duke@0 883
duke@0 884 if (os::is_MP()) lock();
duke@0 885 cmpxchgq(lock_reg, Address(obj_reg, 0));
duke@0 886 if (PrintBiasedLockingStatistics) {
duke@0 887 cond_inc32(Assembler::zero,
duke@0 888 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
duke@0 889 }
duke@0 890 jcc(Assembler::zero, done);
duke@0 891
duke@0 892 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@0 893 // 1) (mark & 7) == 0, and
duke@0 894 // 2) rsp <= mark < mark + os::pagesize()
duke@0 895 //
duke@0 896 // These 3 tests can be done by evaluating the following
duke@0 897 // expression: ((mark - rsp) & (7 - os::vm_page_size())),
duke@0 898 // assuming both stack pointer and pagesize have their
duke@0 899 // least significant 3 bits clear.
duke@0 900 // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
duke@0 901 subq(swap_reg, rsp);
duke@0 902 andq(swap_reg, 7 - os::vm_page_size());
duke@0 903
duke@0 904 // Save the test result, for recursive case, the result is zero
duke@0 905 movq(Address(lock_reg, mark_offset), swap_reg);
duke@0 906
duke@0 907 if (PrintBiasedLockingStatistics) {
duke@0 908 cond_inc32(Assembler::zero,
duke@0 909 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
duke@0 910 }
duke@0 911 jcc(Assembler::zero, done);
duke@0 912
duke@0 913 bind(slow_case);
duke@0 914
duke@0 915 // Call the runtime routine for slow case
duke@0 916 call_VM(noreg,
duke@0 917 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
duke@0 918 lock_reg);
duke@0 919
duke@0 920 bind(done);
duke@0 921 }
duke@0 922 }
duke@0 923
duke@0 924
duke@0 925 // Unlocks an object. Used in monitorexit bytecode and
duke@0 926 // remove_activation. Throws an IllegalMonitorException if object is
duke@0 927 // not locked by current thread.
duke@0 928 //
duke@0 929 // Args:
duke@0 930 // c_rarg1: BasicObjectLock for lock
duke@0 931 //
duke@0 932 // Kills:
duke@0 933 // rax
duke@0 934 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
duke@0 935 // rscratch1, rscratch2 (scratch regs)
duke@0 936 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
duke@0 937 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
duke@0 938
duke@0 939 if (UseHeavyMonitors) {
duke@0 940 call_VM(noreg,
duke@0 941 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
duke@0 942 lock_reg);
duke@0 943 } else {
duke@0 944 Label done;
duke@0 945
duke@0 946 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
duke@0 947 const Register header_reg = c_rarg2; // Will contain the old oopMark
duke@0 948 const Register obj_reg = c_rarg3; // Will contain the oop
duke@0 949
duke@0 950 save_bcp(); // Save in case of exception
duke@0 951
duke@0 952 // Convert from BasicObjectLock structure to object and BasicLock
duke@0 953 // structure Store the BasicLock address into %rax
duke@0 954 leaq(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
duke@0 955
duke@0 956 // Load oop into obj_reg(%c_rarg3)
duke@0 957 movq(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
duke@0 958
duke@0 959 // Free entry
duke@0 960 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
duke@0 961
duke@0 962 if (UseBiasedLocking) {
duke@0 963 biased_locking_exit(obj_reg, header_reg, done);
duke@0 964 }
duke@0 965
duke@0 966 // Load the old header from BasicLock structure
duke@0 967 movq(header_reg, Address(swap_reg,
duke@0 968 BasicLock::displaced_header_offset_in_bytes()));
duke@0 969
duke@0 970 // Test for recursion
duke@0 971 testq(header_reg, header_reg);
duke@0 972
duke@0 973 // zero for recursive case
duke@0 974 jcc(Assembler::zero, done);
duke@0 975
duke@0 976 // Atomic swap back the old header
duke@0 977 if (os::is_MP()) lock();
duke@0 978 cmpxchgq(header_reg, Address(obj_reg, 0));
duke@0 979
duke@0 980 // zero for recursive case
duke@0 981 jcc(Assembler::zero, done);
duke@0 982
duke@0 983 // Call the runtime routine for slow case.
duke@0 984 movq(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
duke@0 985 obj_reg); // restore obj
duke@0 986 call_VM(noreg,
duke@0 987 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
duke@0 988 lock_reg);
duke@0 989
duke@0 990 bind(done);
duke@0 991
duke@0 992 restore_bcp();
duke@0 993 }
duke@0 994 }
duke@0 995
duke@0 996
duke@0 997 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
duke@0 998 Label& zero_continue) {
duke@0 999 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1000 movq(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
duke@0 1001 testq(mdp, mdp);
duke@0 1002 jcc(Assembler::zero, zero_continue);
duke@0 1003 }
duke@0 1004
duke@0 1005
duke@0 1006 // Set the method data pointer for the current bcp.
duke@0 1007 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
duke@0 1008 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1009 Label zero_continue;
duke@0 1010 pushq(rax);
duke@0 1011 pushq(rbx);
duke@0 1012
duke@0 1013 get_method(rbx);
duke@0 1014 // Test MDO to avoid the call if it is NULL.
duke@0 1015 movq(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
duke@0 1016 testq(rax, rax);
duke@0 1017 jcc(Assembler::zero, zero_continue);
duke@0 1018
duke@0 1019 // rbx: method
duke@0 1020 // r13: bcp
duke@0 1021 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
duke@0 1022 // rax: mdi
duke@0 1023
duke@0 1024 movq(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
duke@0 1025 testq(rbx, rbx);
duke@0 1026 jcc(Assembler::zero, zero_continue);
duke@0 1027 addq(rbx, in_bytes(methodDataOopDesc::data_offset()));
duke@0 1028 addq(rbx, rax);
duke@0 1029 movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
duke@0 1030
duke@0 1031 bind(zero_continue);
duke@0 1032 popq(rbx);
duke@0 1033 popq(rax);
duke@0 1034 }
duke@0 1035
duke@0 1036 void InterpreterMacroAssembler::verify_method_data_pointer() {
duke@0 1037 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1038 #ifdef ASSERT
duke@0 1039 Label verify_continue;
duke@0 1040 pushq(rax);
duke@0 1041 pushq(rbx);
duke@0 1042 pushq(c_rarg3);
duke@0 1043 pushq(c_rarg2);
duke@0 1044 test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
duke@0 1045 get_method(rbx);
duke@0 1046
duke@0 1047 // If the mdp is valid, it will point to a DataLayout header which is
duke@0 1048 // consistent with the bcp. The converse is highly probable also.
duke@0 1049 load_unsigned_word(c_rarg2,
duke@0 1050 Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
duke@0 1051 addq(c_rarg2, Address(rbx, methodOopDesc::const_offset()));
duke@0 1052 leaq(c_rarg2, Address(c_rarg2, constMethodOopDesc::codes_offset()));
duke@0 1053 cmpq(c_rarg2, r13);
duke@0 1054 jcc(Assembler::equal, verify_continue);
duke@0 1055 // rbx: method
duke@0 1056 // r13: bcp
duke@0 1057 // c_rarg3: mdp
duke@0 1058 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
duke@0 1059 rbx, r13, c_rarg3);
duke@0 1060 bind(verify_continue);
duke@0 1061 popq(c_rarg2);
duke@0 1062 popq(c_rarg3);
duke@0 1063 popq(rbx);
duke@0 1064 popq(rax);
duke@0 1065 #endif // ASSERT
duke@0 1066 }
duke@0 1067
duke@0 1068
duke@0 1069 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
duke@0 1070 int constant,
duke@0 1071 Register value) {
duke@0 1072 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1073 Address data(mdp_in, constant);
duke@0 1074 movq(data, value);
duke@0 1075 }
duke@0 1076
duke@0 1077
duke@0 1078 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
duke@0 1079 int constant,
duke@0 1080 bool decrement) {
duke@0 1081 // Counter address
duke@0 1082 Address data(mdp_in, constant);
duke@0 1083
duke@0 1084 increment_mdp_data_at(data, decrement);
duke@0 1085 }
duke@0 1086
duke@0 1087 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
duke@0 1088 bool decrement) {
duke@0 1089 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1090
duke@0 1091 if (decrement) {
duke@0 1092 // Decrement the register. Set condition codes.
duke@0 1093 addq(data, -DataLayout::counter_increment);
duke@0 1094 // If the decrement causes the counter to overflow, stay negative
duke@0 1095 Label L;
duke@0 1096 jcc(Assembler::negative, L);
duke@0 1097 addq(data, DataLayout::counter_increment);
duke@0 1098 bind(L);
duke@0 1099 } else {
duke@0 1100 assert(DataLayout::counter_increment == 1,
duke@0 1101 "flow-free idiom only works with 1");
duke@0 1102 // Increment the register. Set carry flag.
duke@0 1103 addq(data, DataLayout::counter_increment);
duke@0 1104 // If the increment causes the counter to overflow, pull back by 1.
duke@0 1105 sbbq(data, 0);
duke@0 1106 }
duke@0 1107 }
duke@0 1108
duke@0 1109
duke@0 1110 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
duke@0 1111 Register reg,
duke@0 1112 int constant,
duke@0 1113 bool decrement) {
duke@0 1114 Address data(mdp_in, reg, Address::times_1, constant);
duke@0 1115
duke@0 1116 increment_mdp_data_at(data, decrement);
duke@0 1117 }
duke@0 1118
duke@0 1119 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
duke@0 1120 int flag_byte_constant) {
duke@0 1121 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1122 int header_offset = in_bytes(DataLayout::header_offset());
duke@0 1123 int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
duke@0 1124 // Set the flag
duke@0 1125 orl(Address(mdp_in, header_offset), header_bits);
duke@0 1126 }
duke@0 1127
duke@0 1128
duke@0 1129
duke@0 1130 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
duke@0 1131 int offset,
duke@0 1132 Register value,
duke@0 1133 Register test_value_out,
duke@0 1134 Label& not_equal_continue) {
duke@0 1135 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1136 if (test_value_out == noreg) {
duke@0 1137 cmpq(value, Address(mdp_in, offset));
duke@0 1138 } else {
duke@0 1139 // Put the test value into a register, so caller can use it:
duke@0 1140 movq(test_value_out, Address(mdp_in, offset));
duke@0 1141 cmpq(test_value_out, value);
duke@0 1142 }
duke@0 1143 jcc(Assembler::notEqual, not_equal_continue);
duke@0 1144 }
duke@0 1145
duke@0 1146
duke@0 1147 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
duke@0 1148 int offset_of_disp) {
duke@0 1149 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1150 Address disp_address(mdp_in, offset_of_disp);
duke@0 1151 addq(mdp_in, disp_address);
duke@0 1152 movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
duke@0 1153 }
duke@0 1154
duke@0 1155
duke@0 1156 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
duke@0 1157 Register reg,
duke@0 1158 int offset_of_disp) {
duke@0 1159 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1160 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
duke@0 1161 addq(mdp_in, disp_address);
duke@0 1162 movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
duke@0 1163 }
duke@0 1164
duke@0 1165
duke@0 1166 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
duke@0 1167 int constant) {
duke@0 1168 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1169 addq(mdp_in, constant);
duke@0 1170 movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
duke@0 1171 }
duke@0 1172
duke@0 1173
duke@0 1174 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
duke@0 1175 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1176 pushq(return_bci); // save/restore across call_VM
duke@0 1177 call_VM(noreg,
duke@0 1178 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
duke@0 1179 return_bci);
duke@0 1180 popq(return_bci);
duke@0 1181 }
duke@0 1182
duke@0 1183
duke@0 1184 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
duke@0 1185 Register bumped_count) {
duke@0 1186 if (ProfileInterpreter) {
duke@0 1187 Label profile_continue;
duke@0 1188
duke@0 1189 // If no method data exists, go to profile_continue.
duke@0 1190 // Otherwise, assign to mdp
duke@0 1191 test_method_data_pointer(mdp, profile_continue);
duke@0 1192
duke@0 1193 // We are taking a branch. Increment the taken count.
duke@0 1194 // We inline increment_mdp_data_at to return bumped_count in a register
duke@0 1195 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
duke@0 1196 Address data(mdp, in_bytes(JumpData::taken_offset()));
duke@0 1197 movq(bumped_count, data);
duke@0 1198 assert(DataLayout::counter_increment == 1,
duke@0 1199 "flow-free idiom only works with 1");
duke@0 1200 addq(bumped_count, DataLayout::counter_increment);
duke@0 1201 sbbq(bumped_count, 0);
duke@0 1202 movq(data, bumped_count); // Store back out
duke@0 1203
duke@0 1204 // The method data pointer needs to be updated to reflect the new target.
duke@0 1205 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
duke@0 1206 bind(profile_continue);
duke@0 1207 }
duke@0 1208 }
duke@0 1209
duke@0 1210
duke@0 1211 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
duke@0 1212 if (ProfileInterpreter) {
duke@0 1213 Label profile_continue;
duke@0 1214
duke@0 1215 // If no method data exists, go to profile_continue.
duke@0 1216 test_method_data_pointer(mdp, profile_continue);
duke@0 1217
duke@0 1218 // We are taking a branch. Increment the not taken count.
duke@0 1219 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
duke@0 1220
duke@0 1221 // The method data pointer needs to be updated to correspond to
duke@0 1222 // the next bytecode
duke@0 1223 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
duke@0 1224 bind(profile_continue);
duke@0 1225 }
duke@0 1226 }
duke@0 1227
duke@0 1228
duke@0 1229 void InterpreterMacroAssembler::profile_call(Register mdp) {
duke@0 1230 if (ProfileInterpreter) {
duke@0 1231 Label profile_continue;
duke@0 1232
duke@0 1233 // If no method data exists, go to profile_continue.
duke@0 1234 test_method_data_pointer(mdp, profile_continue);
duke@0 1235
duke@0 1236 // We are making a call. Increment the count.
duke@0 1237 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
duke@0 1238
duke@0 1239 // The method data pointer needs to be updated to reflect the new target.
duke@0 1240 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
duke@0 1241 bind(profile_continue);
duke@0 1242 }
duke@0 1243 }
duke@0 1244
duke@0 1245
duke@0 1246 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
duke@0 1247 if (ProfileInterpreter) {
duke@0 1248 Label profile_continue;
duke@0 1249
duke@0 1250 // If no method data exists, go to profile_continue.
duke@0 1251 test_method_data_pointer(mdp, profile_continue);
duke@0 1252
duke@0 1253 // We are making a call. Increment the count.
duke@0 1254 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
duke@0 1255
duke@0 1256 // The method data pointer needs to be updated to reflect the new target.
duke@0 1257 update_mdp_by_constant(mdp,
duke@0 1258 in_bytes(VirtualCallData::
duke@0 1259 virtual_call_data_size()));
duke@0 1260 bind(profile_continue);
duke@0 1261 }
duke@0 1262 }
duke@0 1263
duke@0 1264
duke@0 1265 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
duke@0 1266 Register mdp,
duke@0 1267 Register reg2) {
duke@0 1268 if (ProfileInterpreter) {
duke@0 1269 Label profile_continue;
duke@0 1270
duke@0 1271 // If no method data exists, go to profile_continue.
duke@0 1272 test_method_data_pointer(mdp, profile_continue);
duke@0 1273
duke@0 1274 // We are making a call. Increment the count.
duke@0 1275 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
duke@0 1276
duke@0 1277 // Record the receiver type.
duke@0 1278 record_klass_in_profile(receiver, mdp, reg2);
duke@0 1279
duke@0 1280 // The method data pointer needs to be updated to reflect the new target.
duke@0 1281 update_mdp_by_constant(mdp,
duke@0 1282 in_bytes(VirtualCallData::
duke@0 1283 virtual_call_data_size()));
duke@0 1284 bind(profile_continue);
duke@0 1285 }
duke@0 1286 }
duke@0 1287
duke@0 1288 // This routine creates a state machine for updating the multi-row
duke@0 1289 // type profile at a virtual call site (or other type-sensitive bytecode).
duke@0 1290 // The machine visits each row (of receiver/count) until the receiver type
duke@0 1291 // is found, or until it runs out of rows. At the same time, it remembers
duke@0 1292 // the location of the first empty row. (An empty row records null for its
duke@0 1293 // receiver, and can be allocated for a newly-observed receiver type.)
duke@0 1294 // Because there are two degrees of freedom in the state, a simple linear
duke@0 1295 // search will not work; it must be a decision tree. Hence this helper
duke@0 1296 // function is recursive, to generate the required tree structured code.
duke@0 1297 // It's the interpreter, so we are trading off code space for speed.
duke@0 1298 // See below for example code.
duke@0 1299 void InterpreterMacroAssembler::record_klass_in_profile_helper(
duke@0 1300 Register receiver, Register mdp,
duke@0 1301 Register reg2,
duke@0 1302 int start_row, Label& done) {
duke@0 1303 int last_row = VirtualCallData::row_limit() - 1;
duke@0 1304 assert(start_row <= last_row, "must be work left to do");
duke@0 1305 // Test this row for both the receiver and for null.
duke@0 1306 // Take any of three different outcomes:
duke@0 1307 // 1. found receiver => increment count and goto done
duke@0 1308 // 2. found null => keep looking for case 1, maybe allocate this cell
duke@0 1309 // 3. found something else => keep looking for cases 1 and 2
duke@0 1310 // Case 3 is handled by a recursive call.
duke@0 1311 for (int row = start_row; row <= last_row; row++) {
duke@0 1312 Label next_test;
duke@0 1313 bool test_for_null_also = (row == start_row);
duke@0 1314
duke@0 1315 // See if the receiver is receiver[n].
duke@0 1316 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
duke@0 1317 test_mdp_data_at(mdp, recvr_offset, receiver,
duke@0 1318 (test_for_null_also ? reg2 : noreg),
duke@0 1319 next_test);
duke@0 1320 // (Reg2 now contains the receiver from the CallData.)
duke@0 1321
duke@0 1322 // The receiver is receiver[n]. Increment count[n].
duke@0 1323 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
duke@0 1324 increment_mdp_data_at(mdp, count_offset);
duke@0 1325 jmp(done);
duke@0 1326 bind(next_test);
duke@0 1327
duke@0 1328 if (test_for_null_also) {
duke@0 1329 // Failed the equality check on receiver[n]... Test for null.
duke@0 1330 testq(reg2, reg2);
duke@0 1331 if (start_row == last_row) {
duke@0 1332 // The only thing left to do is handle the null case.
duke@0 1333 jcc(Assembler::notZero, done);
duke@0 1334 break;
duke@0 1335 }
duke@0 1336 // Since null is rare, make it be the branch-taken case.
duke@0 1337 Label found_null;
duke@0 1338 jcc(Assembler::zero, found_null);
duke@0 1339
duke@0 1340 // Put all the "Case 3" tests here.
duke@0 1341 record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
duke@0 1342
duke@0 1343 // Found a null. Keep searching for a matching receiver,
duke@0 1344 // but remember that this is an empty (unused) slot.
duke@0 1345 bind(found_null);
duke@0 1346 }
duke@0 1347 }
duke@0 1348
duke@0 1349 // In the fall-through case, we found no matching receiver, but we
duke@0 1350 // observed the receiver[start_row] is NULL.
duke@0 1351
duke@0 1352 // Fill in the receiver field and increment the count.
duke@0 1353 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
duke@0 1354 set_mdp_data_at(mdp, recvr_offset, receiver);
duke@0 1355 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
duke@0 1356 movl(reg2, DataLayout::counter_increment);
duke@0 1357 set_mdp_data_at(mdp, count_offset, reg2);
duke@0 1358 jmp(done);
duke@0 1359 }
duke@0 1360
duke@0 1361 // Example state machine code for three profile rows:
duke@0 1362 // // main copy of decision tree, rooted at row[1]
duke@0 1363 // if (row[0].rec == rec) { row[0].incr(); goto done; }
duke@0 1364 // if (row[0].rec != NULL) {
duke@0 1365 // // inner copy of decision tree, rooted at row[1]
duke@0 1366 // if (row[1].rec == rec) { row[1].incr(); goto done; }
duke@0 1367 // if (row[1].rec != NULL) {
duke@0 1368 // // degenerate decision tree, rooted at row[2]
duke@0 1369 // if (row[2].rec == rec) { row[2].incr(); goto done; }
duke@0 1370 // if (row[2].rec != NULL) { goto done; } // overflow
duke@0 1371 // row[2].init(rec); goto done;
duke@0 1372 // } else {
duke@0 1373 // // remember row[1] is empty
duke@0 1374 // if (row[2].rec == rec) { row[2].incr(); goto done; }
duke@0 1375 // row[1].init(rec); goto done;
duke@0 1376 // }
duke@0 1377 // } else {
duke@0 1378 // // remember row[0] is empty
duke@0 1379 // if (row[1].rec == rec) { row[1].incr(); goto done; }
duke@0 1380 // if (row[2].rec == rec) { row[2].incr(); goto done; }
duke@0 1381 // row[0].init(rec); goto done;
duke@0 1382 // }
duke@0 1383
duke@0 1384 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
duke@0 1385 Register mdp,
duke@0 1386 Register reg2) {
duke@0 1387 assert(ProfileInterpreter, "must be profiling");
duke@0 1388 Label done;
duke@0 1389
duke@0 1390 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
duke@0 1391
duke@0 1392 bind (done);
duke@0 1393 }
duke@0 1394
duke@0 1395 void InterpreterMacroAssembler::profile_ret(Register return_bci,
duke@0 1396 Register mdp) {
duke@0 1397 if (ProfileInterpreter) {
duke@0 1398 Label profile_continue;
duke@0 1399 uint row;
duke@0 1400
duke@0 1401 // If no method data exists, go to profile_continue.
duke@0 1402 test_method_data_pointer(mdp, profile_continue);
duke@0 1403
duke@0 1404 // Update the total ret count.
duke@0 1405 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
duke@0 1406
duke@0 1407 for (row = 0; row < RetData::row_limit(); row++) {
duke@0 1408 Label next_test;
duke@0 1409
duke@0 1410 // See if return_bci is equal to bci[n]:
duke@0 1411 test_mdp_data_at(mdp,
duke@0 1412 in_bytes(RetData::bci_offset(row)),
duke@0 1413 return_bci, noreg,
duke@0 1414 next_test);
duke@0 1415
duke@0 1416 // return_bci is equal to bci[n]. Increment the count.
duke@0 1417 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
duke@0 1418
duke@0 1419 // The method data pointer needs to be updated to reflect the new target.
duke@0 1420 update_mdp_by_offset(mdp,
duke@0 1421 in_bytes(RetData::bci_displacement_offset(row)));
duke@0 1422 jmp(profile_continue);
duke@0 1423 bind(next_test);
duke@0 1424 }
duke@0 1425
duke@0 1426 update_mdp_for_ret(return_bci);
duke@0 1427
duke@0 1428 bind(profile_continue);
duke@0 1429 }
duke@0 1430 }
duke@0 1431
duke@0 1432
duke@0 1433 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
duke@0 1434 if (ProfileInterpreter) {
duke@0 1435 Label profile_continue;
duke@0 1436
duke@0 1437 // If no method data exists, go to profile_continue.
duke@0 1438 test_method_data_pointer(mdp, profile_continue);
duke@0 1439
duke@0 1440 // The method data pointer needs to be updated.
duke@0 1441 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@0 1442 if (TypeProfileCasts) {
duke@0 1443 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@0 1444 }
duke@0 1445 update_mdp_by_constant(mdp, mdp_delta);
duke@0 1446
duke@0 1447 bind(profile_continue);
duke@0 1448 }
duke@0 1449 }
duke@0 1450
duke@0 1451
duke@0 1452 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
duke@0 1453 if (ProfileInterpreter && TypeProfileCasts) {
duke@0 1454 Label profile_continue;
duke@0 1455
duke@0 1456 // If no method data exists, go to profile_continue.
duke@0 1457 test_method_data_pointer(mdp, profile_continue);
duke@0 1458
duke@0 1459 int count_offset = in_bytes(CounterData::count_offset());
duke@0 1460 // Back up the address, since we have already bumped the mdp.
duke@0 1461 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
duke@0 1462
duke@0 1463 // *Decrement* the counter. We expect to see zero or small negatives.
duke@0 1464 increment_mdp_data_at(mdp, count_offset, true);
duke@0 1465
duke@0 1466 bind (profile_continue);
duke@0 1467 }
duke@0 1468 }
duke@0 1469
duke@0 1470
duke@0 1471 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
duke@0 1472 if (ProfileInterpreter) {
duke@0 1473 Label profile_continue;
duke@0 1474
duke@0 1475 // If no method data exists, go to profile_continue.
duke@0 1476 test_method_data_pointer(mdp, profile_continue);
duke@0 1477
duke@0 1478 // The method data pointer needs to be updated.
duke@0 1479 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@0 1480 if (TypeProfileCasts) {
duke@0 1481 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@0 1482
duke@0 1483 // Record the object type.
duke@0 1484 record_klass_in_profile(klass, mdp, reg2);
duke@0 1485 }
duke@0 1486 update_mdp_by_constant(mdp, mdp_delta);
duke@0 1487
duke@0 1488 bind(profile_continue);
duke@0 1489 }
duke@0 1490 }
duke@0 1491
duke@0 1492
duke@0 1493 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
duke@0 1494 if (ProfileInterpreter) {
duke@0 1495 Label profile_continue;
duke@0 1496
duke@0 1497 // If no method data exists, go to profile_continue.
duke@0 1498 test_method_data_pointer(mdp, profile_continue);
duke@0 1499
duke@0 1500 // Update the default case count
duke@0 1501 increment_mdp_data_at(mdp,
duke@0 1502 in_bytes(MultiBranchData::default_count_offset()));
duke@0 1503
duke@0 1504 // The method data pointer needs to be updated.
duke@0 1505 update_mdp_by_offset(mdp,
duke@0 1506 in_bytes(MultiBranchData::
duke@0 1507 default_displacement_offset()));
duke@0 1508
duke@0 1509 bind(profile_continue);
duke@0 1510 }
duke@0 1511 }
duke@0 1512
duke@0 1513
duke@0 1514 void InterpreterMacroAssembler::profile_switch_case(Register index,
duke@0 1515 Register mdp,
duke@0 1516 Register reg2) {
duke@0 1517 if (ProfileInterpreter) {
duke@0 1518 Label profile_continue;
duke@0 1519
duke@0 1520 // If no method data exists, go to profile_continue.
duke@0 1521 test_method_data_pointer(mdp, profile_continue);
duke@0 1522
duke@0 1523 // Build the base (index * per_case_size_in_bytes()) +
duke@0 1524 // case_array_offset_in_bytes()
duke@0 1525 movl(reg2, in_bytes(MultiBranchData::per_case_size()));
duke@0 1526 imulq(index, reg2); // XXX l ?
duke@0 1527 addq(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
duke@0 1528
duke@0 1529 // Update the case count
duke@0 1530 increment_mdp_data_at(mdp,
duke@0 1531 index,
duke@0 1532 in_bytes(MultiBranchData::relative_count_offset()));
duke@0 1533
duke@0 1534 // The method data pointer needs to be updated.
duke@0 1535 update_mdp_by_offset(mdp,
duke@0 1536 index,
duke@0 1537 in_bytes(MultiBranchData::
duke@0 1538 relative_displacement_offset()));
duke@0 1539
duke@0 1540 bind(profile_continue);
duke@0 1541 }
duke@0 1542 }
duke@0 1543
duke@0 1544
duke@0 1545 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
duke@0 1546 if (state == atos) {
duke@0 1547 MacroAssembler::verify_oop(reg);
duke@0 1548 }
duke@0 1549 }
duke@0 1550
duke@0 1551 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
duke@0 1552 }
duke@0 1553
duke@0 1554
duke@0 1555 void InterpreterMacroAssembler::notify_method_entry() {
duke@0 1556 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
duke@0 1557 // track stack depth. If it is possible to enter interp_only_mode we add
duke@0 1558 // the code to check if the event should be sent.
duke@0 1559 if (JvmtiExport::can_post_interpreter_events()) {
duke@0 1560 Label L;
duke@0 1561 movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
duke@0 1562 testl(rdx, rdx);
duke@0 1563 jcc(Assembler::zero, L);
duke@0 1564 call_VM(noreg, CAST_FROM_FN_PTR(address,
duke@0 1565 InterpreterRuntime::post_method_entry));
duke@0 1566 bind(L);
duke@0 1567 }
duke@0 1568
duke@0 1569 {
duke@0 1570 SkipIfEqual skip(this, &DTraceMethodProbes, false);
duke@0 1571 get_method(c_rarg1);
duke@0 1572 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@0 1573 r15_thread, c_rarg1);
duke@0 1574 }
duke@0 1575 }
duke@0 1576
duke@0 1577
duke@0 1578 void InterpreterMacroAssembler::notify_method_exit(
duke@0 1579 TosState state, NotifyMethodExitMode mode) {
duke@0 1580 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
duke@0 1581 // track stack depth. If it is possible to enter interp_only_mode we add
duke@0 1582 // the code to check if the event should be sent.
duke@0 1583 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
duke@0 1584 Label L;
duke@0 1585 // Note: frame::interpreter_frame_result has a dependency on how the
duke@0 1586 // method result is saved across the call to post_method_exit. If this
duke@0 1587 // is changed then the interpreter_frame_result implementation will
duke@0 1588 // need to be updated too.
duke@0 1589 push(state);
duke@0 1590 movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
duke@0 1591 testl(rdx, rdx);
duke@0 1592 jcc(Assembler::zero, L);
duke@0 1593 call_VM(noreg,
duke@0 1594 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
duke@0 1595 bind(L);
duke@0 1596 pop(state);
duke@0 1597 }
duke@0 1598
duke@0 1599 {
duke@0 1600 SkipIfEqual skip(this, &DTraceMethodProbes, false);
duke@0 1601 push(state);
duke@0 1602 get_method(c_rarg1);
duke@0 1603 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@0 1604 r15_thread, c_rarg1);
duke@0 1605 pop(state);
duke@0 1606 }
duke@0 1607 }