annotate src/cpu/x86/vm/interp_masm_x86_64.cpp @ 304:dc7f315e41f7

5108146: Merge i486 and amd64 cpu directories 6459804: Want client (c1) compiler for x86_64 (amd64) for faster start-up Reviewed-by: kvn
author never
date Wed, 27 Aug 2008 00:21:55 -0700
parents d1605aabd0a1
children f8199438385b
rev   line source
duke@0 1 /*
xdono@196 2 * Copyright 2003-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
duke@0 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@0 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@0 21 * have any questions.
duke@0 22 *
duke@0 23 */
duke@0 24
duke@0 25 #include "incls/_precompiled.incl"
duke@0 26 #include "incls/_interp_masm_x86_64.cpp.incl"
duke@0 27
duke@0 28
duke@0 29 // Implementation of InterpreterMacroAssembler
duke@0 30
never@304 31 #ifdef CC_INTERP
never@304 32 void InterpreterMacroAssembler::get_method(Register reg) {
never@304 33 movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
never@304 34 movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
never@304 35 }
never@304 36 #endif // CC_INTERP
never@304 37
never@304 38 #ifndef CC_INTERP
never@304 39
duke@0 40 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
duke@0 41 int number_of_arguments) {
duke@0 42 // interpreter specific
duke@0 43 //
duke@0 44 // Note: No need to save/restore bcp & locals (r13 & r14) pointer
duke@0 45 // since these are callee saved registers and no blocking/
duke@0 46 // GC can happen in leaf calls.
duke@0 47 #ifdef ASSERT
duke@0 48 save_bcp();
duke@0 49 {
duke@0 50 Label L;
never@304 51 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
duke@0 52 jcc(Assembler::equal, L);
duke@0 53 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
duke@0 54 " last_sp != NULL");
duke@0 55 bind(L);
duke@0 56 }
duke@0 57 #endif
duke@0 58 // super call
duke@0 59 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
duke@0 60 // interpreter specific
duke@0 61 #ifdef ASSERT
duke@0 62 {
duke@0 63 Label L;
never@304 64 cmpptr(r13, Address(rbp, frame::interpreter_frame_bcx_offset * wordSize));
duke@0 65 jcc(Assembler::equal, L);
duke@0 66 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
duke@0 67 " r13 not callee saved?");
duke@0 68 bind(L);
duke@0 69 }
duke@0 70 {
duke@0 71 Label L;
never@304 72 cmpptr(r14, Address(rbp, frame::interpreter_frame_locals_offset * wordSize));
duke@0 73 jcc(Assembler::equal, L);
duke@0 74 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
duke@0 75 " r14 not callee saved?");
duke@0 76 bind(L);
duke@0 77 }
duke@0 78 #endif
duke@0 79 }
duke@0 80
duke@0 81 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
duke@0 82 Register java_thread,
duke@0 83 Register last_java_sp,
duke@0 84 address entry_point,
duke@0 85 int number_of_arguments,
duke@0 86 bool check_exceptions) {
duke@0 87 // interpreter specific
duke@0 88 //
duke@0 89 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
duke@0 90 // really make a difference for these runtime calls, since they are
duke@0 91 // slow anyway. Btw., bcp must be saved/restored since it may change
duke@0 92 // due to GC.
duke@0 93 // assert(java_thread == noreg , "not expecting a precomputed java thread");
duke@0 94 save_bcp();
duke@0 95 #ifdef ASSERT
duke@0 96 {
duke@0 97 Label L;
never@304 98 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
duke@0 99 jcc(Assembler::equal, L);
duke@0 100 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
duke@0 101 " last_sp != NULL");
duke@0 102 bind(L);
duke@0 103 }
duke@0 104 #endif /* ASSERT */
duke@0 105 // super call
duke@0 106 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
duke@0 107 entry_point, number_of_arguments,
duke@0 108 check_exceptions);
duke@0 109 // interpreter specific
duke@0 110 restore_bcp();
duke@0 111 restore_locals();
duke@0 112 }
duke@0 113
duke@0 114
duke@0 115 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
duke@0 116 if (JvmtiExport::can_pop_frame()) {
duke@0 117 Label L;
duke@0 118 // Initiate popframe handling only if it is not already being
duke@0 119 // processed. If the flag has the popframe_processing bit set, it
duke@0 120 // means that this code is called *during* popframe handling - we
duke@0 121 // don't want to reenter.
duke@0 122 // This method is only called just after the call into the vm in
duke@0 123 // call_VM_base, so the arg registers are available.
duke@0 124 movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
duke@0 125 testl(c_rarg0, JavaThread::popframe_pending_bit);
duke@0 126 jcc(Assembler::zero, L);
duke@0 127 testl(c_rarg0, JavaThread::popframe_processing_bit);
duke@0 128 jcc(Assembler::notZero, L);
duke@0 129 // Call Interpreter::remove_activation_preserving_args_entry() to get the
duke@0 130 // address of the same-named entrypoint in the generated interpreter code.
duke@0 131 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
duke@0 132 jmp(rax);
duke@0 133 bind(L);
duke@0 134 }
duke@0 135 }
duke@0 136
duke@0 137
duke@0 138 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
never@304 139 movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
duke@0 140 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
duke@0 141 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
duke@0 142 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
duke@0 143 switch (state) {
never@304 144 case atos: movptr(rax, oop_addr);
never@304 145 movptr(oop_addr, (int32_t)NULL_WORD);
duke@0 146 verify_oop(rax, state); break;
never@304 147 case ltos: movptr(rax, val_addr); break;
duke@0 148 case btos: // fall through
duke@0 149 case ctos: // fall through
duke@0 150 case stos: // fall through
duke@0 151 case itos: movl(rax, val_addr); break;
duke@0 152 case ftos: movflt(xmm0, val_addr); break;
duke@0 153 case dtos: movdbl(xmm0, val_addr); break;
duke@0 154 case vtos: /* nothing to do */ break;
duke@0 155 default : ShouldNotReachHere();
duke@0 156 }
duke@0 157 // Clean up tos value in the thread object
duke@0 158 movl(tos_addr, (int) ilgl);
never@304 159 movl(val_addr, (int32_t) NULL_WORD);
duke@0 160 }
duke@0 161
duke@0 162
duke@0 163 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
duke@0 164 if (JvmtiExport::can_force_early_return()) {
duke@0 165 Label L;
never@304 166 movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
never@304 167 testptr(c_rarg0, c_rarg0);
duke@0 168 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
duke@0 169
duke@0 170 // Initiate earlyret handling only if it is not already being processed.
duke@0 171 // If the flag has the earlyret_processing bit set, it means that this code
duke@0 172 // is called *during* earlyret handling - we don't want to reenter.
duke@0 173 movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
duke@0 174 cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
duke@0 175 jcc(Assembler::notEqual, L);
duke@0 176
duke@0 177 // Call Interpreter::remove_activation_early_entry() to get the address of the
duke@0 178 // same-named entrypoint in the generated interpreter code.
never@304 179 movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
duke@0 180 movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
duke@0 181 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
duke@0 182 jmp(rax);
duke@0 183 bind(L);
duke@0 184 }
duke@0 185 }
duke@0 186
duke@0 187
duke@0 188 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
duke@0 189 Register reg,
duke@0 190 int bcp_offset) {
duke@0 191 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
duke@0 192 movl(reg, Address(r13, bcp_offset));
duke@0 193 bswapl(reg);
duke@0 194 shrl(reg, 16);
duke@0 195 }
duke@0 196
duke@0 197
duke@0 198 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
duke@0 199 Register index,
duke@0 200 int bcp_offset) {
duke@0 201 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@0 202 assert(cache != index, "must use different registers");
duke@0 203 load_unsigned_word(index, Address(r13, bcp_offset));
never@304 204 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
duke@0 205 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
duke@0 206 // convert from field index to ConstantPoolCacheEntry index
duke@0 207 shll(index, 2);
duke@0 208 }
duke@0 209
duke@0 210
duke@0 211 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
duke@0 212 Register tmp,
duke@0 213 int bcp_offset) {
duke@0 214 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@0 215 assert(cache != tmp, "must use different register");
duke@0 216 load_unsigned_word(tmp, Address(r13, bcp_offset));
duke@0 217 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
duke@0 218 // convert from field index to ConstantPoolCacheEntry index
duke@0 219 // and from word offset to byte offset
duke@0 220 shll(tmp, 2 + LogBytesPerWord);
never@304 221 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
duke@0 222 // skip past the header
never@304 223 addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
never@304 224 addptr(cache, tmp); // construct pointer to cache entry
duke@0 225 }
duke@0 226
duke@0 227
duke@0 228 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
duke@0 229 // subtype of super_klass.
duke@0 230 //
duke@0 231 // Args:
duke@0 232 // rax: superklass
duke@0 233 // Rsub_klass: subklass
duke@0 234 //
duke@0 235 // Kills:
duke@0 236 // rcx, rdi
duke@0 237 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
duke@0 238 Label& ok_is_subtype) {
duke@0 239 assert(Rsub_klass != rax, "rax holds superklass");
duke@0 240 assert(Rsub_klass != r14, "r14 holds locals");
duke@0 241 assert(Rsub_klass != r13, "r13 holds bcp");
duke@0 242 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
duke@0 243 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
duke@0 244
coleenp@178 245 Label not_subtype, not_subtype_pop, loop;
duke@0 246
duke@0 247 // Profile the not-null value's klass.
duke@0 248 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, rdi
duke@0 249
duke@0 250 // Load the super-klass's check offset into rcx
duke@0 251 movl(rcx, Address(rax, sizeof(oopDesc) +
duke@0 252 Klass::super_check_offset_offset_in_bytes()));
duke@0 253 // Load from the sub-klass's super-class display list, or a 1-word
duke@0 254 // cache of the secondary superclass list, or a failing value with a
duke@0 255 // sentinel offset if the super-klass is an interface or
duke@0 256 // exceptionally deep in the Java hierarchy and we have to scan the
duke@0 257 // secondary superclass list the hard way. See if we get an
duke@0 258 // immediate positive hit
never@304 259 cmpptr(rax, Address(Rsub_klass, rcx, Address::times_1));
duke@0 260 jcc(Assembler::equal,ok_is_subtype);
duke@0 261
duke@0 262 // Check for immediate negative hit
duke@0 263 cmpl(rcx, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
duke@0 264 jcc( Assembler::notEqual, not_subtype );
duke@0 265 // Check for self
never@304 266 cmpptr(Rsub_klass, rax);
duke@0 267 jcc(Assembler::equal, ok_is_subtype);
duke@0 268
duke@0 269 // Now do a linear scan of the secondary super-klass chain.
never@304 270 movptr(rdi, Address(Rsub_klass, sizeof(oopDesc) +
never@304 271 Klass::secondary_supers_offset_in_bytes()));
duke@0 272 // rdi holds the objArrayOop of secondary supers.
duke@0 273 // Load the array length
duke@0 274 movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
duke@0 275 // Skip to start of data; also clear Z flag incase rcx is zero
never@304 276 addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
duke@0 277 // Scan rcx words at [rdi] for occurance of rax
duke@0 278 // Set NZ/Z based on last compare
coleenp@113 279
coleenp@113 280 // this part is kind tricky, as values in supers array could be 32 or 64 bit wide
coleenp@113 281 // and we store values in objArrays always encoded, thus we need to encode value
coleenp@113 282 // before repne
coleenp@113 283 if (UseCompressedOops) {
never@304 284 push(rax);
coleenp@113 285 encode_heap_oop(rax);
coleenp@113 286 repne_scanl();
coleenp@113 287 // Not equal?
coleenp@178 288 jcc(Assembler::notEqual, not_subtype_pop);
coleenp@178 289 // restore heap oop here for movq
never@304 290 pop(rax);
coleenp@113 291 } else {
never@304 292 repne_scan();
coleenp@113 293 jcc(Assembler::notEqual, not_subtype);
coleenp@113 294 }
duke@0 295 // Must be equal but missed in cache. Update cache.
never@304 296 movptr(Address(Rsub_klass, sizeof(oopDesc) +
duke@0 297 Klass::secondary_super_cache_offset_in_bytes()), rax);
duke@0 298 jmp(ok_is_subtype);
duke@0 299
coleenp@178 300 bind(not_subtype_pop);
coleenp@178 301 // restore heap oop here for miss
never@304 302 if (UseCompressedOops) pop(rax);
duke@0 303 bind(not_subtype);
duke@0 304 profile_typecheck_failed(rcx); // blows rcx
duke@0 305 }
duke@0 306
duke@0 307
never@304 308
duke@0 309 // Java Expression Stack
duke@0 310
duke@0 311 #ifdef ASSERT
duke@0 312 // Verifies that the stack tag matches. Must be called before the stack
duke@0 313 // value is popped off the stack.
duke@0 314 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
duke@0 315 if (TaggedStackInterpreter) {
duke@0 316 frame::Tag tag = t;
duke@0 317 if (t == frame::TagCategory2) {
duke@0 318 tag = frame::TagValue;
duke@0 319 Label hokay;
never@304 320 cmpptr(Address(rsp, 3*wordSize), (int32_t)tag);
duke@0 321 jcc(Assembler::equal, hokay);
duke@0 322 stop("Java Expression stack tag high value is bad");
duke@0 323 bind(hokay);
duke@0 324 }
duke@0 325 Label okay;
never@304 326 cmpptr(Address(rsp, wordSize), (int32_t)tag);
duke@0 327 jcc(Assembler::equal, okay);
duke@0 328 // Also compare if the stack value is zero, then the tag might
duke@0 329 // not have been set coming from deopt.
never@304 330 cmpptr(Address(rsp, 0), 0);
duke@0 331 jcc(Assembler::equal, okay);
duke@0 332 stop("Java Expression stack tag value is bad");
duke@0 333 bind(okay);
duke@0 334 }
duke@0 335 }
duke@0 336 #endif // ASSERT
duke@0 337
duke@0 338 void InterpreterMacroAssembler::pop_ptr(Register r) {
duke@0 339 debug_only(verify_stack_tag(frame::TagReference));
never@304 340 pop(r);
never@304 341 if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
duke@0 342 }
duke@0 343
duke@0 344 void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
never@304 345 pop(r);
never@304 346 if (TaggedStackInterpreter) pop(tag);
duke@0 347 }
duke@0 348
duke@0 349 void InterpreterMacroAssembler::pop_i(Register r) {
never@304 350 // XXX can't use pop currently, upper half non clean
duke@0 351 debug_only(verify_stack_tag(frame::TagValue));
duke@0 352 movl(r, Address(rsp, 0));
never@304 353 addptr(rsp, wordSize);
never@304 354 if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
duke@0 355 }
duke@0 356
duke@0 357 void InterpreterMacroAssembler::pop_l(Register r) {
duke@0 358 debug_only(verify_stack_tag(frame::TagCategory2));
duke@0 359 movq(r, Address(rsp, 0));
never@304 360 addptr(rsp, 2 * Interpreter::stackElementSize());
duke@0 361 }
duke@0 362
duke@0 363 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
duke@0 364 debug_only(verify_stack_tag(frame::TagValue));
duke@0 365 movflt(r, Address(rsp, 0));
never@304 366 addptr(rsp, wordSize);
never@304 367 if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
duke@0 368 }
duke@0 369
duke@0 370 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
duke@0 371 debug_only(verify_stack_tag(frame::TagCategory2));
duke@0 372 movdbl(r, Address(rsp, 0));
never@304 373 addptr(rsp, 2 * Interpreter::stackElementSize());
duke@0 374 }
duke@0 375
duke@0 376 void InterpreterMacroAssembler::push_ptr(Register r) {
never@304 377 if (TaggedStackInterpreter) push(frame::TagReference);
never@304 378 push(r);
duke@0 379 }
duke@0 380
duke@0 381 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
never@304 382 if (TaggedStackInterpreter) push(tag);
never@304 383 push(r);
duke@0 384 }
duke@0 385
duke@0 386 void InterpreterMacroAssembler::push_i(Register r) {
never@304 387 if (TaggedStackInterpreter) push(frame::TagValue);
never@304 388 push(r);
duke@0 389 }
duke@0 390
duke@0 391 void InterpreterMacroAssembler::push_l(Register r) {
duke@0 392 if (TaggedStackInterpreter) {
never@304 393 push(frame::TagValue);
never@304 394 subptr(rsp, 1 * wordSize);
never@304 395 push(frame::TagValue);
never@304 396 subptr(rsp, 1 * wordSize);
duke@0 397 } else {
never@304 398 subptr(rsp, 2 * wordSize);
duke@0 399 }
duke@0 400 movq(Address(rsp, 0), r);
duke@0 401 }
duke@0 402
duke@0 403 void InterpreterMacroAssembler::push_f(XMMRegister r) {
never@304 404 if (TaggedStackInterpreter) push(frame::TagValue);
never@304 405 subptr(rsp, wordSize);
duke@0 406 movflt(Address(rsp, 0), r);
duke@0 407 }
duke@0 408
duke@0 409 void InterpreterMacroAssembler::push_d(XMMRegister r) {
duke@0 410 if (TaggedStackInterpreter) {
never@304 411 push(frame::TagValue);
never@304 412 subptr(rsp, 1 * wordSize);
never@304 413 push(frame::TagValue);
never@304 414 subptr(rsp, 1 * wordSize);
duke@0 415 } else {
never@304 416 subptr(rsp, 2 * wordSize);
duke@0 417 }
duke@0 418 movdbl(Address(rsp, 0), r);
duke@0 419 }
duke@0 420
duke@0 421 void InterpreterMacroAssembler::pop(TosState state) {
duke@0 422 switch (state) {
duke@0 423 case atos: pop_ptr(); break;
duke@0 424 case btos:
duke@0 425 case ctos:
duke@0 426 case stos:
duke@0 427 case itos: pop_i(); break;
duke@0 428 case ltos: pop_l(); break;
duke@0 429 case ftos: pop_f(); break;
duke@0 430 case dtos: pop_d(); break;
duke@0 431 case vtos: /* nothing to do */ break;
duke@0 432 default: ShouldNotReachHere();
duke@0 433 }
duke@0 434 verify_oop(rax, state);
duke@0 435 }
duke@0 436
duke@0 437 void InterpreterMacroAssembler::push(TosState state) {
duke@0 438 verify_oop(rax, state);
duke@0 439 switch (state) {
duke@0 440 case atos: push_ptr(); break;
duke@0 441 case btos:
duke@0 442 case ctos:
duke@0 443 case stos:
duke@0 444 case itos: push_i(); break;
duke@0 445 case ltos: push_l(); break;
duke@0 446 case ftos: push_f(); break;
duke@0 447 case dtos: push_d(); break;
duke@0 448 case vtos: /* nothing to do */ break;
duke@0 449 default : ShouldNotReachHere();
duke@0 450 }
duke@0 451 }
duke@0 452
duke@0 453
never@304 454
never@304 455
duke@0 456 // Tagged stack helpers for swap and dup
duke@0 457 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
duke@0 458 Register tag) {
never@304 459 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
duke@0 460 if (TaggedStackInterpreter) {
never@304 461 movptr(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
duke@0 462 }
duke@0 463 }
duke@0 464
duke@0 465 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
duke@0 466 Register tag) {
never@304 467 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
duke@0 468 if (TaggedStackInterpreter) {
never@304 469 movptr(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
duke@0 470 }
duke@0 471 }
duke@0 472
duke@0 473
duke@0 474 // Tagged local support
duke@0 475 void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
duke@0 476 if (TaggedStackInterpreter) {
duke@0 477 if (tag == frame::TagCategory2) {
never@304 478 movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)),
never@304 479 (int32_t)frame::TagValue);
never@304 480 movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)),
never@304 481 (int32_t)frame::TagValue);
duke@0 482 } else {
never@304 483 movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)tag);
duke@0 484 }
duke@0 485 }
duke@0 486 }
duke@0 487
duke@0 488 void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
duke@0 489 if (TaggedStackInterpreter) {
duke@0 490 if (tag == frame::TagCategory2) {
never@304 491 movptr(Address(r14, idx, Address::times_8,
never@304 492 Interpreter::local_tag_offset_in_bytes(1)), (int32_t)frame::TagValue);
never@304 493 movptr(Address(r14, idx, Address::times_8,
never@304 494 Interpreter::local_tag_offset_in_bytes(0)), (int32_t)frame::TagValue);
duke@0 495 } else {
never@304 496 movptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)),
never@304 497 (int32_t)tag);
duke@0 498 }
duke@0 499 }
duke@0 500 }
duke@0 501
duke@0 502 void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
duke@0 503 if (TaggedStackInterpreter) {
duke@0 504 // can only be TagValue or TagReference
never@304 505 movptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), tag);
duke@0 506 }
duke@0 507 }
duke@0 508
duke@0 509
duke@0 510 void InterpreterMacroAssembler::tag_local(Register tag, int n) {
duke@0 511 if (TaggedStackInterpreter) {
duke@0 512 // can only be TagValue or TagReference
never@304 513 movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), tag);
duke@0 514 }
duke@0 515 }
duke@0 516
duke@0 517 #ifdef ASSERT
duke@0 518 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
duke@0 519 if (TaggedStackInterpreter) {
duke@0 520 frame::Tag t = tag;
duke@0 521 if (tag == frame::TagCategory2) {
duke@0 522 Label nbl;
duke@0 523 t = frame::TagValue; // change to what is stored in locals
never@304 524 cmpptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)), (int32_t)t);
duke@0 525 jcc(Assembler::equal, nbl);
duke@0 526 stop("Local tag is bad for long/double");
duke@0 527 bind(nbl);
duke@0 528 }
duke@0 529 Label notBad;
never@304 530 cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)t);
duke@0 531 jcc(Assembler::equal, notBad);
duke@0 532 // Also compare if the local value is zero, then the tag might
duke@0 533 // not have been set coming from deopt.
never@304 534 cmpptr(Address(r14, Interpreter::local_offset_in_bytes(n)), 0);
duke@0 535 jcc(Assembler::equal, notBad);
duke@0 536 stop("Local tag is bad");
duke@0 537 bind(notBad);
duke@0 538 }
duke@0 539 }
duke@0 540
duke@0 541 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
duke@0 542 if (TaggedStackInterpreter) {
duke@0 543 frame::Tag t = tag;
duke@0 544 if (tag == frame::TagCategory2) {
duke@0 545 Label nbl;
duke@0 546 t = frame::TagValue; // change to what is stored in locals
never@304 547 cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(1)), (int32_t)t);
duke@0 548 jcc(Assembler::equal, nbl);
duke@0 549 stop("Local tag is bad for long/double");
duke@0 550 bind(nbl);
duke@0 551 }
duke@0 552 Label notBad;
never@304 553 cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), (int32_t)t);
duke@0 554 jcc(Assembler::equal, notBad);
duke@0 555 // Also compare if the local value is zero, then the tag might
duke@0 556 // not have been set coming from deopt.
never@304 557 cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_offset_in_bytes(0)), 0);
duke@0 558 jcc(Assembler::equal, notBad);
duke@0 559 stop("Local tag is bad");
duke@0 560 bind(notBad);
duke@0 561 }
duke@0 562 }
duke@0 563 #endif // ASSERT
duke@0 564
duke@0 565
duke@0 566 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
duke@0 567 MacroAssembler::call_VM_leaf_base(entry_point, 0);
duke@0 568 }
duke@0 569
duke@0 570
duke@0 571 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
duke@0 572 Register arg_1) {
duke@0 573 if (c_rarg0 != arg_1) {
never@304 574 mov(c_rarg0, arg_1);
duke@0 575 }
duke@0 576 MacroAssembler::call_VM_leaf_base(entry_point, 1);
duke@0 577 }
duke@0 578
duke@0 579
duke@0 580 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
duke@0 581 Register arg_1,
duke@0 582 Register arg_2) {
duke@0 583 assert(c_rarg0 != arg_2, "smashed argument");
duke@0 584 assert(c_rarg1 != arg_1, "smashed argument");
duke@0 585 if (c_rarg0 != arg_1) {
never@304 586 mov(c_rarg0, arg_1);
duke@0 587 }
duke@0 588 if (c_rarg1 != arg_2) {
never@304 589 mov(c_rarg1, arg_2);
duke@0 590 }
duke@0 591 MacroAssembler::call_VM_leaf_base(entry_point, 2);
duke@0 592 }
duke@0 593
duke@0 594 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
duke@0 595 Register arg_1,
duke@0 596 Register arg_2,
duke@0 597 Register arg_3) {
duke@0 598 assert(c_rarg0 != arg_2, "smashed argument");
duke@0 599 assert(c_rarg0 != arg_3, "smashed argument");
duke@0 600 assert(c_rarg1 != arg_1, "smashed argument");
duke@0 601 assert(c_rarg1 != arg_3, "smashed argument");
duke@0 602 assert(c_rarg2 != arg_1, "smashed argument");
duke@0 603 assert(c_rarg2 != arg_2, "smashed argument");
duke@0 604 if (c_rarg0 != arg_1) {
never@304 605 mov(c_rarg0, arg_1);
duke@0 606 }
duke@0 607 if (c_rarg1 != arg_2) {
never@304 608 mov(c_rarg1, arg_2);
duke@0 609 }
duke@0 610 if (c_rarg2 != arg_3) {
never@304 611 mov(c_rarg2, arg_3);
duke@0 612 }
duke@0 613 MacroAssembler::call_VM_leaf_base(entry_point, 3);
duke@0 614 }
duke@0 615
duke@0 616 // Jump to from_interpreted entry of a call unless single stepping is possible
duke@0 617 // in this thread in which case we must call the i2i entry
duke@0 618 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
duke@0 619 // set sender sp
never@304 620 lea(r13, Address(rsp, wordSize));
duke@0 621 // record last_sp
never@304 622 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
duke@0 623
duke@0 624 if (JvmtiExport::can_post_interpreter_events()) {
duke@0 625 Label run_compiled_code;
duke@0 626 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
duke@0 627 // compiled code in threads for which the event is enabled. Check here for
duke@0 628 // interp_only_mode if these events CAN be enabled.
duke@0 629 get_thread(temp);
duke@0 630 // interp_only is an int, on little endian it is sufficient to test the byte only
duke@0 631 // Is a cmpl faster (ce
duke@0 632 cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
duke@0 633 jcc(Assembler::zero, run_compiled_code);
duke@0 634 jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
duke@0 635 bind(run_compiled_code);
duke@0 636 }
duke@0 637
duke@0 638 jmp(Address(method, methodOopDesc::from_interpreted_offset()));
duke@0 639
duke@0 640 }
duke@0 641
duke@0 642
duke@0 643 // The following two routines provide a hook so that an implementation
duke@0 644 // can schedule the dispatch in two parts. amd64 does not do this.
duke@0 645 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
duke@0 646 // Nothing amd64 specific to be done here
duke@0 647 }
duke@0 648
duke@0 649 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
duke@0 650 dispatch_next(state, step);
duke@0 651 }
duke@0 652
duke@0 653 void InterpreterMacroAssembler::dispatch_base(TosState state,
duke@0 654 address* table,
duke@0 655 bool verifyoop) {
duke@0 656 verify_FPU(1, state);
duke@0 657 if (VerifyActivationFrameSize) {
duke@0 658 Label L;
never@304 659 mov(rcx, rbp);
never@304 660 subptr(rcx, rsp);
never@304 661 int32_t min_frame_size =
duke@0 662 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
duke@0 663 wordSize;
never@304 664 cmpptr(rcx, (int32_t)min_frame_size);
duke@0 665 jcc(Assembler::greaterEqual, L);
duke@0 666 stop("broken stack frame");
duke@0 667 bind(L);
duke@0 668 }
duke@0 669 if (verifyoop) {
duke@0 670 verify_oop(rax, state);
duke@0 671 }
duke@0 672 lea(rscratch1, ExternalAddress((address)table));
duke@0 673 jmp(Address(rscratch1, rbx, Address::times_8));
duke@0 674 }
duke@0 675
duke@0 676 void InterpreterMacroAssembler::dispatch_only(TosState state) {
duke@0 677 dispatch_base(state, Interpreter::dispatch_table(state));
duke@0 678 }
duke@0 679
duke@0 680 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
duke@0 681 dispatch_base(state, Interpreter::normal_table(state));
duke@0 682 }
duke@0 683
duke@0 684 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
duke@0 685 dispatch_base(state, Interpreter::normal_table(state), false);
duke@0 686 }
duke@0 687
duke@0 688
duke@0 689 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
duke@0 690 // load next bytecode (load before advancing r13 to prevent AGI)
duke@0 691 load_unsigned_byte(rbx, Address(r13, step));
duke@0 692 // advance r13
never@304 693 increment(r13, step);
duke@0 694 dispatch_base(state, Interpreter::dispatch_table(state));
duke@0 695 }
duke@0 696
duke@0 697 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
duke@0 698 // load current bytecode
duke@0 699 load_unsigned_byte(rbx, Address(r13, 0));
duke@0 700 dispatch_base(state, table);
duke@0 701 }
duke@0 702
duke@0 703 // remove activation
duke@0 704 //
duke@0 705 // Unlock the receiver if this is a synchronized method.
duke@0 706 // Unlock any Java monitors from syncronized blocks.
duke@0 707 // Remove the activation from the stack.
duke@0 708 //
duke@0 709 // If there are locked Java monitors
duke@0 710 // If throw_monitor_exception
duke@0 711 // throws IllegalMonitorStateException
duke@0 712 // Else if install_monitor_exception
duke@0 713 // installs IllegalMonitorStateException
duke@0 714 // Else
duke@0 715 // no error processing
duke@0 716 void InterpreterMacroAssembler::remove_activation(
duke@0 717 TosState state,
duke@0 718 Register ret_addr,
duke@0 719 bool throw_monitor_exception,
duke@0 720 bool install_monitor_exception,
duke@0 721 bool notify_jvmdi) {
duke@0 722 // Note: Registers rdx xmm0 may be in use for the
duke@0 723 // result check if synchronized method
duke@0 724 Label unlocked, unlock, no_unlock;
duke@0 725
duke@0 726 // get the value of _do_not_unlock_if_synchronized into rdx
duke@0 727 const Address do_not_unlock_if_synchronized(r15_thread,
duke@0 728 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
duke@0 729 movbool(rdx, do_not_unlock_if_synchronized);
duke@0 730 movbool(do_not_unlock_if_synchronized, false); // reset the flag
duke@0 731
duke@0 732 // get method access flags
never@304 733 movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
duke@0 734 movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
duke@0 735 testl(rcx, JVM_ACC_SYNCHRONIZED);
duke@0 736 jcc(Assembler::zero, unlocked);
duke@0 737
duke@0 738 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
duke@0 739 // is set.
duke@0 740 testbool(rdx);
duke@0 741 jcc(Assembler::notZero, no_unlock);
duke@0 742
duke@0 743 // unlock monitor
duke@0 744 push(state); // save result
duke@0 745
duke@0 746 // BasicObjectLock will be first in list, since this is a
duke@0 747 // synchronized method. However, need to check that the object has
duke@0 748 // not been unlocked by an explicit monitorexit bytecode.
duke@0 749 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
duke@0 750 wordSize - (int) sizeof(BasicObjectLock));
duke@0 751 // We use c_rarg1 so that if we go slow path it will be the correct
duke@0 752 // register for unlock_object to pass to VM directly
never@304 753 lea(c_rarg1, monitor); // address of first monitor
duke@0 754
never@304 755 movptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
never@304 756 testptr(rax, rax);
duke@0 757 jcc(Assembler::notZero, unlock);
duke@0 758
duke@0 759 pop(state);
duke@0 760 if (throw_monitor_exception) {
duke@0 761 // Entry already unlocked, need to throw exception
duke@0 762 call_VM(noreg, CAST_FROM_FN_PTR(address,
duke@0 763 InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@0 764 should_not_reach_here();
duke@0 765 } else {
duke@0 766 // Monitor already unlocked during a stack unroll. If requested,
duke@0 767 // install an illegal_monitor_state_exception. Continue with
duke@0 768 // stack unrolling.
duke@0 769 if (install_monitor_exception) {
duke@0 770 call_VM(noreg, CAST_FROM_FN_PTR(address,
duke@0 771 InterpreterRuntime::new_illegal_monitor_state_exception));
duke@0 772 }
duke@0 773 jmp(unlocked);
duke@0 774 }
duke@0 775
duke@0 776 bind(unlock);
duke@0 777 unlock_object(c_rarg1);
duke@0 778 pop(state);
duke@0 779
duke@0 780 // Check that for block-structured locking (i.e., that all locked
duke@0 781 // objects has been unlocked)
duke@0 782 bind(unlocked);
duke@0 783
duke@0 784 // rax: Might contain return value
duke@0 785
duke@0 786 // Check that all monitors are unlocked
duke@0 787 {
duke@0 788 Label loop, exception, entry, restart;
duke@0 789 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
duke@0 790 const Address monitor_block_top(
duke@0 791 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
duke@0 792 const Address monitor_block_bot(
duke@0 793 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
duke@0 794
duke@0 795 bind(restart);
duke@0 796 // We use c_rarg1 so that if we go slow path it will be the correct
duke@0 797 // register for unlock_object to pass to VM directly
never@304 798 movptr(c_rarg1, monitor_block_top); // points to current entry, starting
duke@0 799 // with top-most entry
never@304 800 lea(rbx, monitor_block_bot); // points to word before bottom of
duke@0 801 // monitor block
duke@0 802 jmp(entry);
duke@0 803
duke@0 804 // Entry already locked, need to throw exception
duke@0 805 bind(exception);
duke@0 806
duke@0 807 if (throw_monitor_exception) {
duke@0 808 // Throw exception
duke@0 809 MacroAssembler::call_VM(noreg,
duke@0 810 CAST_FROM_FN_PTR(address, InterpreterRuntime::
duke@0 811 throw_illegal_monitor_state_exception));
duke@0 812 should_not_reach_here();
duke@0 813 } else {
duke@0 814 // Stack unrolling. Unlock object and install illegal_monitor_exception.
duke@0 815 // Unlock does not block, so don't have to worry about the frame.
duke@0 816 // We don't have to preserve c_rarg1 since we are going to throw an exception.
duke@0 817
duke@0 818 push(state);
duke@0 819 unlock_object(c_rarg1);
duke@0 820 pop(state);
duke@0 821
duke@0 822 if (install_monitor_exception) {
duke@0 823 call_VM(noreg, CAST_FROM_FN_PTR(address,
duke@0 824 InterpreterRuntime::
duke@0 825 new_illegal_monitor_state_exception));
duke@0 826 }
duke@0 827
duke@0 828 jmp(restart);
duke@0 829 }
duke@0 830
duke@0 831 bind(loop);
duke@0 832 // check if current entry is used
never@304 833 cmpptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
duke@0 834 jcc(Assembler::notEqual, exception);
duke@0 835
never@304 836 addptr(c_rarg1, entry_size); // otherwise advance to next entry
duke@0 837 bind(entry);
never@304 838 cmpptr(c_rarg1, rbx); // check if bottom reached
duke@0 839 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
duke@0 840 }
duke@0 841
duke@0 842 bind(no_unlock);
duke@0 843
duke@0 844 // jvmti support
duke@0 845 if (notify_jvmdi) {
duke@0 846 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
duke@0 847 } else {
duke@0 848 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
duke@0 849 }
duke@0 850
duke@0 851 // remove activation
duke@0 852 // get sender sp
never@304 853 movptr(rbx,
never@304 854 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
duke@0 855 leave(); // remove frame anchor
never@304 856 pop(ret_addr); // get return address
never@304 857 mov(rsp, rbx); // set sp to sender sp
duke@0 858 }
duke@0 859
never@304 860 #endif // C_INTERP
never@304 861
duke@0 862 // Lock object
duke@0 863 //
duke@0 864 // Args:
duke@0 865 // c_rarg1: BasicObjectLock to be used for locking
duke@0 866 //
duke@0 867 // Kills:
duke@0 868 // rax
duke@0 869 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
duke@0 870 // rscratch1, rscratch2 (scratch regs)
duke@0 871 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
duke@0 872 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
duke@0 873
duke@0 874 if (UseHeavyMonitors) {
duke@0 875 call_VM(noreg,
duke@0 876 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
duke@0 877 lock_reg);
duke@0 878 } else {
duke@0 879 Label done;
duke@0 880
duke@0 881 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
duke@0 882 const Register obj_reg = c_rarg3; // Will contain the oop
duke@0 883
duke@0 884 const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
duke@0 885 const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
duke@0 886 const int mark_offset = lock_offset +
duke@0 887 BasicLock::displaced_header_offset_in_bytes();
duke@0 888
duke@0 889 Label slow_case;
duke@0 890
duke@0 891 // Load object pointer into obj_reg %c_rarg3
never@304 892 movptr(obj_reg, Address(lock_reg, obj_offset));
duke@0 893
duke@0 894 if (UseBiasedLocking) {
duke@0 895 biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
duke@0 896 }
duke@0 897
duke@0 898 // Load immediate 1 into swap_reg %rax
duke@0 899 movl(swap_reg, 1);
duke@0 900
duke@0 901 // Load (object->mark() | 1) into swap_reg %rax
never@304 902 orptr(swap_reg, Address(obj_reg, 0));
duke@0 903
duke@0 904 // Save (object->mark() | 1) into BasicLock's displaced header
never@304 905 movptr(Address(lock_reg, mark_offset), swap_reg);
duke@0 906
duke@0 907 assert(lock_offset == 0,
duke@0 908 "displached header must be first word in BasicObjectLock");
duke@0 909
duke@0 910 if (os::is_MP()) lock();
never@304 911 cmpxchgptr(lock_reg, Address(obj_reg, 0));
duke@0 912 if (PrintBiasedLockingStatistics) {
duke@0 913 cond_inc32(Assembler::zero,
duke@0 914 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
duke@0 915 }
duke@0 916 jcc(Assembler::zero, done);
duke@0 917
duke@0 918 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@0 919 // 1) (mark & 7) == 0, and
duke@0 920 // 2) rsp <= mark < mark + os::pagesize()
duke@0 921 //
duke@0 922 // These 3 tests can be done by evaluating the following
duke@0 923 // expression: ((mark - rsp) & (7 - os::vm_page_size())),
duke@0 924 // assuming both stack pointer and pagesize have their
duke@0 925 // least significant 3 bits clear.
duke@0 926 // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
never@304 927 subptr(swap_reg, rsp);
never@304 928 andptr(swap_reg, 7 - os::vm_page_size());
duke@0 929
duke@0 930 // Save the test result, for recursive case, the result is zero
never@304 931 movptr(Address(lock_reg, mark_offset), swap_reg);
duke@0 932
duke@0 933 if (PrintBiasedLockingStatistics) {
duke@0 934 cond_inc32(Assembler::zero,
duke@0 935 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
duke@0 936 }
duke@0 937 jcc(Assembler::zero, done);
duke@0 938
duke@0 939 bind(slow_case);
duke@0 940
duke@0 941 // Call the runtime routine for slow case
duke@0 942 call_VM(noreg,
duke@0 943 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
duke@0 944 lock_reg);
duke@0 945
duke@0 946 bind(done);
duke@0 947 }
duke@0 948 }
duke@0 949
duke@0 950
duke@0 951 // Unlocks an object. Used in monitorexit bytecode and
duke@0 952 // remove_activation. Throws an IllegalMonitorException if object is
duke@0 953 // not locked by current thread.
duke@0 954 //
duke@0 955 // Args:
duke@0 956 // c_rarg1: BasicObjectLock for lock
duke@0 957 //
duke@0 958 // Kills:
duke@0 959 // rax
duke@0 960 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
duke@0 961 // rscratch1, rscratch2 (scratch regs)
duke@0 962 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
duke@0 963 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
duke@0 964
duke@0 965 if (UseHeavyMonitors) {
duke@0 966 call_VM(noreg,
duke@0 967 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
duke@0 968 lock_reg);
duke@0 969 } else {
duke@0 970 Label done;
duke@0 971
duke@0 972 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
duke@0 973 const Register header_reg = c_rarg2; // Will contain the old oopMark
duke@0 974 const Register obj_reg = c_rarg3; // Will contain the oop
duke@0 975
duke@0 976 save_bcp(); // Save in case of exception
duke@0 977
duke@0 978 // Convert from BasicObjectLock structure to object and BasicLock
duke@0 979 // structure Store the BasicLock address into %rax
never@304 980 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
duke@0 981
duke@0 982 // Load oop into obj_reg(%c_rarg3)
never@304 983 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
duke@0 984
duke@0 985 // Free entry
never@304 986 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
duke@0 987
duke@0 988 if (UseBiasedLocking) {
duke@0 989 biased_locking_exit(obj_reg, header_reg, done);
duke@0 990 }
duke@0 991
duke@0 992 // Load the old header from BasicLock structure
never@304 993 movptr(header_reg, Address(swap_reg,
never@304 994 BasicLock::displaced_header_offset_in_bytes()));
duke@0 995
duke@0 996 // Test for recursion
never@304 997 testptr(header_reg, header_reg);
duke@0 998
duke@0 999 // zero for recursive case
duke@0 1000 jcc(Assembler::zero, done);
duke@0 1001
duke@0 1002 // Atomic swap back the old header
duke@0 1003 if (os::is_MP()) lock();
never@304 1004 cmpxchgptr(header_reg, Address(obj_reg, 0));
duke@0 1005
duke@0 1006 // zero for recursive case
duke@0 1007 jcc(Assembler::zero, done);
duke@0 1008
duke@0 1009 // Call the runtime routine for slow case.
never@304 1010 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
duke@0 1011 obj_reg); // restore obj
duke@0 1012 call_VM(noreg,
duke@0 1013 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
duke@0 1014 lock_reg);
duke@0 1015
duke@0 1016 bind(done);
duke@0 1017
duke@0 1018 restore_bcp();
duke@0 1019 }
duke@0 1020 }
duke@0 1021
never@304 1022 #ifndef CC_INTERP
duke@0 1023
duke@0 1024 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
duke@0 1025 Label& zero_continue) {
duke@0 1026 assert(ProfileInterpreter, "must be profiling interpreter");
never@304 1027 movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
never@304 1028 testptr(mdp, mdp);
duke@0 1029 jcc(Assembler::zero, zero_continue);
duke@0 1030 }
duke@0 1031
duke@0 1032
duke@0 1033 // Set the method data pointer for the current bcp.
duke@0 1034 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
duke@0 1035 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1036 Label zero_continue;
never@304 1037 push(rax);
never@304 1038 push(rbx);
duke@0 1039
duke@0 1040 get_method(rbx);
duke@0 1041 // Test MDO to avoid the call if it is NULL.
never@304 1042 movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
never@304 1043 testptr(rax, rax);
duke@0 1044 jcc(Assembler::zero, zero_continue);
duke@0 1045
duke@0 1046 // rbx: method
duke@0 1047 // r13: bcp
duke@0 1048 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
duke@0 1049 // rax: mdi
duke@0 1050
never@304 1051 movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
never@304 1052 testptr(rbx, rbx);
duke@0 1053 jcc(Assembler::zero, zero_continue);
never@304 1054 addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
never@304 1055 addptr(rbx, rax);
never@304 1056 movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
duke@0 1057
duke@0 1058 bind(zero_continue);
never@304 1059 pop(rbx);
never@304 1060 pop(rax);
duke@0 1061 }
duke@0 1062
duke@0 1063 void InterpreterMacroAssembler::verify_method_data_pointer() {
duke@0 1064 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1065 #ifdef ASSERT
duke@0 1066 Label verify_continue;
never@304 1067 push(rax);
never@304 1068 push(rbx);
never@304 1069 push(c_rarg3);
never@304 1070 push(c_rarg2);
duke@0 1071 test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
duke@0 1072 get_method(rbx);
duke@0 1073
duke@0 1074 // If the mdp is valid, it will point to a DataLayout header which is
duke@0 1075 // consistent with the bcp. The converse is highly probable also.
duke@0 1076 load_unsigned_word(c_rarg2,
duke@0 1077 Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
never@304 1078 addptr(c_rarg2, Address(rbx, methodOopDesc::const_offset()));
never@304 1079 lea(c_rarg2, Address(c_rarg2, constMethodOopDesc::codes_offset()));
never@304 1080 cmpptr(c_rarg2, r13);
duke@0 1081 jcc(Assembler::equal, verify_continue);
duke@0 1082 // rbx: method
duke@0 1083 // r13: bcp
duke@0 1084 // c_rarg3: mdp
duke@0 1085 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
duke@0 1086 rbx, r13, c_rarg3);
duke@0 1087 bind(verify_continue);
never@304 1088 pop(c_rarg2);
never@304 1089 pop(c_rarg3);
never@304 1090 pop(rbx);
never@304 1091 pop(rax);
duke@0 1092 #endif // ASSERT
duke@0 1093 }
duke@0 1094
duke@0 1095
duke@0 1096 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
duke@0 1097 int constant,
duke@0 1098 Register value) {
duke@0 1099 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1100 Address data(mdp_in, constant);
never@304 1101 movptr(data, value);
duke@0 1102 }
duke@0 1103
duke@0 1104
duke@0 1105 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
duke@0 1106 int constant,
duke@0 1107 bool decrement) {
duke@0 1108 // Counter address
duke@0 1109 Address data(mdp_in, constant);
duke@0 1110
duke@0 1111 increment_mdp_data_at(data, decrement);
duke@0 1112 }
duke@0 1113
duke@0 1114 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
duke@0 1115 bool decrement) {
duke@0 1116 assert(ProfileInterpreter, "must be profiling interpreter");
never@304 1117 // %%% this does 64bit counters at best it is wasting space
never@304 1118 // at worst it is a rare bug when counters overflow
duke@0 1119
duke@0 1120 if (decrement) {
duke@0 1121 // Decrement the register. Set condition codes.
never@304 1122 addptr(data, (int32_t) -DataLayout::counter_increment);
duke@0 1123 // If the decrement causes the counter to overflow, stay negative
duke@0 1124 Label L;
duke@0 1125 jcc(Assembler::negative, L);
never@304 1126 addptr(data, (int32_t) DataLayout::counter_increment);
duke@0 1127 bind(L);
duke@0 1128 } else {
duke@0 1129 assert(DataLayout::counter_increment == 1,
duke@0 1130 "flow-free idiom only works with 1");
duke@0 1131 // Increment the register. Set carry flag.
never@304 1132 addptr(data, DataLayout::counter_increment);
duke@0 1133 // If the increment causes the counter to overflow, pull back by 1.
never@304 1134 sbbptr(data, (int32_t)0);
duke@0 1135 }
duke@0 1136 }
duke@0 1137
duke@0 1138
duke@0 1139 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
duke@0 1140 Register reg,
duke@0 1141 int constant,
duke@0 1142 bool decrement) {
duke@0 1143 Address data(mdp_in, reg, Address::times_1, constant);
duke@0 1144
duke@0 1145 increment_mdp_data_at(data, decrement);
duke@0 1146 }
duke@0 1147
duke@0 1148 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
duke@0 1149 int flag_byte_constant) {
duke@0 1150 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1151 int header_offset = in_bytes(DataLayout::header_offset());
duke@0 1152 int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
duke@0 1153 // Set the flag
duke@0 1154 orl(Address(mdp_in, header_offset), header_bits);
duke@0 1155 }
duke@0 1156
duke@0 1157
duke@0 1158
duke@0 1159 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
duke@0 1160 int offset,
duke@0 1161 Register value,
duke@0 1162 Register test_value_out,
duke@0 1163 Label& not_equal_continue) {
duke@0 1164 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1165 if (test_value_out == noreg) {
never@304 1166 cmpptr(value, Address(mdp_in, offset));
duke@0 1167 } else {
duke@0 1168 // Put the test value into a register, so caller can use it:
never@304 1169 movptr(test_value_out, Address(mdp_in, offset));
never@304 1170 cmpptr(test_value_out, value);
duke@0 1171 }
duke@0 1172 jcc(Assembler::notEqual, not_equal_continue);
duke@0 1173 }
duke@0 1174
duke@0 1175
duke@0 1176 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
duke@0 1177 int offset_of_disp) {
duke@0 1178 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1179 Address disp_address(mdp_in, offset_of_disp);
never@304 1180 addptr(mdp_in, disp_address);
never@304 1181 movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
duke@0 1182 }
duke@0 1183
duke@0 1184
duke@0 1185 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
duke@0 1186 Register reg,
duke@0 1187 int offset_of_disp) {
duke@0 1188 assert(ProfileInterpreter, "must be profiling interpreter");
duke@0 1189 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
never@304 1190 addptr(mdp_in, disp_address);
never@304 1191 movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
duke@0 1192 }
duke@0 1193
duke@0 1194
duke@0 1195 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
duke@0 1196 int constant) {
duke@0 1197 assert(ProfileInterpreter, "must be profiling interpreter");
never@304 1198 addptr(mdp_in, constant);
never@304 1199 movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
duke@0 1200 }
duke@0 1201
duke@0 1202
duke@0 1203 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
duke@0 1204 assert(ProfileInterpreter, "must be profiling interpreter");
never@304 1205 push(return_bci); // save/restore across call_VM
duke@0 1206 call_VM(noreg,
duke@0 1207 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
duke@0 1208 return_bci);
never@304 1209 pop(return_bci);
duke@0 1210 }
duke@0 1211
duke@0 1212
duke@0 1213 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
duke@0 1214 Register bumped_count) {
duke@0 1215 if (ProfileInterpreter) {
duke@0 1216 Label profile_continue;
duke@0 1217
duke@0 1218 // If no method data exists, go to profile_continue.
duke@0 1219 // Otherwise, assign to mdp
duke@0 1220 test_method_data_pointer(mdp, profile_continue);
duke@0 1221
duke@0 1222 // We are taking a branch. Increment the taken count.
duke@0 1223 // We inline increment_mdp_data_at to return bumped_count in a register
duke@0 1224 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
duke@0 1225 Address data(mdp, in_bytes(JumpData::taken_offset()));
never@304 1226 movptr(bumped_count, data);
duke@0 1227 assert(DataLayout::counter_increment == 1,
duke@0 1228 "flow-free idiom only works with 1");
never@304 1229 addptr(bumped_count, DataLayout::counter_increment);
never@304 1230 sbbptr(bumped_count, 0);
never@304 1231 movptr(data, bumped_count); // Store back out
duke@0 1232
duke@0 1233 // The method data pointer needs to be updated to reflect the new target.
duke@0 1234 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
duke@0 1235 bind(profile_continue);
duke@0 1236 }
duke@0 1237 }
duke@0 1238
duke@0 1239
duke@0 1240 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
duke@0 1241 if (ProfileInterpreter) {
duke@0 1242 Label profile_continue;
duke@0 1243
duke@0 1244 // If no method data exists, go to profile_continue.
duke@0 1245 test_method_data_pointer(mdp, profile_continue);
duke@0 1246
duke@0 1247 // We are taking a branch. Increment the not taken count.
duke@0 1248 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
duke@0 1249
duke@0 1250 // The method data pointer needs to be updated to correspond to
duke@0 1251 // the next bytecode
duke@0 1252 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
duke@0 1253 bind(profile_continue);
duke@0 1254 }
duke@0 1255 }
duke@0 1256
duke@0 1257
duke@0 1258 void InterpreterMacroAssembler::profile_call(Register mdp) {
duke@0 1259 if (ProfileInterpreter) {
duke@0 1260 Label profile_continue;
duke@0 1261
duke@0 1262 // If no method data exists, go to profile_continue.
duke@0 1263 test_method_data_pointer(mdp, profile_continue);
duke@0 1264
duke@0 1265 // We are making a call. Increment the count.
duke@0 1266 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
duke@0 1267
duke@0 1268 // The method data pointer needs to be updated to reflect the new target.
duke@0 1269 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
duke@0 1270 bind(profile_continue);
duke@0 1271 }
duke@0 1272 }
duke@0 1273
duke@0 1274
duke@0 1275 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
duke@0 1276 if (ProfileInterpreter) {
duke@0 1277 Label profile_continue;
duke@0 1278
duke@0 1279 // If no method data exists, go to profile_continue.
duke@0 1280 test_method_data_pointer(mdp, profile_continue);
duke@0 1281
duke@0 1282 // We are making a call. Increment the count.
duke@0 1283 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
duke@0 1284
duke@0 1285 // The method data pointer needs to be updated to reflect the new target.
duke@0 1286 update_mdp_by_constant(mdp,
duke@0 1287 in_bytes(VirtualCallData::
duke@0 1288 virtual_call_data_size()));
duke@0 1289 bind(profile_continue);
duke@0 1290 }
duke@0 1291 }
duke@0 1292
duke@0 1293
duke@0 1294 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
duke@0 1295 Register mdp,
duke@0 1296 Register reg2) {
duke@0 1297 if (ProfileInterpreter) {
duke@0 1298 Label profile_continue;
duke@0 1299
duke@0 1300 // If no method data exists, go to profile_continue.
duke@0 1301 test_method_data_pointer(mdp, profile_continue);
duke@0 1302
duke@0 1303 // We are making a call. Increment the count.
duke@0 1304 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
duke@0 1305
duke@0 1306 // Record the receiver type.
duke@0 1307 record_klass_in_profile(receiver, mdp, reg2);
duke@0 1308
duke@0 1309 // The method data pointer needs to be updated to reflect the new target.
duke@0 1310 update_mdp_by_constant(mdp,
duke@0 1311 in_bytes(VirtualCallData::
duke@0 1312 virtual_call_data_size()));
duke@0 1313 bind(profile_continue);
duke@0 1314 }
duke@0 1315 }
duke@0 1316
duke@0 1317 // This routine creates a state machine for updating the multi-row
duke@0 1318 // type profile at a virtual call site (or other type-sensitive bytecode).
duke@0 1319 // The machine visits each row (of receiver/count) until the receiver type
duke@0 1320 // is found, or until it runs out of rows. At the same time, it remembers
duke@0 1321 // the location of the first empty row. (An empty row records null for its
duke@0 1322 // receiver, and can be allocated for a newly-observed receiver type.)
duke@0 1323 // Because there are two degrees of freedom in the state, a simple linear
duke@0 1324 // search will not work; it must be a decision tree. Hence this helper
duke@0 1325 // function is recursive, to generate the required tree structured code.
duke@0 1326 // It's the interpreter, so we are trading off code space for speed.
duke@0 1327 // See below for example code.
duke@0 1328 void InterpreterMacroAssembler::record_klass_in_profile_helper(
duke@0 1329 Register receiver, Register mdp,
duke@0 1330 Register reg2,
duke@0 1331 int start_row, Label& done) {
duke@0 1332 int last_row = VirtualCallData::row_limit() - 1;
duke@0 1333 assert(start_row <= last_row, "must be work left to do");
duke@0 1334 // Test this row for both the receiver and for null.
duke@0 1335 // Take any of three different outcomes:
duke@0 1336 // 1. found receiver => increment count and goto done
duke@0 1337 // 2. found null => keep looking for case 1, maybe allocate this cell
duke@0 1338 // 3. found something else => keep looking for cases 1 and 2
duke@0 1339 // Case 3 is handled by a recursive call.
duke@0 1340 for (int row = start_row; row <= last_row; row++) {
duke@0 1341 Label next_test;
duke@0 1342 bool test_for_null_also = (row == start_row);
duke@0 1343
duke@0 1344 // See if the receiver is receiver[n].
duke@0 1345 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
duke@0 1346 test_mdp_data_at(mdp, recvr_offset, receiver,
duke@0 1347 (test_for_null_also ? reg2 : noreg),
duke@0 1348 next_test);
duke@0 1349 // (Reg2 now contains the receiver from the CallData.)
duke@0 1350
duke@0 1351 // The receiver is receiver[n]. Increment count[n].
duke@0 1352 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
duke@0 1353 increment_mdp_data_at(mdp, count_offset);
duke@0 1354 jmp(done);
duke@0 1355 bind(next_test);
duke@0 1356
duke@0 1357 if (test_for_null_also) {
duke@0 1358 // Failed the equality check on receiver[n]... Test for null.
never@304 1359 testptr(reg2, reg2);
duke@0 1360 if (start_row == last_row) {
duke@0 1361 // The only thing left to do is handle the null case.
duke@0 1362 jcc(Assembler::notZero, done);
duke@0 1363 break;
duke@0 1364 }
duke@0 1365 // Since null is rare, make it be the branch-taken case.
duke@0 1366 Label found_null;
duke@0 1367 jcc(Assembler::zero, found_null);
duke@0 1368
duke@0 1369 // Put all the "Case 3" tests here.
duke@0 1370 record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
duke@0 1371
duke@0 1372 // Found a null. Keep searching for a matching receiver,
duke@0 1373 // but remember that this is an empty (unused) slot.
duke@0 1374 bind(found_null);
duke@0 1375 }
duke@0 1376 }
duke@0 1377
duke@0 1378 // In the fall-through case, we found no matching receiver, but we
duke@0 1379 // observed the receiver[start_row] is NULL.
duke@0 1380
duke@0 1381 // Fill in the receiver field and increment the count.
duke@0 1382 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
duke@0 1383 set_mdp_data_at(mdp, recvr_offset, receiver);
duke@0 1384 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
duke@0 1385 movl(reg2, DataLayout::counter_increment);
duke@0 1386 set_mdp_data_at(mdp, count_offset, reg2);
duke@0 1387 jmp(done);
duke@0 1388 }
duke@0 1389
duke@0 1390 // Example state machine code for three profile rows:
duke@0 1391 // // main copy of decision tree, rooted at row[1]
duke@0 1392 // if (row[0].rec == rec) { row[0].incr(); goto done; }
duke@0 1393 // if (row[0].rec != NULL) {
duke@0 1394 // // inner copy of decision tree, rooted at row[1]
duke@0 1395 // if (row[1].rec == rec) { row[1].incr(); goto done; }
duke@0 1396 // if (row[1].rec != NULL) {
duke@0 1397 // // degenerate decision tree, rooted at row[2]
duke@0 1398 // if (row[2].rec == rec) { row[2].incr(); goto done; }
duke@0 1399 // if (row[2].rec != NULL) { goto done; } // overflow
duke@0 1400 // row[2].init(rec); goto done;
duke@0 1401 // } else {
duke@0 1402 // // remember row[1] is empty
duke@0 1403 // if (row[2].rec == rec) { row[2].incr(); goto done; }
duke@0 1404 // row[1].init(rec); goto done;
duke@0 1405 // }
duke@0 1406 // } else {
duke@0 1407 // // remember row[0] is empty
duke@0 1408 // if (row[1].rec == rec) { row[1].incr(); goto done; }
duke@0 1409 // if (row[2].rec == rec) { row[2].incr(); goto done; }
duke@0 1410 // row[0].init(rec); goto done;
duke@0 1411 // }
duke@0 1412
duke@0 1413 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
duke@0 1414 Register mdp,
duke@0 1415 Register reg2) {
duke@0 1416 assert(ProfileInterpreter, "must be profiling");
duke@0 1417 Label done;
duke@0 1418
duke@0 1419 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
duke@0 1420
duke@0 1421 bind (done);
duke@0 1422 }
duke@0 1423
duke@0 1424 void InterpreterMacroAssembler::profile_ret(Register return_bci,
duke@0 1425 Register mdp) {
duke@0 1426 if (ProfileInterpreter) {
duke@0 1427 Label profile_continue;
duke@0 1428 uint row;
duke@0 1429
duke@0 1430 // If no method data exists, go to profile_continue.
duke@0 1431 test_method_data_pointer(mdp, profile_continue);
duke@0 1432
duke@0 1433 // Update the total ret count.
duke@0 1434 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
duke@0 1435
duke@0 1436 for (row = 0; row < RetData::row_limit(); row++) {
duke@0 1437 Label next_test;
duke@0 1438
duke@0 1439 // See if return_bci is equal to bci[n]:
duke@0 1440 test_mdp_data_at(mdp,
duke@0 1441 in_bytes(RetData::bci_offset(row)),
duke@0 1442 return_bci, noreg,
duke@0 1443 next_test);
duke@0 1444
duke@0 1445 // return_bci is equal to bci[n]. Increment the count.
duke@0 1446 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
duke@0 1447
duke@0 1448 // The method data pointer needs to be updated to reflect the new target.
duke@0 1449 update_mdp_by_offset(mdp,
duke@0 1450 in_bytes(RetData::bci_displacement_offset(row)));
duke@0 1451 jmp(profile_continue);
duke@0 1452 bind(next_test);
duke@0 1453 }
duke@0 1454
duke@0 1455 update_mdp_for_ret(return_bci);
duke@0 1456
duke@0 1457 bind(profile_continue);
duke@0 1458 }
duke@0 1459 }
duke@0 1460
duke@0 1461
duke@0 1462 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
duke@0 1463 if (ProfileInterpreter) {
duke@0 1464 Label profile_continue;
duke@0 1465
duke@0 1466 // If no method data exists, go to profile_continue.
duke@0 1467 test_method_data_pointer(mdp, profile_continue);
duke@0 1468
duke@0 1469 // The method data pointer needs to be updated.
duke@0 1470 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@0 1471 if (TypeProfileCasts) {
duke@0 1472 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@0 1473 }
duke@0 1474 update_mdp_by_constant(mdp, mdp_delta);
duke@0 1475
duke@0 1476 bind(profile_continue);
duke@0 1477 }
duke@0 1478 }
duke@0 1479
duke@0 1480
duke@0 1481 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
duke@0 1482 if (ProfileInterpreter && TypeProfileCasts) {
duke@0 1483 Label profile_continue;
duke@0 1484
duke@0 1485 // If no method data exists, go to profile_continue.
duke@0 1486 test_method_data_pointer(mdp, profile_continue);
duke@0 1487
duke@0 1488 int count_offset = in_bytes(CounterData::count_offset());
duke@0 1489 // Back up the address, since we have already bumped the mdp.
duke@0 1490 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
duke@0 1491
duke@0 1492 // *Decrement* the counter. We expect to see zero or small negatives.
duke@0 1493 increment_mdp_data_at(mdp, count_offset, true);
duke@0 1494
duke@0 1495 bind (profile_continue);
duke@0 1496 }
duke@0 1497 }
duke@0 1498
duke@0 1499
duke@0 1500 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
duke@0 1501 if (ProfileInterpreter) {
duke@0 1502 Label profile_continue;
duke@0 1503
duke@0 1504 // If no method data exists, go to profile_continue.
duke@0 1505 test_method_data_pointer(mdp, profile_continue);
duke@0 1506
duke@0 1507 // The method data pointer needs to be updated.
duke@0 1508 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@0 1509 if (TypeProfileCasts) {
duke@0 1510 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@0 1511
duke@0 1512 // Record the object type.
duke@0 1513 record_klass_in_profile(klass, mdp, reg2);
duke@0 1514 }
duke@0 1515 update_mdp_by_constant(mdp, mdp_delta);
duke@0 1516
duke@0 1517 bind(profile_continue);
duke@0 1518 }
duke@0 1519 }
duke@0 1520
duke@0 1521
duke@0 1522 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
duke@0 1523 if (ProfileInterpreter) {
duke@0 1524 Label profile_continue;
duke@0 1525
duke@0 1526 // If no method data exists, go to profile_continue.
duke@0 1527 test_method_data_pointer(mdp, profile_continue);
duke@0 1528
duke@0 1529 // Update the default case count
duke@0 1530 increment_mdp_data_at(mdp,
duke@0 1531 in_bytes(MultiBranchData::default_count_offset()));
duke@0 1532
duke@0 1533 // The method data pointer needs to be updated.
duke@0 1534 update_mdp_by_offset(mdp,
duke@0 1535 in_bytes(MultiBranchData::
duke@0 1536 default_displacement_offset()));
duke@0 1537
duke@0 1538 bind(profile_continue);
duke@0 1539 }
duke@0 1540 }
duke@0 1541
duke@0 1542
duke@0 1543 void InterpreterMacroAssembler::profile_switch_case(Register index,
duke@0 1544 Register mdp,
duke@0 1545 Register reg2) {
duke@0 1546 if (ProfileInterpreter) {
duke@0 1547 Label profile_continue;
duke@0 1548
duke@0 1549 // If no method data exists, go to profile_continue.
duke@0 1550 test_method_data_pointer(mdp, profile_continue);
duke@0 1551
duke@0 1552 // Build the base (index * per_case_size_in_bytes()) +
duke@0 1553 // case_array_offset_in_bytes()
duke@0 1554 movl(reg2, in_bytes(MultiBranchData::per_case_size()));
never@304 1555 imulptr(index, reg2); // XXX l ?
never@304 1556 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
duke@0 1557
duke@0 1558 // Update the case count
duke@0 1559 increment_mdp_data_at(mdp,
duke@0 1560 index,
duke@0 1561 in_bytes(MultiBranchData::relative_count_offset()));
duke@0 1562
duke@0 1563 // The method data pointer needs to be updated.
duke@0 1564 update_mdp_by_offset(mdp,
duke@0 1565 index,
duke@0 1566 in_bytes(MultiBranchData::
duke@0 1567 relative_displacement_offset()));
duke@0 1568
duke@0 1569 bind(profile_continue);
duke@0 1570 }
duke@0 1571 }
duke@0 1572
duke@0 1573
never@304 1574
duke@0 1575 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
duke@0 1576 if (state == atos) {
duke@0 1577 MacroAssembler::verify_oop(reg);
duke@0 1578 }
duke@0 1579 }
duke@0 1580
duke@0 1581 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
duke@0 1582 }
never@304 1583 #endif // !CC_INTERP
duke@0 1584
duke@0 1585
duke@0 1586 void InterpreterMacroAssembler::notify_method_entry() {
duke@0 1587 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
duke@0 1588 // track stack depth. If it is possible to enter interp_only_mode we add
duke@0 1589 // the code to check if the event should be sent.
duke@0 1590 if (JvmtiExport::can_post_interpreter_events()) {
duke@0 1591 Label L;
duke@0 1592 movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
duke@0 1593 testl(rdx, rdx);
duke@0 1594 jcc(Assembler::zero, L);
duke@0 1595 call_VM(noreg, CAST_FROM_FN_PTR(address,
duke@0 1596 InterpreterRuntime::post_method_entry));
duke@0 1597 bind(L);
duke@0 1598 }
duke@0 1599
duke@0 1600 {
duke@0 1601 SkipIfEqual skip(this, &DTraceMethodProbes, false);
duke@0 1602 get_method(c_rarg1);
duke@0 1603 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@0 1604 r15_thread, c_rarg1);
duke@0 1605 }
duke@0 1606 }
duke@0 1607
duke@0 1608
duke@0 1609 void InterpreterMacroAssembler::notify_method_exit(
duke@0 1610 TosState state, NotifyMethodExitMode mode) {
duke@0 1611 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
duke@0 1612 // track stack depth. If it is possible to enter interp_only_mode we add
duke@0 1613 // the code to check if the event should be sent.
duke@0 1614 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
duke@0 1615 Label L;
duke@0 1616 // Note: frame::interpreter_frame_result has a dependency on how the
duke@0 1617 // method result is saved across the call to post_method_exit. If this
duke@0 1618 // is changed then the interpreter_frame_result implementation will
duke@0 1619 // need to be updated too.
never@304 1620
never@304 1621 // For c++ interpreter the result is always stored at a known location in the frame
never@304 1622 // template interpreter will leave it on the top of the stack.
never@304 1623 NOT_CC_INTERP(push(state);)
duke@0 1624 movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
duke@0 1625 testl(rdx, rdx);
duke@0 1626 jcc(Assembler::zero, L);
duke@0 1627 call_VM(noreg,
duke@0 1628 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
duke@0 1629 bind(L);
never@304 1630 NOT_CC_INTERP(pop(state));
duke@0 1631 }
duke@0 1632
duke@0 1633 {
duke@0 1634 SkipIfEqual skip(this, &DTraceMethodProbes, false);
never@304 1635 NOT_CC_INTERP(push(state));
duke@0 1636 get_method(c_rarg1);
duke@0 1637 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@0 1638 r15_thread, c_rarg1);
never@304 1639 NOT_CC_INTERP(pop(state));
duke@0 1640 }
duke@0 1641 }