annotate src/share/vm/utilities/globalDefinitions.hpp @ 9044:bb44c0e88235

8214206: Fix for JDK-8213419 is broken on 32-bit Reviewed-by: mdoerr, shade
author roland
date Wed, 06 Feb 2019 11:41:51 +0100
parents 67aa2bb0d84e
children 71bd8f8ad1fb
rev   line source
duke@0 1 /*
kevinw@7827 2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
duke@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@0 4 *
duke@0 5 * This code is free software; you can redistribute it and/or modify it
duke@0 6 * under the terms of the GNU General Public License version 2 only, as
duke@0 7 * published by the Free Software Foundation.
duke@0 8 *
duke@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@0 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@0 13 * accompanied this code).
duke@0 14 *
duke@0 15 * You should have received a copy of the GNU General Public License version
duke@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@0 18 *
trims@1472 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1472 20 * or visit www.oracle.com if you need additional information or have any
trims@1472 21 * questions.
duke@0 22 *
duke@0 23 */
duke@0 24
stefank@1879 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@1879 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@1879 27
dcubed@2767 28 #ifndef __STDC_FORMAT_MACROS
never@2721 29 #define __STDC_FORMAT_MACROS
dcubed@2767 30 #endif
never@2721 31
stefank@1879 32 #ifdef TARGET_COMPILER_gcc
stefank@1879 33 # include "utilities/globalDefinitions_gcc.hpp"
stefank@1879 34 #endif
stefank@1879 35 #ifdef TARGET_COMPILER_visCPP
stefank@1879 36 # include "utilities/globalDefinitions_visCPP.hpp"
stefank@1879 37 #endif
stefank@1879 38 #ifdef TARGET_COMPILER_sparcWorks
stefank@1879 39 # include "utilities/globalDefinitions_sparcWorks.hpp"
stefank@1879 40 #endif
goetz@6026 41 #ifdef TARGET_COMPILER_xlc
goetz@6026 42 # include "utilities/globalDefinitions_xlc.hpp"
goetz@6026 43 #endif
stefank@1879 44
drchase@6245 45 #ifndef PRAGMA_DIAG_PUSH
drchase@6245 46 #define PRAGMA_DIAG_PUSH
drchase@6245 47 #endif
drchase@6245 48 #ifndef PRAGMA_DIAG_POP
drchase@6245 49 #define PRAGMA_DIAG_POP
drchase@6245 50 #endif
drchase@6245 51 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
drchase@6245 52 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
drchase@6245 53 #endif
drchase@6245 54 #ifndef PRAGMA_FORMAT_IGNORED
drchase@6245 55 #define PRAGMA_FORMAT_IGNORED
drchase@6245 56 #endif
drchase@6245 57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
drchase@6245 58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
drchase@6245 59 #endif
drchase@6245 60 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
drchase@6245 61 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
drchase@6245 62 #endif
drchase@6245 63 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6245 64 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6245 65 #endif
drchase@6245 66 #ifndef ATTRIBUTE_PRINTF
drchase@6245 67 #define ATTRIBUTE_PRINTF(fmt, vargs)
drchase@6245 68 #endif
drchase@6245 69
drchase@6245 70
stefank@1879 71 #include "utilities/macros.hpp"
stefank@1879 72
duke@0 73 // This file holds all globally used constants & types, class (forward)
duke@0 74 // declarations and a few frequently used utility functions.
duke@0 75
duke@0 76 //----------------------------------------------------------------------------------------------------
duke@0 77 // Constants
duke@0 78
duke@0 79 const int LogBytesPerShort = 1;
duke@0 80 const int LogBytesPerInt = 2;
duke@0 81 #ifdef _LP64
duke@0 82 const int LogBytesPerWord = 3;
duke@0 83 #else
duke@0 84 const int LogBytesPerWord = 2;
duke@0 85 #endif
duke@0 86 const int LogBytesPerLong = 3;
duke@0 87
duke@0 88 const int BytesPerShort = 1 << LogBytesPerShort;
duke@0 89 const int BytesPerInt = 1 << LogBytesPerInt;
duke@0 90 const int BytesPerWord = 1 << LogBytesPerWord;
duke@0 91 const int BytesPerLong = 1 << LogBytesPerLong;
duke@0 92
duke@0 93 const int LogBitsPerByte = 3;
duke@0 94 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@0 95 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@0 96 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@0 97 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@0 98
duke@0 99 const int BitsPerByte = 1 << LogBitsPerByte;
duke@0 100 const int BitsPerShort = 1 << LogBitsPerShort;
duke@0 101 const int BitsPerInt = 1 << LogBitsPerInt;
duke@0 102 const int BitsPerWord = 1 << LogBitsPerWord;
duke@0 103 const int BitsPerLong = 1 << LogBitsPerLong;
duke@0 104
duke@0 105 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@0 106 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@0 107
duke@0 108 const int WordsPerLong = 2; // Number of stack entries for longs
duke@0 109
coleenp@113 110 const int oopSize = sizeof(char*); // Full-width oop
coleenp@113 111 extern int heapOopSize; // Oop within a java object
duke@0 112 const int wordSize = sizeof(char*);
duke@0 113 const int longSize = sizeof(jlong);
duke@0 114 const int jintSize = sizeof(jint);
duke@0 115 const int size_tSize = sizeof(size_t);
duke@0 116
coleenp@113 117 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@0 118
coleenp@113 119 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@113 120 extern int LogBitsPerHeapOop;
coleenp@113 121 extern int BytesPerHeapOop;
coleenp@113 122 extern int BitsPerHeapOop;
duke@0 123
kvn@1491 124 // Oop encoding heap max
kvn@1491 125 extern uint64_t OopEncodingHeapMax;
kvn@1491 126
duke@0 127 const int BitsPerJavaInteger = 32;
twisti@559 128 const int BitsPerJavaLong = 64;
duke@0 129 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@0 130
coleenp@113 131 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@113 132 const int jintAsStringSize = 12;
coleenp@113 133
duke@0 134 // In fact this should be
duke@0 135 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@0 136 // see os::set_memory_serialize_page()
duke@0 137 #ifdef _LP64
duke@0 138 const int SerializePageShiftCount = 4;
duke@0 139 #else
duke@0 140 const int SerializePageShiftCount = 3;
duke@0 141 #endif
duke@0 142
duke@0 143 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@0 144 // pointer into the heap. We require that object sizes be measured in
duke@0 145 // units of heap words, so that that
duke@0 146 // HeapWord* hw;
duke@0 147 // hw += oop(hw)->foo();
duke@0 148 // works, where foo is a method (like size or scavenge) that returns the
duke@0 149 // object size.
duke@0 150 class HeapWord {
duke@0 151 friend class VMStructs;
jmasa@263 152 private:
duke@0 153 char* i;
jmasa@361 154 #ifndef PRODUCT
jmasa@263 155 public:
jmasa@263 156 char* value() { return i; }
jmasa@263 157 #endif
duke@0 158 };
duke@0 159
coleenp@3602 160 // Analogous opaque struct for metadata allocated from
coleenp@3602 161 // metaspaces.
coleenp@3602 162 class MetaWord {
coleenp@3602 163 friend class VMStructs;
coleenp@3602 164 private:
coleenp@3602 165 char* i;
coleenp@3602 166 };
coleenp@3602 167
duke@0 168 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@113 169 const int HeapWordSize = sizeof(HeapWord);
duke@0 170 #ifdef _LP64
coleenp@113 171 const int LogHeapWordSize = 3;
duke@0 172 #else
coleenp@113 173 const int LogHeapWordSize = 2;
duke@0 174 #endif
coleenp@113 175 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@113 176 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@0 177
duke@0 178 // The larger HeapWordSize for 64bit requires larger heaps
duke@0 179 // for the same application running in 64bit. See bug 4967770.
duke@0 180 // The minimum alignment to a heap word size is done. Other
duke@0 181 // parts of the memory system may required additional alignment
duke@0 182 // and are responsible for those alignments.
duke@0 183 #ifdef _LP64
duke@0 184 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@0 185 #else
duke@0 186 #define ScaleForWordSize(x) (x)
duke@0 187 #endif
duke@0 188
duke@0 189 // The minimum number of native machine words necessary to contain "byte_size"
duke@0 190 // bytes.
duke@0 191 inline size_t heap_word_size(size_t byte_size) {
duke@0 192 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@0 193 }
duke@0 194
duke@0 195
duke@0 196 const size_t K = 1024;
duke@0 197 const size_t M = K*K;
duke@0 198 const size_t G = M*K;
duke@0 199 const size_t HWperKB = K / sizeof(HeapWord);
duke@0 200
duke@0 201 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
duke@0 202 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
duke@0 203
duke@0 204 // Constants for converting from a base unit to milli-base units. For
duke@0 205 // example from seconds to milliseconds and microseconds
duke@0 206
duke@0 207 const int MILLIUNITS = 1000; // milli units per base unit
duke@0 208 const int MICROUNITS = 1000000; // micro units per base unit
duke@0 209 const int NANOUNITS = 1000000000; // nano units per base unit
duke@0 210
johnc@2904 211 const jlong NANOSECS_PER_SEC = CONST64(1000000000);
johnc@2904 212 const jint NANOSECS_PER_MILLISEC = 1000000;
johnc@2904 213
duke@0 214 inline const char* proper_unit_for_byte_size(size_t s) {
brutisso@3331 215 #ifdef _LP64
brutisso@3331 216 if (s >= 10*G) {
brutisso@3331 217 return "G";
brutisso@3331 218 }
brutisso@3331 219 #endif
duke@0 220 if (s >= 10*M) {
duke@0 221 return "M";
duke@0 222 } else if (s >= 10*K) {
duke@0 223 return "K";
duke@0 224 } else {
duke@0 225 return "B";
duke@0 226 }
duke@0 227 }
duke@0 228
brutisso@3327 229 template <class T>
brutisso@3327 230 inline T byte_size_in_proper_unit(T s) {
brutisso@3331 231 #ifdef _LP64
brutisso@3331 232 if (s >= 10*G) {
brutisso@3331 233 return (T)(s/G);
brutisso@3331 234 }
brutisso@3331 235 #endif
duke@0 236 if (s >= 10*M) {
brutisso@3327 237 return (T)(s/M);
duke@0 238 } else if (s >= 10*K) {
brutisso@3327 239 return (T)(s/K);
duke@0 240 } else {
duke@0 241 return s;
duke@0 242 }
duke@0 243 }
duke@0 244
duke@0 245 //----------------------------------------------------------------------------------------------------
duke@0 246 // VM type definitions
duke@0 247
duke@0 248 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@0 249 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@0 250
duke@0 251 typedef intptr_t intx;
duke@0 252 typedef uintptr_t uintx;
duke@0 253
duke@0 254 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@0 255 const intx max_intx = (uintx)min_intx - 1;
duke@0 256 const uintx max_uintx = (uintx)-1;
duke@0 257
duke@0 258 // Table of values:
duke@0 259 // sizeof intx 4 8
duke@0 260 // min_intx 0x80000000 0x8000000000000000
duke@0 261 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@0 262 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@0 263
duke@0 264 typedef unsigned int uint; NEEDS_CLEANUP
duke@0 265
duke@0 266
duke@0 267 //----------------------------------------------------------------------------------------------------
duke@0 268 // Java type definitions
duke@0 269
duke@0 270 // All kinds of 'plain' byte addresses
duke@0 271 typedef signed char s_char;
duke@0 272 typedef unsigned char u_char;
duke@0 273 typedef u_char* address;
duke@0 274 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@0 275 // except for some implementations of a C++
duke@0 276 // linkage pointer to function. Should never
duke@0 277 // need one of those to be placed in this
duke@0 278 // type anyway.
duke@0 279
duke@0 280 // Utility functions to "portably" (?) bit twiddle pointers
duke@0 281 // Where portable means keep ANSI C++ compilers quiet
duke@0 282
duke@0 283 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@0 284 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@0 285
duke@0 286 // Utility functions to "portably" make cast to/from function pointers.
duke@0 287
duke@0 288 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@0 289 inline address_word castable_address(address x) { return address_word(x) ; }
duke@0 290 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@0 291
duke@0 292 // Pointer subtraction.
duke@0 293 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@0 294 // the range we might need to find differences from one end of the heap
duke@0 295 // to the other.
duke@0 296 // A typical use might be:
duke@0 297 // if (pointer_delta(end(), top()) >= size) {
duke@0 298 // // enough room for an object of size
duke@0 299 // ...
duke@0 300 // and then additions like
duke@0 301 // ... top() + size ...
duke@0 302 // are safe because we know that top() is at least size below end().
duke@0 303 inline size_t pointer_delta(const void* left,
duke@0 304 const void* right,
duke@0 305 size_t element_size) {
duke@0 306 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@0 307 }
duke@0 308 // A version specialized for HeapWord*'s.
duke@0 309 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@0 310 return pointer_delta(left, right, sizeof(HeapWord));
duke@0 311 }
coleenp@3602 312 // A version specialized for MetaWord*'s.
coleenp@3602 313 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
coleenp@3602 314 return pointer_delta(left, right, sizeof(MetaWord));
coleenp@3602 315 }
duke@0 316
duke@0 317 //
duke@0 318 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@0 319 // directly without at best a warning. This macro accomplishes it silently
duke@0 320 // In every case that is present at this point the value be cast is a pointer
duke@0 321 // to a C linkage function. In somecase the type used for the cast reflects
duke@0 322 // that linkage and a picky compiler would not complain. In other cases because
duke@0 323 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@0 324 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@0 325 // picky enough to catch these instances (which are few). It is possible that
duke@0 326 // using templates could fix these for all cases. This use of templates is likely
duke@0 327 // so far from the middle of the road that it is likely to be problematic in
duke@0 328 // many C++ compilers.
duke@0 329 //
duke@0 330 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
duke@0 331 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@0 332
duke@0 333 // Unsigned byte types for os and stream.hpp
duke@0 334
duke@0 335 // Unsigned one, two, four and eigth byte quantities used for describing
duke@0 336 // the .class file format. See JVM book chapter 4.
duke@0 337
duke@0 338 typedef jubyte u1;
duke@0 339 typedef jushort u2;
duke@0 340 typedef juint u4;
duke@0 341 typedef julong u8;
duke@0 342
duke@0 343 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@0 344 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@0 345 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@0 346 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@0 347
phh@2992 348 typedef jbyte s1;
phh@2992 349 typedef jshort s2;
phh@2992 350 typedef jint s4;
phh@2992 351 typedef jlong s8;
phh@2992 352
duke@0 353 //----------------------------------------------------------------------------------------------------
duke@0 354 // JVM spec restrictions
duke@0 355
duke@0 356 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@0 357
tschatzl@5427 358 // Default ProtectionDomainCacheSize values
tschatzl@5427 359
tschatzl@5427 360 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
duke@0 361
duke@0 362 //----------------------------------------------------------------------------------------------------
hseigel@4523 363 // Default and minimum StringTableSize values
hseigel@3842 364
hseigel@4523 365 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
tschatzl@5427 366 const int minimumStringTableSize = 1009;
hseigel@3842 367
kevinw@5415 368 const int defaultSymbolTableSize = 20011;
kevinw@5415 369 const int minimumSymbolTableSize = 1009;
kevinw@5415 370
hseigel@3842 371
hseigel@3842 372 //----------------------------------------------------------------------------------------------------
duke@0 373 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@0 374 //
duke@0 375 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@0 376
duke@0 377 #define HOTSWAP
duke@0 378
duke@0 379 //----------------------------------------------------------------------------------------------------
duke@0 380 // Object alignment, in units of HeapWords.
duke@0 381 //
duke@0 382 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@0 383 // reference fields can be naturally aligned.
duke@0 384
kvn@1491 385 extern int MinObjAlignment;
kvn@1491 386 extern int MinObjAlignmentInBytes;
kvn@1491 387 extern int MinObjAlignmentInBytesMask;
duke@0 388
kvn@1491 389 extern int LogMinObjAlignment;
kvn@1491 390 extern int LogMinObjAlignmentInBytes;
coleenp@113 391
roland@3724 392 const int LogKlassAlignmentInBytes = 3;
roland@3724 393 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
roland@3724 394 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
roland@3724 395 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
roland@3724 396
roland@3724 397 // Klass encoding metaspace max size
roland@3724 398 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
roland@3724 399
duke@0 400 // Machine dependent stuff
duke@0 401
kvn@5994 402 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
kvn@5994 403 // Include Restricted Transactional Memory lock eliding optimization
kvn@5994 404 #define INCLUDE_RTM_OPT 1
kvn@5994 405 #define RTM_OPT_ONLY(code) code
kvn@5994 406 #else
kvn@5994 407 #define INCLUDE_RTM_OPT 0
kvn@5994 408 #define RTM_OPT_ONLY(code)
kvn@5994 409 #endif
kvn@5994 410 // States of Restricted Transactional Memory usage.
kvn@5994 411 enum RTMState {
kvn@5994 412 NoRTM = 0x2, // Don't use RTM
kvn@5994 413 UseRTM = 0x1, // Use RTM
kvn@5994 414 ProfileRTM = 0x0 // Use RTM with abort ratio calculation
kvn@5994 415 };
kvn@5994 416
stefank@1879 417 #ifdef TARGET_ARCH_x86
stefank@1879 418 # include "globalDefinitions_x86.hpp"
stefank@1879 419 #endif
stefank@1879 420 #ifdef TARGET_ARCH_sparc
stefank@1879 421 # include "globalDefinitions_sparc.hpp"
stefank@1879 422 #endif
stefank@1879 423 #ifdef TARGET_ARCH_zero
stefank@1879 424 # include "globalDefinitions_zero.hpp"
stefank@1879 425 #endif
bobv@2073 426 #ifdef TARGET_ARCH_arm
bobv@2073 427 # include "globalDefinitions_arm.hpp"
bobv@2073 428 #endif
bobv@2073 429 #ifdef TARGET_ARCH_ppc
bobv@2073 430 # include "globalDefinitions_ppc.hpp"
bobv@2073 431 #endif
stefank@1879 432
jprovino@4753 433 /*
jprovino@4967 434 * If a platform does not support native stack walking
jprovino@4753 435 * the platform specific globalDefinitions (above)
jprovino@4967 436 * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
jprovino@4753 437 */
jprovino@4967 438 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
jprovino@4967 439 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
jprovino@4753 440 #endif
duke@0 441
goetz@6067 442 // To assure the IRIW property on processors that are not multiple copy
goetz@6067 443 // atomic, sync instructions must be issued between volatile reads to
goetz@6067 444 // assure their ordering, instead of after volatile stores.
goetz@6067 445 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
goetz@6067 446 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
goetz@6067 447 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
goetz@6067 448 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
goetz@6067 449 #else
goetz@6067 450 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
goetz@6067 451 #endif
goetz@6067 452
duke@0 453 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@0 454 // Note: this value must be a power of 2
duke@0 455
duke@0 456 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@0 457
duke@0 458 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@0 459 // for use in places like enum definitions that require compile-time constant
duke@0 460 // expressions and a function for all other places so as to get type checking.
duke@0 461
duke@0 462 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@0 463
stefank@5143 464 inline bool is_size_aligned(size_t size, size_t alignment) {
stefank@5143 465 return align_size_up_(size, alignment) == size;
stefank@5143 466 }
stefank@5143 467
stefank@5143 468 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
stefank@5143 469 return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
stefank@5143 470 }
stefank@5143 471
duke@0 472 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@0 473 return align_size_up_(size, alignment);
duke@0 474 }
duke@0 475
duke@0 476 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@0 477
duke@0 478 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@0 479 return align_size_down_(size, alignment);
duke@0 480 }
duke@0 481
stefank@5080 482 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
stefank@5080 483
stefank@5143 484 inline void* align_ptr_up(void* ptr, size_t alignment) {
stefank@5143 485 return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
stefank@5143 486 }
stefank@5143 487
stefank@5143 488 inline void* align_ptr_down(void* ptr, size_t alignment) {
stefank@5143 489 return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
stefank@5143 490 }
stefank@5143 491
duke@0 492 // Align objects by rounding up their size, in HeapWord units.
duke@0 493
duke@0 494 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
duke@0 495
duke@0 496 inline intptr_t align_object_size(intptr_t size) {
duke@0 497 return align_size_up(size, MinObjAlignment);
duke@0 498 }
duke@0 499
kvn@1491 500 inline bool is_object_aligned(intptr_t addr) {
kvn@1491 501 return addr == align_object_size(addr);
kvn@1491 502 }
kvn@1491 503
duke@0 504 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@0 505
duke@0 506 inline intptr_t align_object_offset(intptr_t offset) {
duke@0 507 return align_size_up(offset, HeapWordsPerLong);
duke@0 508 }
duke@0 509
stefank@5080 510 inline void* align_pointer_up(const void* addr, size_t size) {
stefank@5080 511 return (void*) align_size_up_((uintptr_t)addr, size);
stefank@5080 512 }
stefank@5080 513
jwilhelm@5648 514 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
jwilhelm@5648 515
jwilhelm@5648 516 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
jwilhelm@5648 517 size_t aligned_size = align_size_down_(size, alignment);
jwilhelm@5648 518 return aligned_size > 0 ? aligned_size : alignment;
jwilhelm@5648 519 }
jwilhelm@5648 520
mikael@4454 521 // Clamp an address to be within a specific page
mikael@4454 522 // 1. If addr is on the page it is returned as is
mikael@4454 523 // 2. If addr is above the page_address the start of the *next* page will be returned
mikael@4454 524 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
mikael@4454 525 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
mikael@4454 526 if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
mikael@4454 527 // address is in the specified page, just return it as is
mikael@4454 528 return addr;
mikael@4454 529 } else if (addr > page_address) {
mikael@4454 530 // address is above specified page, return start of next page
mikael@4454 531 return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
mikael@4454 532 } else {
mikael@4454 533 // address is below specified page, return start of page
mikael@4454 534 return (address)align_size_down(intptr_t(page_address), page_size);
mikael@4454 535 }
mikael@4454 536 }
mikael@4454 537
mikael@4454 538
jcoomes@1585 539 // The expected size in bytes of a cache line, used to pad data structures.
jcoomes@1585 540 #define DEFAULT_CACHE_LINE_SIZE 64
jcoomes@1585 541
duke@0 542
duke@0 543 //----------------------------------------------------------------------------------------------------
duke@0 544 // Utility macros for compilers
duke@0 545 // used to silence compiler warnings
duke@0 546
duke@0 547 #define Unused_Variable(var) var
duke@0 548
duke@0 549
duke@0 550 //----------------------------------------------------------------------------------------------------
duke@0 551 // Miscellaneous
duke@0 552
duke@0 553 // 6302670 Eliminate Hotspot __fabsf dependency
duke@0 554 // All fabs() callers should call this function instead, which will implicitly
duke@0 555 // convert the operand to double, avoiding a dependency on __fabsf which
duke@0 556 // doesn't exist in early versions of Solaris 8.
duke@0 557 inline double fabsd(double value) {
duke@0 558 return fabs(value);
duke@0 559 }
duke@0 560
thartmann@6474 561 //----------------------------------------------------------------------------------------------------
thartmann@6474 562 // Special casts
thartmann@6474 563 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
thartmann@6474 564 typedef union {
thartmann@6474 565 jfloat f;
thartmann@6474 566 jint i;
thartmann@6474 567 } FloatIntConv;
thartmann@6474 568
thartmann@6474 569 typedef union {
thartmann@6474 570 jdouble d;
thartmann@6474 571 jlong l;
thartmann@6474 572 julong ul;
thartmann@6474 573 } DoubleLongConv;
thartmann@6474 574
thartmann@6474 575 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; }
thartmann@6474 576 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; }
thartmann@6474 577
thartmann@6474 578 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; }
thartmann@6474 579 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; }
thartmann@6474 580 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; }
thartmann@6474 581
duke@0 582 inline jint low (jlong value) { return jint(value); }
duke@0 583 inline jint high(jlong value) { return jint(value >> 32); }
duke@0 584
duke@0 585 // the fancy casts are a hopefully portable way
duke@0 586 // to do unsigned 32 to 64 bit type conversion
duke@0 587 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@0 588 *value |= (jlong)(julong)(juint)low; }
duke@0 589
duke@0 590 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@0 591 *value |= (jlong)high << 32; }
duke@0 592
duke@0 593 inline jlong jlong_from(jint h, jint l) {
duke@0 594 jlong result = 0; // initialization to avoid warning
duke@0 595 set_high(&result, h);
duke@0 596 set_low(&result, l);
duke@0 597 return result;
duke@0 598 }
duke@0 599
duke@0 600 union jlong_accessor {
duke@0 601 jint words[2];
duke@0 602 jlong long_value;
duke@0 603 };
duke@0 604
coleenp@113 605 void basic_types_init(); // cannot define here; uses assert
duke@0 606
duke@0 607
duke@0 608 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@0 609 enum BasicType {
roland@3724 610 T_BOOLEAN = 4,
roland@3724 611 T_CHAR = 5,
roland@3724 612 T_FLOAT = 6,
roland@3724 613 T_DOUBLE = 7,
roland@3724 614 T_BYTE = 8,
roland@3724 615 T_SHORT = 9,
roland@3724 616 T_INT = 10,
roland@3724 617 T_LONG = 11,
roland@3724 618 T_OBJECT = 12,
roland@3724 619 T_ARRAY = 13,
roland@3724 620 T_VOID = 14,
roland@3724 621 T_ADDRESS = 15,
roland@3724 622 T_NARROWOOP = 16,
roland@3724 623 T_METADATA = 17,
roland@3724 624 T_NARROWKLASS = 18,
roland@3724 625 T_CONFLICT = 19, // for stack value type with conflicting contents
roland@3724 626 T_ILLEGAL = 99
duke@0 627 };
duke@0 628
kvn@29 629 inline bool is_java_primitive(BasicType t) {
kvn@29 630 return T_BOOLEAN <= t && t <= T_LONG;
kvn@29 631 }
kvn@29 632
jrose@710 633 inline bool is_subword_type(BasicType t) {
jrose@710 634 // these guys are processed exactly like T_INT in calling sequences:
jrose@710 635 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
jrose@710 636 }
jrose@710 637
jrose@710 638 inline bool is_signed_subword_type(BasicType t) {
jrose@710 639 return (t == T_BYTE || t == T_SHORT);
jrose@710 640 }
jrose@710 641
duke@0 642 // Convert a char from a classfile signature to a BasicType
duke@0 643 inline BasicType char2type(char c) {
duke@0 644 switch( c ) {
duke@0 645 case 'B': return T_BYTE;
duke@0 646 case 'C': return T_CHAR;
duke@0 647 case 'D': return T_DOUBLE;
duke@0 648 case 'F': return T_FLOAT;
duke@0 649 case 'I': return T_INT;
duke@0 650 case 'J': return T_LONG;
duke@0 651 case 'S': return T_SHORT;
duke@0 652 case 'Z': return T_BOOLEAN;
duke@0 653 case 'V': return T_VOID;
duke@0 654 case 'L': return T_OBJECT;
duke@0 655 case '[': return T_ARRAY;
duke@0 656 }
duke@0 657 return T_ILLEGAL;
duke@0 658 }
duke@0 659
duke@0 660 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@0 661 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@0 662 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@0 663 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@0 664 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@0 665 extern BasicType name2type(const char* name);
duke@0 666
duke@0 667 // Auxilary math routines
duke@0 668 // least common multiple
duke@0 669 extern size_t lcm(size_t a, size_t b);
duke@0 670
duke@0 671
duke@0 672 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@0 673 enum BasicTypeSize {
roland@3724 674 T_BOOLEAN_size = 1,
roland@3724 675 T_CHAR_size = 1,
roland@3724 676 T_FLOAT_size = 1,
roland@3724 677 T_DOUBLE_size = 2,
roland@3724 678 T_BYTE_size = 1,
roland@3724 679 T_SHORT_size = 1,
roland@3724 680 T_INT_size = 1,
roland@3724 681 T_LONG_size = 2,
roland@3724 682 T_OBJECT_size = 1,
roland@3724 683 T_ARRAY_size = 1,
roland@3724 684 T_NARROWOOP_size = 1,
roland@3724 685 T_NARROWKLASS_size = 1,
roland@3724 686 T_VOID_size = 0
duke@0 687 };
duke@0 688
duke@0 689
duke@0 690 // maps a BasicType to its instance field storage type:
duke@0 691 // all sub-word integral types are widened to T_INT
duke@0 692 extern BasicType type2field[T_CONFLICT+1];
duke@0 693 extern BasicType type2wfield[T_CONFLICT+1];
duke@0 694
duke@0 695
duke@0 696 // size in bytes
duke@0 697 enum ArrayElementSize {
roland@3724 698 T_BOOLEAN_aelem_bytes = 1,
roland@3724 699 T_CHAR_aelem_bytes = 2,
roland@3724 700 T_FLOAT_aelem_bytes = 4,
roland@3724 701 T_DOUBLE_aelem_bytes = 8,
roland@3724 702 T_BYTE_aelem_bytes = 1,
roland@3724 703 T_SHORT_aelem_bytes = 2,
roland@3724 704 T_INT_aelem_bytes = 4,
roland@3724 705 T_LONG_aelem_bytes = 8,
duke@0 706 #ifdef _LP64
roland@3724 707 T_OBJECT_aelem_bytes = 8,
roland@3724 708 T_ARRAY_aelem_bytes = 8,
duke@0 709 #else
roland@3724 710 T_OBJECT_aelem_bytes = 4,
roland@3724 711 T_ARRAY_aelem_bytes = 4,
duke@0 712 #endif
roland@3724 713 T_NARROWOOP_aelem_bytes = 4,
roland@3724 714 T_NARROWKLASS_aelem_bytes = 4,
roland@3724 715 T_VOID_aelem_bytes = 0
duke@0 716 };
duke@0 717
kvn@29 718 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@29 719 #ifdef ASSERT
kvn@29 720 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@29 721 #else
never@1683 722 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
kvn@29 723 #endif
duke@0 724
duke@0 725
duke@0 726 // JavaValue serves as a container for arbitrary Java values.
duke@0 727
duke@0 728 class JavaValue {
duke@0 729
duke@0 730 public:
duke@0 731 typedef union JavaCallValue {
duke@0 732 jfloat f;
duke@0 733 jdouble d;
duke@0 734 jint i;
duke@0 735 jlong l;
duke@0 736 jobject h;
duke@0 737 } JavaCallValue;
duke@0 738
duke@0 739 private:
duke@0 740 BasicType _type;
duke@0 741 JavaCallValue _value;
duke@0 742
duke@0 743 public:
duke@0 744 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@0 745
duke@0 746 JavaValue(jfloat value) {
duke@0 747 _type = T_FLOAT;
duke@0 748 _value.f = value;
duke@0 749 }
duke@0 750
duke@0 751 JavaValue(jdouble value) {
duke@0 752 _type = T_DOUBLE;
duke@0 753 _value.d = value;
duke@0 754 }
duke@0 755
duke@0 756 jfloat get_jfloat() const { return _value.f; }
duke@0 757 jdouble get_jdouble() const { return _value.d; }
duke@0 758 jint get_jint() const { return _value.i; }
duke@0 759 jlong get_jlong() const { return _value.l; }
duke@0 760 jobject get_jobject() const { return _value.h; }
duke@0 761 JavaCallValue* get_value_addr() { return &_value; }
duke@0 762 BasicType get_type() const { return _type; }
duke@0 763
duke@0 764 void set_jfloat(jfloat f) { _value.f = f;}
duke@0 765 void set_jdouble(jdouble d) { _value.d = d;}
duke@0 766 void set_jint(jint i) { _value.i = i;}
duke@0 767 void set_jlong(jlong l) { _value.l = l;}
duke@0 768 void set_jobject(jobject h) { _value.h = h;}
duke@0 769 void set_type(BasicType t) { _type = t; }
duke@0 770
duke@0 771 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@0 772 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@0 773 jchar get_jchar() const { return (jchar) (_value.i);}
duke@0 774 jshort get_jshort() const { return (jshort) (_value.i);}
duke@0 775
duke@0 776 };
duke@0 777
duke@0 778
duke@0 779 #define STACK_BIAS 0
duke@0 780 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@0 781 // in order to extend the reach of the stack pointer.
duke@0 782 #if defined(SPARC) && defined(_LP64)
duke@0 783 #undef STACK_BIAS
duke@0 784 #define STACK_BIAS 0x7ff
duke@0 785 #endif
duke@0 786
duke@0 787
duke@0 788 // TosState describes the top-of-stack state before and after the execution of
duke@0 789 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
duke@0 790 // registers. The TosState corresponds to the 'machine represention' of this cached
duke@0 791 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@0 792 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@0 793 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@0 794 // state when it comes to machine representation but is used separately for (oop)
duke@0 795 // type specific operations (e.g. verification code).
duke@0 796
duke@0 797 enum TosState { // describes the tos cache contents
duke@0 798 btos = 0, // byte, bool tos cached
kevinw@7827 799 ztos = 1, // byte, bool tos cached
kevinw@7827 800 ctos = 2, // char tos cached
kevinw@7827 801 stos = 3, // short tos cached
kevinw@7827 802 itos = 4, // int tos cached
kevinw@7827 803 ltos = 5, // long tos cached
kevinw@7827 804 ftos = 6, // float tos cached
kevinw@7827 805 dtos = 7, // double tos cached
kevinw@7827 806 atos = 8, // object cached
kevinw@7827 807 vtos = 9, // tos not cached
duke@0 808 number_of_states,
duke@0 809 ilgl // illegal state: should not occur
duke@0 810 };
duke@0 811
duke@0 812
duke@0 813 inline TosState as_TosState(BasicType type) {
duke@0 814 switch (type) {
duke@0 815 case T_BYTE : return btos;
kevinw@7827 816 case T_BOOLEAN: return ztos;
duke@0 817 case T_CHAR : return ctos;
duke@0 818 case T_SHORT : return stos;
duke@0 819 case T_INT : return itos;
duke@0 820 case T_LONG : return ltos;
duke@0 821 case T_FLOAT : return ftos;
duke@0 822 case T_DOUBLE : return dtos;
duke@0 823 case T_VOID : return vtos;
duke@0 824 case T_ARRAY : // fall through
duke@0 825 case T_OBJECT : return atos;
duke@0 826 }
duke@0 827 return ilgl;
duke@0 828 }
duke@0 829
jrose@726 830 inline BasicType as_BasicType(TosState state) {
jrose@726 831 switch (state) {
jrose@726 832 case btos : return T_BYTE;
kevinw@7827 833 case ztos : return T_BOOLEAN;
jrose@726 834 case ctos : return T_CHAR;
jrose@726 835 case stos : return T_SHORT;
jrose@726 836 case itos : return T_INT;
jrose@726 837 case ltos : return T_LONG;
jrose@726 838 case ftos : return T_FLOAT;
jrose@726 839 case dtos : return T_DOUBLE;
jrose@726 840 case atos : return T_OBJECT;
jrose@726 841 case vtos : return T_VOID;
jrose@726 842 }
jrose@726 843 return T_ILLEGAL;
jrose@726 844 }
jrose@726 845
duke@0 846
duke@0 847 // Helper function to convert BasicType info into TosState
duke@0 848 // Note: Cannot define here as it uses global constant at the time being.
duke@0 849 TosState as_TosState(BasicType type);
duke@0 850
duke@0 851
duke@0 852 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@0 853 // information is needed by the safepoint code.
duke@0 854 //
duke@0 855 // There are 4 essential states:
duke@0 856 //
duke@0 857 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@0 858 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@0 859 // _thread_in_vm : Executing in the vm
duke@0 860 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@0 861 //
duke@0 862 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@0 863 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@0 864 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@0 865 //
duke@0 866 // Given a state, the xxx_trans state can always be found by adding 1.
duke@0 867 //
duke@0 868 enum JavaThreadState {
duke@0 869 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@0 870 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@0 871 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@0 872 _thread_in_native = 4, // running in native code
duke@0 873 _thread_in_native_trans = 5, // corresponding transition state
duke@0 874 _thread_in_vm = 6, // running in VM
duke@0 875 _thread_in_vm_trans = 7, // corresponding transition state
duke@0 876 _thread_in_Java = 8, // running in Java or in stub code
duke@0 877 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@0 878 _thread_blocked = 10, // blocked in vm
duke@0 879 _thread_blocked_trans = 11, // corresponding transition state
duke@0 880 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@0 881 };
duke@0 882
duke@0 883
duke@0 884 // Handy constants for deciding which compiler mode to use.
duke@0 885 enum MethodCompilation {
duke@0 886 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
duke@0 887 InvalidOSREntryBci = -2
duke@0 888 };
duke@0 889
duke@0 890 // Enumeration to distinguish tiers of compilation
duke@0 891 enum CompLevel {
iveresov@1703 892 CompLevel_any = -1,
iveresov@1703 893 CompLevel_all = -1,
iveresov@1703 894 CompLevel_none = 0, // Interpreter
iveresov@1703 895 CompLevel_simple = 1, // C1
iveresov@1703 896 CompLevel_limited_profile = 2, // C1, invocation & backedge counters
iveresov@1703 897 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo
twisti@2294 898 CompLevel_full_optimization = 4, // C2 or Shark
duke@0 899
twisti@2294 900 #if defined(COMPILER2) || defined(SHARK)
iveresov@1703 901 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered
iveresov@1703 902 #elif defined(COMPILER1)
iveresov@1703 903 CompLevel_highest_tier = CompLevel_simple, // pure C1
duke@0 904 #else
iveresov@1703 905 CompLevel_highest_tier = CompLevel_none,
iveresov@1703 906 #endif
iveresov@1703 907
iveresov@1703 908 #if defined(TIERED)
iveresov@1703 909 CompLevel_initial_compile = CompLevel_full_profile // tiered
iveresov@1703 910 #elif defined(COMPILER1)
iveresov@1703 911 CompLevel_initial_compile = CompLevel_simple // pure C1
twisti@2294 912 #elif defined(COMPILER2) || defined(SHARK)
iveresov@1703 913 CompLevel_initial_compile = CompLevel_full_optimization // pure C2
iveresov@1703 914 #else
iveresov@1703 915 CompLevel_initial_compile = CompLevel_none
iveresov@1703 916 #endif
duke@0 917 };
duke@0 918
iveresov@1703 919 inline bool is_c1_compile(int comp_level) {
iveresov@1703 920 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
duke@0 921 }
iveresov@1703 922
iveresov@1703 923 inline bool is_c2_compile(int comp_level) {
duke@0 924 return comp_level == CompLevel_full_optimization;
duke@0 925 }
iveresov@1703 926
duke@0 927 inline bool is_highest_tier_compile(int comp_level) {
duke@0 928 return comp_level == CompLevel_highest_tier;
duke@0 929 }
duke@0 930
iignatyev@4473 931 inline bool is_compile(int comp_level) {
iignatyev@4473 932 return is_c1_compile(comp_level) || is_c2_compile(comp_level);
iignatyev@4473 933 }
iignatyev@4473 934
duke@0 935 //----------------------------------------------------------------------------------------------------
duke@0 936 // 'Forward' declarations of frequently used classes
duke@0 937 // (in order to reduce interface dependencies & reduce
duke@0 938 // number of unnecessary compilations after changes)
duke@0 939
duke@0 940 class symbolTable;
duke@0 941 class ClassFileStream;
duke@0 942
duke@0 943 class Event;
duke@0 944
duke@0 945 class Thread;
duke@0 946 class VMThread;
duke@0 947 class JavaThread;
duke@0 948 class Threads;
duke@0 949
duke@0 950 class VM_Operation;
duke@0 951 class VMOperationQueue;
duke@0 952
duke@0 953 class CodeBlob;
duke@0 954 class nmethod;
duke@0 955 class OSRAdapter;
duke@0 956 class I2CAdapter;
duke@0 957 class C2IAdapter;
duke@0 958 class CompiledIC;
duke@0 959 class relocInfo;
duke@0 960 class ScopeDesc;
duke@0 961 class PcDesc;
duke@0 962
duke@0 963 class Recompiler;
duke@0 964 class Recompilee;
duke@0 965 class RecompilationPolicy;
duke@0 966 class RFrame;
duke@0 967 class CompiledRFrame;
duke@0 968 class InterpretedRFrame;
duke@0 969
duke@0 970 class frame;
duke@0 971
duke@0 972 class vframe;
duke@0 973 class javaVFrame;
duke@0 974 class interpretedVFrame;
duke@0 975 class compiledVFrame;
duke@0 976 class deoptimizedVFrame;
duke@0 977 class externalVFrame;
duke@0 978 class entryVFrame;
duke@0 979
duke@0 980 class RegisterMap;
duke@0 981
duke@0 982 class Mutex;
duke@0 983 class Monitor;
duke@0 984 class BasicLock;
duke@0 985 class BasicObjectLock;
duke@0 986
duke@0 987 class PeriodicTask;
duke@0 988
duke@0 989 class JavaCallWrapper;
duke@0 990
duke@0 991 class oopDesc;
coleenp@3602 992 class metaDataOopDesc;
duke@0 993
duke@0 994 class NativeCall;
duke@0 995
duke@0 996 class zone;
duke@0 997
duke@0 998 class StubQueue;
duke@0 999
duke@0 1000 class outputStream;
duke@0 1001
duke@0 1002 class ResourceArea;
duke@0 1003
duke@0 1004 class DebugInformationRecorder;
duke@0 1005 class ScopeValue;
duke@0 1006 class CompressedStream;
duke@0 1007 class DebugInfoReadStream;
duke@0 1008 class DebugInfoWriteStream;
duke@0 1009 class LocationValue;
duke@0 1010 class ConstantValue;
duke@0 1011 class IllegalValue;
duke@0 1012
duke@0 1013 class PrivilegedElement;
duke@0 1014 class MonitorArray;
duke@0 1015
duke@0 1016 class MonitorInfo;
duke@0 1017
duke@0 1018 class OffsetClosure;
duke@0 1019 class OopMapCache;
duke@0 1020 class InterpreterOopMap;
duke@0 1021 class OopMapCacheEntry;
duke@0 1022 class OSThread;
duke@0 1023
duke@0 1024 typedef int (*OSThreadStartFunc)(void*);
duke@0 1025
duke@0 1026 class Space;
duke@0 1027
duke@0 1028 class JavaValue;
duke@0 1029 class methodHandle;
duke@0 1030 class JavaCallArguments;
duke@0 1031
duke@0 1032 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@0 1033
duke@0 1034 extern void basic_fatal(const char* msg);
duke@0 1035
duke@0 1036
duke@0 1037 //----------------------------------------------------------------------------------------------------
duke@0 1038 // Special constants for debugging
duke@0 1039
duke@0 1040 const jint badInt = -3; // generic "bad int" value
kevinw@8851 1041 const intptr_t badAddressVal = -2; // generic "bad address" value
kevinw@8851 1042 const intptr_t badOopVal = -1; // generic "bad oop" value
duke@0 1043 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@0 1044 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@0 1045 const int badResourceValue = 0xAB; // value used to zap resource area
duke@0 1046 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@0 1047 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
duke@0 1048 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@0 1049 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
coleenp@3602 1050 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
duke@0 1051 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@0 1052 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@0 1053
duke@0 1054
duke@0 1055 // (These must be implemented as #defines because C++ compilers are
duke@0 1056 // not obligated to inline non-integral constants!)
duke@0 1057 #define badAddress ((address)::badAddressVal)
hseigel@5349 1058 #define badOop (cast_to_oop(::badOopVal))
duke@0 1059 #define badHeapWord (::badHeapWordVal)
hseigel@5349 1060 #define badJNIHandle (cast_to_oop(::badJNIHandleVal))
duke@0 1061
jcoomes@1311 1062 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
jcoomes@1311 1063 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
duke@0 1064
duke@0 1065 //----------------------------------------------------------------------------------------------------
duke@0 1066 // Utility functions for bitfield manipulations
duke@0 1067
duke@0 1068 const intptr_t AllBits = ~0; // all bits set in a word
duke@0 1069 const intptr_t NoBits = 0; // no bits set in a word
duke@0 1070 const jlong NoLongBits = 0; // no bits set in a long
duke@0 1071 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@0 1072
duke@0 1073 // get a word with the n.th or the right-most or left-most n bits set
duke@0 1074 // (note: #define used only so that they can be used in enum constant definitions)
duke@0 1075 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
duke@0 1076 #define right_n_bits(n) (nth_bit(n) - 1)
duke@0 1077 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
duke@0 1078
duke@0 1079 // bit-operations using a mask m
duke@0 1080 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@0 1081 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@0 1082 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@0 1083 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@0 1084 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@0 1085
duke@0 1086 // bit-operations using the n.th bit
duke@0 1087 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@0 1088 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@0 1089 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@0 1090
duke@0 1091 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@0 1092 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@0 1093 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@0 1094 }
duke@0 1095
duke@0 1096
duke@0 1097 //----------------------------------------------------------------------------------------------------
duke@0 1098 // Utility functions for integers
duke@0 1099
duke@0 1100 // Avoid use of global min/max macros which may cause unwanted double
duke@0 1101 // evaluation of arguments.
duke@0 1102 #ifdef max
duke@0 1103 #undef max
duke@0 1104 #endif
duke@0 1105
duke@0 1106 #ifdef min
duke@0 1107 #undef min
duke@0 1108 #endif
duke@0 1109
duke@0 1110 #define max(a,b) Do_not_use_max_use_MAX2_instead
duke@0 1111 #define min(a,b) Do_not_use_min_use_MIN2_instead
duke@0 1112
duke@0 1113 // It is necessary to use templates here. Having normal overloaded
duke@0 1114 // functions does not work because it is necessary to provide both 32-
duke@0 1115 // and 64-bit overloaded functions, which does not work, and having
duke@0 1116 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@0 1117 // will be even more error-prone than macros.
duke@0 1118 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@0 1119 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@0 1120 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@0 1121 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@0 1122 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@0 1123 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@0 1124
duke@0 1125 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@0 1126
duke@0 1127 // true if x is a power of 2, false otherwise
duke@0 1128 inline bool is_power_of_2(intptr_t x) {
duke@0 1129 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@0 1130 }
duke@0 1131
duke@0 1132 // long version of is_power_of_2
duke@0 1133 inline bool is_power_of_2_long(jlong x) {
duke@0 1134 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@0 1135 }
duke@0 1136
duke@0 1137 //* largest i such that 2^i <= x
duke@0 1138 // A negative value of 'x' will return '31'
roland@9043 1139 inline int log2_intptr(uintptr_t x) {
duke@0 1140 int i = -1;
duke@0 1141 uintptr_t p = 1;
roland@9043 1142 while (p != 0 && p <= x) {
duke@0 1143 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@0 1144 i++; p *= 2;
duke@0 1145 }
duke@0 1146 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@605 1147 // (if p = 0 then overflow occurred and i = 31)
duke@0 1148 return i;
duke@0 1149 }
duke@0 1150
duke@0 1151 //* largest i such that 2^i <= x
roland@9044 1152 inline int log2_long(julong x) {
duke@0 1153 int i = -1;
duke@0 1154 julong p = 1;
roland@9043 1155 while (p != 0 && p <= x) {
duke@0 1156 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@0 1157 i++; p *= 2;
duke@0 1158 }
duke@0 1159 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@605 1160 // (if p = 0 then overflow occurred and i = 63)
duke@0 1161 return i;
duke@0 1162 }
duke@0 1163
roland@9043 1164 inline int log2_intptr(intptr_t x) {
roland@9043 1165 return log2_intptr((uintptr_t)x);
roland@9043 1166 }
roland@9043 1167
roland@9044 1168 inline int log2_int(int x) {
roland@9043 1169 return log2_intptr((uintptr_t)x);
roland@9043 1170 }
roland@9043 1171
roland@9044 1172 inline int log2_jint(jint x) {
roland@9043 1173 return log2_intptr((uintptr_t)x);
roland@9043 1174 }
roland@9043 1175
roland@9044 1176 inline int log2_uint(uint x) {
roland@9044 1177 return log2_intptr((uintptr_t)x);
roland@9044 1178 }
roland@9044 1179
roland@9044 1180 // A negative value of 'x' will return '63'
roland@9044 1181 inline int log2_jlong(jlong x) {
roland@9044 1182 return log2_long((julong)x);
roland@9043 1183 }
roland@9043 1184
duke@0 1185 //* the argument must be exactly a power of 2
duke@0 1186 inline int exact_log2(intptr_t x) {
duke@0 1187 #ifdef ASSERT
duke@0 1188 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@0 1189 #endif
duke@0 1190 return log2_intptr(x);
duke@0 1191 }
duke@0 1192
twisti@568 1193 //* the argument must be exactly a power of 2
twisti@568 1194 inline int exact_log2_long(jlong x) {
twisti@568 1195 #ifdef ASSERT
twisti@568 1196 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@568 1197 #endif
twisti@568 1198 return log2_long(x);
twisti@568 1199 }
twisti@568 1200
duke@0 1201
duke@0 1202 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@0 1203 inline intptr_t round_to(intptr_t x, uintx s) {
duke@0 1204 #ifdef ASSERT
duke@0 1205 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@0 1206 #endif
duke@0 1207 const uintx m = s - 1;
duke@0 1208 return mask_bits(x + m, ~m);
duke@0 1209 }
duke@0 1210
duke@0 1211 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@0 1212 inline intptr_t round_down(intptr_t x, uintx s) {
duke@0 1213 #ifdef ASSERT
duke@0 1214 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@0 1215 #endif
duke@0 1216 const uintx m = s - 1;
duke@0 1217 return mask_bits(x, ~m);
duke@0 1218 }
duke@0 1219
duke@0 1220
duke@0 1221 inline bool is_odd (intx x) { return x & 1; }
duke@0 1222 inline bool is_even(intx x) { return !is_odd(x); }
duke@0 1223
roland@9043 1224 // abs methods which cannot overflow and so are well-defined across
roland@9043 1225 // the entire domain of integer types.
roland@9043 1226 static inline unsigned int uabs(unsigned int n) {
roland@9043 1227 union {
roland@9043 1228 unsigned int result;
roland@9043 1229 int value;
roland@9043 1230 };
roland@9043 1231 result = n;
roland@9043 1232 if (value < 0) result = 0-result;
roland@9043 1233 return result;
roland@9043 1234 }
roland@9043 1235 static inline unsigned long uabs(unsigned long n) {
roland@9043 1236 union {
roland@9043 1237 unsigned long result;
roland@9043 1238 long value;
roland@9043 1239 };
roland@9043 1240 result = n;
roland@9043 1241 if (value < 0) result = 0-result;
roland@9043 1242 return result;
roland@9043 1243 }
roland@9043 1244 static inline unsigned long uabs(jlong n) { return uabs((unsigned long)n); }
roland@9043 1245 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
roland@9043 1246
duke@0 1247 // "to" should be greater than "from."
duke@0 1248 inline intx byte_size(void* from, void* to) {
duke@0 1249 return (address)to - (address)from;
duke@0 1250 }
duke@0 1251
duke@0 1252 //----------------------------------------------------------------------------------------------------
duke@0 1253 // Avoid non-portable casts with these routines (DEPRECATED)
duke@0 1254
duke@0 1255 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@0 1256 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@0 1257
duke@0 1258 // Given sequence of four bytes, build into a 32-bit word
duke@0 1259 // following the conventions used in class files.
duke@0 1260 // On the 386, this could be realized with a simple address cast.
duke@0 1261 //
duke@0 1262
duke@0 1263 // This routine takes eight bytes:
duke@0 1264 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@1709 1265 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
twisti@1709 1266 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
twisti@1709 1267 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
twisti@1709 1268 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
twisti@1709 1269 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
twisti@1709 1270 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
twisti@1709 1271 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
twisti@1709 1272 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
duke@0 1273 }
duke@0 1274
duke@0 1275 // This routine takes four bytes:
duke@0 1276 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
twisti@1709 1277 return (( u4(c1) << 24 ) & 0xff000000)
twisti@1709 1278 | (( u4(c2) << 16 ) & 0x00ff0000)
twisti@1709 1279 | (( u4(c3) << 8 ) & 0x0000ff00)
twisti@1709 1280 | (( u4(c4) << 0 ) & 0x000000ff);
duke@0 1281 }
duke@0 1282
duke@0 1283 // And this one works if the four bytes are contiguous in memory:
duke@0 1284 inline u4 build_u4_from( u1* p ) {
duke@0 1285 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@0 1286 }
duke@0 1287
duke@0 1288 // Ditto for two-byte ints:
duke@0 1289 inline u2 build_u2_from( u1 c1, u1 c2 ) {
twisti@1709 1290 return u2((( u2(c1) << 8 ) & 0xff00)
twisti@1709 1291 | (( u2(c2) << 0 ) & 0x00ff));
duke@0 1292 }
duke@0 1293
duke@0 1294 // And this one works if the two bytes are contiguous in memory:
duke@0 1295 inline u2 build_u2_from( u1* p ) {
duke@0 1296 return build_u2_from( p[0], p[1] );
duke@0 1297 }
duke@0 1298
duke@0 1299 // Ditto for floats:
duke@0 1300 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@0 1301 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@0 1302 return *(jfloat*)&u;
duke@0 1303 }
duke@0 1304
duke@0 1305 inline jfloat build_float_from( u1* p ) {
duke@0 1306 u4 u = build_u4_from( p );
duke@0 1307 return *(jfloat*)&u;
duke@0 1308 }
duke@0 1309
duke@0 1310
duke@0 1311 // now (64-bit) longs
duke@0 1312
duke@0 1313 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@1709 1314 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
twisti@1709 1315 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
twisti@1709 1316 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
twisti@1709 1317 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
twisti@1709 1318 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
twisti@1709 1319 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
twisti@1709 1320 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
twisti@1709 1321 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
duke@0 1322 }
duke@0 1323
duke@0 1324 inline jlong build_long_from( u1* p ) {
duke@0 1325 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@0 1326 }
duke@0 1327
duke@0 1328
duke@0 1329 // Doubles, too!
duke@0 1330 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@0 1331 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@0 1332 return *(jdouble*)&u;
duke@0 1333 }
duke@0 1334
duke@0 1335 inline jdouble build_double_from( u1* p ) {
duke@0 1336 jlong u = build_long_from( p );
duke@0 1337 return *(jdouble*)&u;
duke@0 1338 }
duke@0 1339
duke@0 1340
duke@0 1341 // Portable routines to go the other way:
duke@0 1342
duke@0 1343 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@0 1344 c1 = u1(x >> 8);
duke@0 1345 c2 = u1(x);
duke@0 1346 }
duke@0 1347
duke@0 1348 inline void explode_short_to( u2 x, u1* p ) {
duke@0 1349 explode_short_to( x, p[0], p[1]);
duke@0 1350 }
duke@0 1351
duke@0 1352 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@0 1353 c1 = u1(x >> 24);
duke@0 1354 c2 = u1(x >> 16);
duke@0 1355 c3 = u1(x >> 8);
duke@0 1356 c4 = u1(x);
duke@0 1357 }
duke@0 1358
duke@0 1359 inline void explode_int_to( u4 x, u1* p ) {
duke@0 1360 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@0 1361 }
duke@0 1362
duke@0 1363
duke@0 1364 // Pack and extract shorts to/from ints:
duke@0 1365
duke@0 1366 inline int extract_low_short_from_int(jint x) {
duke@0 1367 return x & 0xffff;
duke@0 1368 }
duke@0 1369
duke@0 1370 inline int extract_high_short_from_int(jint x) {
duke@0 1371 return (x >> 16) & 0xffff;
duke@0 1372 }
duke@0 1373
duke@0 1374 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@0 1375 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@0 1376 }
duke@0 1377
drchase@6245 1378 // Convert pointer to intptr_t, for use in printing pointers.
drchase@6245 1379 inline intptr_t p2i(const void * p) {
drchase@6245 1380 return (intptr_t) p;
drchase@6245 1381 }
drchase@6245 1382
duke@0 1383 // Printf-style formatters for fixed- and variable-width types as pointers and
never@2721 1384 // integers. These are derived from the definitions in inttypes.h. If the platform
never@2721 1385 // doesn't provide appropriate definitions, they should be provided in
never@2721 1386 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@0 1387
tonyp@2208 1388 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
tonyp@2037 1389
duke@0 1390 // Format 32-bit quantities.
never@2721 1391 #define INT32_FORMAT "%" PRId32
never@2721 1392 #define UINT32_FORMAT "%" PRIu32
never@2721 1393 #define INT32_FORMAT_W(width) "%" #width PRId32
never@2721 1394 #define UINT32_FORMAT_W(width) "%" #width PRIu32
duke@0 1395
never@2721 1396 #define PTR32_FORMAT "0x%08" PRIx32
duke@0 1397
duke@0 1398 // Format 64-bit quantities.
never@2721 1399 #define INT64_FORMAT "%" PRId64
never@2721 1400 #define UINT64_FORMAT "%" PRIu64
drchase@6245 1401 #define UINT64_FORMAT_X "%" PRIx64
never@2721 1402 #define INT64_FORMAT_W(width) "%" #width PRId64
never@2721 1403 #define UINT64_FORMAT_W(width) "%" #width PRIu64
duke@0 1404
never@2721 1405 #define PTR64_FORMAT "0x%016" PRIx64
duke@0 1406
hseigel@4030 1407 // Format jlong, if necessary
hseigel@4030 1408 #ifndef JLONG_FORMAT
hseigel@4030 1409 #define JLONG_FORMAT INT64_FORMAT
hseigel@4030 1410 #endif
hseigel@4030 1411 #ifndef JULONG_FORMAT
hseigel@4030 1412 #define JULONG_FORMAT UINT64_FORMAT
hseigel@4030 1413 #endif
hseigel@4030 1414
never@2721 1415 // Format pointers which change size between 32- and 64-bit.
duke@0 1416 #ifdef _LP64
never@2721 1417 #define INTPTR_FORMAT "0x%016" PRIxPTR
never@2721 1418 #define PTR_FORMAT "0x%016" PRIxPTR
duke@0 1419 #else // !_LP64
never@2721 1420 #define INTPTR_FORMAT "0x%08" PRIxPTR
never@2721 1421 #define PTR_FORMAT "0x%08" PRIxPTR
duke@0 1422 #endif // _LP64
duke@0 1423
drchase@6245 1424 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR
drchase@6245 1425
drchase@6245 1426 #define SSIZE_FORMAT "%" PRIdPTR
drchase@6245 1427 #define SIZE_FORMAT "%" PRIuPTR
drchase@6245 1428 #define SIZE_FORMAT_HEX "0x%" PRIxPTR
drchase@6245 1429 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
drchase@6245 1430 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR
drchase@6245 1431 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
never@2721 1432
never@2721 1433 #define INTX_FORMAT "%" PRIdPTR
never@2721 1434 #define UINTX_FORMAT "%" PRIuPTR
never@2721 1435 #define INTX_FORMAT_W(width) "%" #width PRIdPTR
never@2721 1436 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
never@2721 1437
duke@0 1438
duke@0 1439 // Enable zap-a-lot if in debug version.
duke@0 1440
duke@0 1441 # ifdef ASSERT
duke@0 1442 # ifdef COMPILER2
duke@0 1443 # define ENABLE_ZAP_DEAD_LOCALS
duke@0 1444 #endif /* COMPILER2 */
duke@0 1445 # endif /* ASSERT */
duke@0 1446
duke@0 1447 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
stefank@1879 1448
aph@9040 1449 //----------------------------------------------------------------------------------------------------
aph@9040 1450 // Sum and product which can never overflow: they wrap, just like the
aph@9040 1451 // Java operations. Note that we don't intend these to be used for
aph@9040 1452 // general-purpose arithmetic: their purpose is to emulate Java
aph@9040 1453 // operations.
aph@9040 1454
aph@9040 1455 // The goal of this code to avoid undefined or implementation-defined
aph@9040 1456 // behaviour. The use of an lvalue to reference cast is explicitly
aph@9040 1457 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para
aph@9040 1458 // 15 in C++03]
aph@9040 1459 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \
aph@9040 1460 inline TYPE NAME (TYPE in1, TYPE in2) { \
aph@9040 1461 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
aph@9040 1462 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \
aph@9040 1463 return reinterpret_cast<TYPE&>(ures); \
aph@9040 1464 }
aph@9040 1465
aph@9040 1466 JAVA_INTEGER_OP(+, java_add, jint, juint)
aph@9040 1467 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
aph@9040 1468 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
aph@9040 1469 JAVA_INTEGER_OP(+, java_add, jlong, julong)
aph@9040 1470 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
aph@9040 1471 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
aph@9040 1472
aph@9040 1473 #undef JAVA_INTEGER_OP
aph@9040 1474
coleenp@3860 1475 // Dereference vptr
coleenp@3860 1476 // All C++ compilers that we know of have the vtbl pointer in the first
coleenp@3860 1477 // word. If there are exceptions, this function needs to be made compiler
coleenp@3860 1478 // specific.
coleenp@6243 1479 static inline void* dereference_vptr(const void* addr) {
coleenp@3860 1480 return *(void**)addr;
coleenp@3860 1481 }
coleenp@3860 1482
mikael@4454 1483 #ifndef PRODUCT
mikael@4454 1484
mikael@4454 1485 // For unit testing only
mikael@4454 1486 class GlobalDefinitions {
mikael@4454 1487 public:
mikael@4454 1488 static void test_globals();
mikael@4454 1489 };
mikael@4454 1490
mikael@4454 1491 #endif // PRODUCT
mikael@4454 1492
stefank@1879 1493 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP