view src/share/vm/opto/callGenerator.cpp @ 6051:b0133e4187d3

8028471: PPC64 (part 215): opto: Extend ImplicitNullCheck optimization. Summary: Fixed Implicit NULL check optimization for AIX, where the page at address '0' is only write-protected. Reviewed-by: kvn
author goetz
date Thu, 21 Nov 2013 18:29:34 -0800
parents e74074c34312
children a9becfeecd1b
line wrap: on
line source
/*
 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "ci/bcEscapeAnalyzer.hpp"
#include "ci/ciCallSite.hpp"
#include "ci/ciObjArray.hpp"
#include "ci/ciMemberName.hpp"
#include "ci/ciMethodHandle.hpp"
#include "classfile/javaClasses.hpp"
#include "compiler/compileLog.hpp"
#include "opto/addnode.hpp"
#include "opto/callGenerator.hpp"
#include "opto/callnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/connode.hpp"
#include "opto/parse.hpp"
#include "opto/rootnode.hpp"
#include "opto/runtime.hpp"
#include "opto/subnode.hpp"


// Utility function.
const TypeFunc* CallGenerator::tf() const {
  return TypeFunc::make(method());
}

//-----------------------------ParseGenerator---------------------------------
// Internal class which handles all direct bytecode traversal.
class ParseGenerator : public InlineCallGenerator {
private:
  bool  _is_osr;
  float _expected_uses;

public:
  ParseGenerator(ciMethod* method, float expected_uses, bool is_osr = false)
    : InlineCallGenerator(method)
  {
    _is_osr        = is_osr;
    _expected_uses = expected_uses;
    assert(InlineTree::check_can_parse(method) == NULL, "parse must be possible");
  }

  virtual bool      is_parse() const           { return true; }
  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
  int is_osr() { return _is_osr; }

};

JVMState* ParseGenerator::generate(JVMState* jvms, Parse* parent_parser) {
  Compile* C = Compile::current();

  if (is_osr()) {
    // The JVMS for a OSR has a single argument (see its TypeFunc).
    assert(jvms->depth() == 1, "no inline OSR");
  }

  if (C->failing()) {
    return NULL;  // bailing out of the compile; do not try to parse
  }

  Parse parser(jvms, method(), _expected_uses, parent_parser);
  // Grab signature for matching/allocation
#ifdef ASSERT
  if (parser.tf() != (parser.depth() == 1 ? C->tf() : tf())) {
    MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
    assert(C->env()->system_dictionary_modification_counter_changed(),
           "Must invalidate if TypeFuncs differ");
  }
#endif

  GraphKit& exits = parser.exits();

  if (C->failing()) {
    while (exits.pop_exception_state() != NULL) ;
    return NULL;
  }

  assert(exits.jvms()->same_calls_as(jvms), "sanity");

  // Simply return the exit state of the parser,
  // augmented by any exceptional states.
  return exits.transfer_exceptions_into_jvms();
}

//---------------------------DirectCallGenerator------------------------------
// Internal class which handles all out-of-line calls w/o receiver type checks.
class DirectCallGenerator : public CallGenerator {
 private:
  CallStaticJavaNode* _call_node;
  // Force separate memory and I/O projections for the exceptional
  // paths to facilitate late inlinig.
  bool                _separate_io_proj;

 public:
  DirectCallGenerator(ciMethod* method, bool separate_io_proj)
    : CallGenerator(method),
      _separate_io_proj(separate_io_proj)
  {
  }
  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);

  CallStaticJavaNode* call_node() const { return _call_node; }
};

JVMState* DirectCallGenerator::generate(JVMState* jvms, Parse* parent_parser) {
  GraphKit kit(jvms);
  bool is_static = method()->is_static();
  address target = is_static ? SharedRuntime::get_resolve_static_call_stub()
                             : SharedRuntime::get_resolve_opt_virtual_call_stub();

  if (kit.C->log() != NULL) {
    kit.C->log()->elem("direct_call bci='%d'", jvms->bci());
  }

  CallStaticJavaNode *call = new (kit.C) CallStaticJavaNode(kit.C, tf(), target, method(), kit.bci());
  _call_node = call;  // Save the call node in case we need it later
  if (!is_static) {
    // Make an explicit receiver null_check as part of this call.
    // Since we share a map with the caller, his JVMS gets adjusted.
    kit.null_check_receiver_before_call(method());
    if (kit.stopped()) {
      // And dump it back to the caller, decorated with any exceptions:
      return kit.transfer_exceptions_into_jvms();
    }
    // Mark the call node as virtual, sort of:
    call->set_optimized_virtual(true);
    if (method()->is_method_handle_intrinsic() ||
        method()->is_compiled_lambda_form()) {
      call->set_method_handle_invoke(true);
    }
  }
  kit.set_arguments_for_java_call(call);
  kit.set_edges_for_java_call(call, false, _separate_io_proj);
  Node* ret = kit.set_results_for_java_call(call, _separate_io_proj);
  kit.push_node(method()->return_type()->basic_type(), ret);
  return kit.transfer_exceptions_into_jvms();
}

//--------------------------VirtualCallGenerator------------------------------
// Internal class which handles all out-of-line calls checking receiver type.
class VirtualCallGenerator : public CallGenerator {
private:
  int _vtable_index;
public:
  VirtualCallGenerator(ciMethod* method, int vtable_index)
    : CallGenerator(method), _vtable_index(vtable_index)
  {
    assert(vtable_index == Method::invalid_vtable_index ||
           vtable_index >= 0, "either invalid or usable");
  }
  virtual bool      is_virtual() const          { return true; }
  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
};

JVMState* VirtualCallGenerator::generate(JVMState* jvms, Parse* parent_parser) {
  GraphKit kit(jvms);
  Node* receiver = kit.argument(0);

  if (kit.C->log() != NULL) {
    kit.C->log()->elem("virtual_call bci='%d'", jvms->bci());
  }

  // If the receiver is a constant null, do not torture the system
  // by attempting to call through it.  The compile will proceed
  // correctly, but may bail out in final_graph_reshaping, because
  // the call instruction will have a seemingly deficient out-count.
  // (The bailout says something misleading about an "infinite loop".)
  if (kit.gvn().type(receiver)->higher_equal(TypePtr::NULL_PTR)) {
    kit.inc_sp(method()->arg_size());  // restore arguments
    kit.uncommon_trap(Deoptimization::Reason_null_check,
                      Deoptimization::Action_none,
                      NULL, "null receiver");
    return kit.transfer_exceptions_into_jvms();
  }

  // Ideally we would unconditionally do a null check here and let it
  // be converted to an implicit check based on profile information.
  // However currently the conversion to implicit null checks in
  // Block::implicit_null_check() only looks for loads and stores, not calls.
  ciMethod *caller = kit.method();
  ciMethodData *caller_md = (caller == NULL) ? NULL : caller->method_data();
  if (!UseInlineCaches || !ImplicitNullChecks || !os::zero_page_read_protected() ||
       ((ImplicitNullCheckThreshold > 0) && caller_md &&
       (caller_md->trap_count(Deoptimization::Reason_null_check)
       >= (uint)ImplicitNullCheckThreshold))) {
    // Make an explicit receiver null_check as part of this call.
    // Since we share a map with the caller, his JVMS gets adjusted.
    receiver = kit.null_check_receiver_before_call(method());
    if (kit.stopped()) {
      // And dump it back to the caller, decorated with any exceptions:
      return kit.transfer_exceptions_into_jvms();
    }
  }

  assert(!method()->is_static(), "virtual call must not be to static");
  assert(!method()->is_final(), "virtual call should not be to final");
  assert(!method()->is_private(), "virtual call should not be to private");
  assert(_vtable_index == Method::invalid_vtable_index || !UseInlineCaches,
         "no vtable calls if +UseInlineCaches ");
  address target = SharedRuntime::get_resolve_virtual_call_stub();
  // Normal inline cache used for call
  CallDynamicJavaNode *call = new (kit.C) CallDynamicJavaNode(tf(), target, method(), _vtable_index, kit.bci());
  kit.set_arguments_for_java_call(call);
  kit.set_edges_for_java_call(call);
  Node* ret = kit.set_results_for_java_call(call);
  kit.push_node(method()->return_type()->basic_type(), ret);

  // Represent the effect of an implicit receiver null_check
  // as part of this call.  Since we share a map with the caller,
  // his JVMS gets adjusted.
  kit.cast_not_null(receiver);
  return kit.transfer_exceptions_into_jvms();
}

CallGenerator* CallGenerator::for_inline(ciMethod* m, float expected_uses) {
  if (InlineTree::check_can_parse(m) != NULL)  return NULL;
  return new ParseGenerator(m, expected_uses);
}

// As a special case, the JVMS passed to this CallGenerator is
// for the method execution already in progress, not just the JVMS
// of the caller.  Thus, this CallGenerator cannot be mixed with others!
CallGenerator* CallGenerator::for_osr(ciMethod* m, int osr_bci) {
  if (InlineTree::check_can_parse(m) != NULL)  return NULL;
  float past_uses = m->interpreter_invocation_count();
  float expected_uses = past_uses;
  return new ParseGenerator(m, expected_uses, true);
}

CallGenerator* CallGenerator::for_direct_call(ciMethod* m, bool separate_io_proj) {
  assert(!m->is_abstract(), "for_direct_call mismatch");
  return new DirectCallGenerator(m, separate_io_proj);
}

CallGenerator* CallGenerator::for_virtual_call(ciMethod* m, int vtable_index) {
  assert(!m->is_static(), "for_virtual_call mismatch");
  assert(!m->is_method_handle_intrinsic(), "should be a direct call");
  return new VirtualCallGenerator(m, vtable_index);
}

// Allow inlining decisions to be delayed
class LateInlineCallGenerator : public DirectCallGenerator {
 protected:
  CallGenerator* _inline_cg;

  virtual bool do_late_inline_check(JVMState* jvms) { return true; }

 public:
  LateInlineCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
    DirectCallGenerator(method, true), _inline_cg(inline_cg) {}

  virtual bool      is_late_inline() const { return true; }

  // Convert the CallStaticJava into an inline
  virtual void do_late_inline();

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser) {
    Compile *C = Compile::current();
    C->print_inlining_skip(this);

    // Record that this call site should be revisited once the main
    // parse is finished.
    if (!is_mh_late_inline()) {
      C->add_late_inline(this);
    }

    // Emit the CallStaticJava and request separate projections so
    // that the late inlining logic can distinguish between fall
    // through and exceptional uses of the memory and io projections
    // as is done for allocations and macro expansion.
    return DirectCallGenerator::generate(jvms, parent_parser);
  }

  virtual void print_inlining_late(const char* msg) {
    CallNode* call = call_node();
    Compile* C = Compile::current();
    C->print_inlining_insert(this);
    C->print_inlining(method(), call->jvms()->depth()-1, call->jvms()->bci(), msg);
  }

};

void LateInlineCallGenerator::do_late_inline() {
  // Can't inline it
  CallStaticJavaNode* call = call_node();
  if (call == NULL || call->outcnt() == 0 ||
      call->in(0) == NULL || call->in(0)->is_top()) {
    return;
  }

  const TypeTuple *r = call->tf()->domain();
  for (int i1 = 0; i1 < method()->arg_size(); i1++) {
    if (call->in(TypeFunc::Parms + i1)->is_top() && r->field_at(TypeFunc::Parms + i1) != Type::HALF) {
      assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing");
      return;
    }
  }

  if (call->in(TypeFunc::Memory)->is_top()) {
    assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing");
    return;
  }

  Compile* C = Compile::current();
  // Remove inlined methods from Compiler's lists.
  if (call->is_macro()) {
    C->remove_macro_node(call);
  }

  // Make a clone of the JVMState that appropriate to use for driving a parse
  JVMState* old_jvms = call->jvms();
  JVMState* jvms = old_jvms->clone_shallow(C);
  uint size = call->req();
  SafePointNode* map = new (C) SafePointNode(size, jvms);
  for (uint i1 = 0; i1 < size; i1++) {
    map->init_req(i1, call->in(i1));
  }

  // Make sure the state is a MergeMem for parsing.
  if (!map->in(TypeFunc::Memory)->is_MergeMem()) {
    Node* mem = MergeMemNode::make(C, map->in(TypeFunc::Memory));
    C->initial_gvn()->set_type_bottom(mem);
    map->set_req(TypeFunc::Memory, mem);
  }

  uint nargs = method()->arg_size();
  // blow away old call arguments
  Node* top = C->top();
  for (uint i1 = 0; i1 < nargs; i1++) {
    map->set_req(TypeFunc::Parms + i1, top);
  }
  jvms->set_map(map);

  // Make enough space in the expression stack to transfer
  // the incoming arguments and return value.
  map->ensure_stack(jvms, jvms->method()->max_stack());
  for (uint i1 = 0; i1 < nargs; i1++) {
    map->set_argument(jvms, i1, call->in(TypeFunc::Parms + i1));
  }

  // This check is done here because for_method_handle_inline() method
  // needs jvms for inlined state.
  if (!do_late_inline_check(jvms)) {
    map->disconnect_inputs(NULL, C);
    return;
  }

  C->print_inlining_insert(this);

  CompileLog* log = C->log();
  if (log != NULL) {
    log->head("late_inline method='%d'", log->identify(method()));
    JVMState* p = jvms;
    while (p != NULL) {
      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
      p = p->caller();
    }
    log->tail("late_inline");
  }

  // Setup default node notes to be picked up by the inlining
  Node_Notes* old_nn = C->default_node_notes();
  if (old_nn != NULL) {
    Node_Notes* entry_nn = old_nn->clone(C);
    entry_nn->set_jvms(jvms);
    C->set_default_node_notes(entry_nn);
  }

  // Now perform the inling using the synthesized JVMState
  JVMState* new_jvms = _inline_cg->generate(jvms, NULL);
  if (new_jvms == NULL)  return;  // no change
  if (C->failing())      return;

  // Capture any exceptional control flow
  GraphKit kit(new_jvms);

  // Find the result object
  Node* result = C->top();
  int   result_size = method()->return_type()->size();
  if (result_size != 0 && !kit.stopped()) {
    result = (result_size == 1) ? kit.pop() : kit.pop_pair();
  }

  C->set_has_loops(C->has_loops() || _inline_cg->method()->has_loops());
  C->env()->notice_inlined_method(_inline_cg->method());
  C->set_inlining_progress(true);

  kit.replace_call(call, result);
}


CallGenerator* CallGenerator::for_late_inline(ciMethod* method, CallGenerator* inline_cg) {
  return new LateInlineCallGenerator(method, inline_cg);
}

class LateInlineMHCallGenerator : public LateInlineCallGenerator {
  ciMethod* _caller;
  int _attempt;
  bool _input_not_const;

  virtual bool do_late_inline_check(JVMState* jvms);
  virtual bool already_attempted() const { return _attempt > 0; }

 public:
  LateInlineMHCallGenerator(ciMethod* caller, ciMethod* callee, bool input_not_const) :
    LateInlineCallGenerator(callee, NULL), _caller(caller), _attempt(0), _input_not_const(input_not_const) {}

  virtual bool is_mh_late_inline() const { return true; }

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser) {
    JVMState* new_jvms = LateInlineCallGenerator::generate(jvms, parent_parser);
    if (_input_not_const) {
      // inlining won't be possible so no need to enqueue right now.
      call_node()->set_generator(this);
    } else {
      Compile::current()->add_late_inline(this);
    }
    return new_jvms;
  }

  virtual void print_inlining_late(const char* msg) {
    if (!_input_not_const) return;
    LateInlineCallGenerator::print_inlining_late(msg);
  }
};

bool LateInlineMHCallGenerator::do_late_inline_check(JVMState* jvms) {

  CallGenerator* cg = for_method_handle_inline(jvms, _caller, method(), _input_not_const);

  if (!_input_not_const) {
    _attempt++;
  }

  if (cg != NULL) {
    assert(!cg->is_late_inline() && cg->is_inline(), "we're doing late inlining");
    _inline_cg = cg;
    Compile::current()->dec_number_of_mh_late_inlines();
    return true;
  }

  call_node()->set_generator(this);
  return false;
}

CallGenerator* CallGenerator::for_mh_late_inline(ciMethod* caller, ciMethod* callee, bool input_not_const) {
  Compile::current()->inc_number_of_mh_late_inlines();
  CallGenerator* cg = new LateInlineMHCallGenerator(caller, callee, input_not_const);
  return cg;
}

class LateInlineStringCallGenerator : public LateInlineCallGenerator {

 public:
  LateInlineStringCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
    LateInlineCallGenerator(method, inline_cg) {}

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser) {
    Compile *C = Compile::current();
    C->print_inlining_skip(this);

    C->add_string_late_inline(this);

    JVMState* new_jvms =  DirectCallGenerator::generate(jvms, parent_parser);
    return new_jvms;
  }

  virtual bool is_string_late_inline() const { return true; }
};

CallGenerator* CallGenerator::for_string_late_inline(ciMethod* method, CallGenerator* inline_cg) {
  return new LateInlineStringCallGenerator(method, inline_cg);
}

class LateInlineBoxingCallGenerator : public LateInlineCallGenerator {

 public:
  LateInlineBoxingCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
    LateInlineCallGenerator(method, inline_cg) {}

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser) {
    Compile *C = Compile::current();
    C->print_inlining_skip(this);

    C->add_boxing_late_inline(this);

    JVMState* new_jvms =  DirectCallGenerator::generate(jvms, parent_parser);
    return new_jvms;
  }
};

CallGenerator* CallGenerator::for_boxing_late_inline(ciMethod* method, CallGenerator* inline_cg) {
  return new LateInlineBoxingCallGenerator(method, inline_cg);
}

//---------------------------WarmCallGenerator--------------------------------
// Internal class which handles initial deferral of inlining decisions.
class WarmCallGenerator : public CallGenerator {
  WarmCallInfo*   _call_info;
  CallGenerator*  _if_cold;
  CallGenerator*  _if_hot;
  bool            _is_virtual;   // caches virtuality of if_cold
  bool            _is_inline;    // caches inline-ness of if_hot

public:
  WarmCallGenerator(WarmCallInfo* ci,
                    CallGenerator* if_cold,
                    CallGenerator* if_hot)
    : CallGenerator(if_cold->method())
  {
    assert(method() == if_hot->method(), "consistent choices");
    _call_info  = ci;
    _if_cold    = if_cold;
    _if_hot     = if_hot;
    _is_virtual = if_cold->is_virtual();
    _is_inline  = if_hot->is_inline();
  }

  virtual bool      is_inline() const           { return _is_inline; }
  virtual bool      is_virtual() const          { return _is_virtual; }
  virtual bool      is_deferred() const         { return true; }

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
};


CallGenerator* CallGenerator::for_warm_call(WarmCallInfo* ci,
                                            CallGenerator* if_cold,
                                            CallGenerator* if_hot) {
  return new WarmCallGenerator(ci, if_cold, if_hot);
}

JVMState* WarmCallGenerator::generate(JVMState* jvms, Parse* parent_parser) {
  Compile* C = Compile::current();
  if (C->log() != NULL) {
    C->log()->elem("warm_call bci='%d'", jvms->bci());
  }
  jvms = _if_cold->generate(jvms, parent_parser);
  if (jvms != NULL) {
    Node* m = jvms->map()->control();
    if (m->is_CatchProj()) m = m->in(0);  else m = C->top();
    if (m->is_Catch())     m = m->in(0);  else m = C->top();
    if (m->is_Proj())      m = m->in(0);  else m = C->top();
    if (m->is_CallJava()) {
      _call_info->set_call(m->as_Call());
      _call_info->set_hot_cg(_if_hot);
#ifndef PRODUCT
      if (PrintOpto || PrintOptoInlining) {
        tty->print_cr("Queueing for warm inlining at bci %d:", jvms->bci());
        tty->print("WCI: ");
        _call_info->print();
      }
#endif
      _call_info->set_heat(_call_info->compute_heat());
      C->set_warm_calls(_call_info->insert_into(C->warm_calls()));
    }
  }
  return jvms;
}

void WarmCallInfo::make_hot() {
  Unimplemented();
}

void WarmCallInfo::make_cold() {
  // No action:  Just dequeue.
}


//------------------------PredictedCallGenerator------------------------------
// Internal class which handles all out-of-line calls checking receiver type.
class PredictedCallGenerator : public CallGenerator {
  ciKlass*       _predicted_receiver;
  CallGenerator* _if_missed;
  CallGenerator* _if_hit;
  float          _hit_prob;

public:
  PredictedCallGenerator(ciKlass* predicted_receiver,
                         CallGenerator* if_missed,
                         CallGenerator* if_hit, float hit_prob)
    : CallGenerator(if_missed->method())
  {
    // The call profile data may predict the hit_prob as extreme as 0 or 1.
    // Remove the extremes values from the range.
    if (hit_prob > PROB_MAX)   hit_prob = PROB_MAX;
    if (hit_prob < PROB_MIN)   hit_prob = PROB_MIN;

    _predicted_receiver = predicted_receiver;
    _if_missed          = if_missed;
    _if_hit             = if_hit;
    _hit_prob           = hit_prob;
  }

  virtual bool      is_virtual()   const    { return true; }
  virtual bool      is_inline()    const    { return _if_hit->is_inline(); }
  virtual bool      is_deferred()  const    { return _if_hit->is_deferred(); }

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
};


CallGenerator* CallGenerator::for_predicted_call(ciKlass* predicted_receiver,
                                                 CallGenerator* if_missed,
                                                 CallGenerator* if_hit,
                                                 float hit_prob) {
  return new PredictedCallGenerator(predicted_receiver, if_missed, if_hit, hit_prob);
}


JVMState* PredictedCallGenerator::generate(JVMState* jvms, Parse* parent_parser) {
  GraphKit kit(jvms);
  PhaseGVN& gvn = kit.gvn();
  // We need an explicit receiver null_check before checking its type.
  // We share a map with the caller, so his JVMS gets adjusted.
  Node* receiver = kit.argument(0);

  CompileLog* log = kit.C->log();
  if (log != NULL) {
    log->elem("predicted_call bci='%d' klass='%d'",
              jvms->bci(), log->identify(_predicted_receiver));
  }

  receiver = kit.null_check_receiver_before_call(method());
  if (kit.stopped()) {
    return kit.transfer_exceptions_into_jvms();
  }

  Node* exact_receiver = receiver;  // will get updated in place...
  Node* slow_ctl = kit.type_check_receiver(receiver,
                                           _predicted_receiver, _hit_prob,
                                           &exact_receiver);

  SafePointNode* slow_map = NULL;
  JVMState* slow_jvms;
  { PreserveJVMState pjvms(&kit);
    kit.set_control(slow_ctl);
    if (!kit.stopped()) {
      slow_jvms = _if_missed->generate(kit.sync_jvms(), parent_parser);
      if (kit.failing())
        return NULL;  // might happen because of NodeCountInliningCutoff
      assert(slow_jvms != NULL, "must be");
      kit.add_exception_states_from(slow_jvms);
      kit.set_map(slow_jvms->map());
      if (!kit.stopped())
        slow_map = kit.stop();
    }
  }

  if (kit.stopped()) {
    // Instance exactly does not matches the desired type.
    kit.set_jvms(slow_jvms);
    return kit.transfer_exceptions_into_jvms();
  }

  // fall through if the instance exactly matches the desired type
  kit.replace_in_map(receiver, exact_receiver);

  // Make the hot call:
  JVMState* new_jvms = _if_hit->generate(kit.sync_jvms(), parent_parser);
  if (new_jvms == NULL) {
    // Inline failed, so make a direct call.
    assert(_if_hit->is_inline(), "must have been a failed inline");
    CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method());
    new_jvms = cg->generate(kit.sync_jvms(), parent_parser);
  }
  kit.add_exception_states_from(new_jvms);
  kit.set_jvms(new_jvms);

  // Need to merge slow and fast?
  if (slow_map == NULL) {
    // The fast path is the only path remaining.
    return kit.transfer_exceptions_into_jvms();
  }

  if (kit.stopped()) {
    // Inlined method threw an exception, so it's just the slow path after all.
    kit.set_jvms(slow_jvms);
    return kit.transfer_exceptions_into_jvms();
  }

  // Finish the diamond.
  kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
  RegionNode* region = new (kit.C) RegionNode(3);
  region->init_req(1, kit.control());
  region->init_req(2, slow_map->control());
  kit.set_control(gvn.transform(region));
  Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
  iophi->set_req(2, slow_map->i_o());
  kit.set_i_o(gvn.transform(iophi));
  kit.merge_memory(slow_map->merged_memory(), region, 2);
  uint tos = kit.jvms()->stkoff() + kit.sp();
  uint limit = slow_map->req();
  for (uint i = TypeFunc::Parms; i < limit; i++) {
    // Skip unused stack slots; fast forward to monoff();
    if (i == tos) {
      i = kit.jvms()->monoff();
      if( i >= limit ) break;
    }
    Node* m = kit.map()->in(i);
    Node* n = slow_map->in(i);
    if (m != n) {
      const Type* t = gvn.type(m)->meet(gvn.type(n));
      Node* phi = PhiNode::make(region, m, t);
      phi->set_req(2, n);
      kit.map()->set_req(i, gvn.transform(phi));
    }
  }
  return kit.transfer_exceptions_into_jvms();
}


CallGenerator* CallGenerator::for_method_handle_call(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool delayed_forbidden) {
  assert(callee->is_method_handle_intrinsic() ||
         callee->is_compiled_lambda_form(), "for_method_handle_call mismatch");
  bool input_not_const;
  CallGenerator* cg = CallGenerator::for_method_handle_inline(jvms, caller, callee, input_not_const);
  Compile* C = Compile::current();
  if (cg != NULL) {
    if (!delayed_forbidden && AlwaysIncrementalInline) {
      return CallGenerator::for_late_inline(callee, cg);
    } else {
      return cg;
    }
  }
  int bci = jvms->bci();
  ciCallProfile profile = caller->call_profile_at_bci(bci);
  int call_site_count = caller->scale_count(profile.count());

  if (IncrementalInline && call_site_count > 0 &&
      (input_not_const || !C->inlining_incrementally() || C->over_inlining_cutoff())) {
    return CallGenerator::for_mh_late_inline(caller, callee, input_not_const);
  } else {
    // Out-of-line call.
    return CallGenerator::for_direct_call(callee);
  }
}

CallGenerator* CallGenerator::for_method_handle_inline(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool& input_not_const) {
  GraphKit kit(jvms);
  PhaseGVN& gvn = kit.gvn();
  Compile* C = kit.C;
  vmIntrinsics::ID iid = callee->intrinsic_id();
  input_not_const = true;
  switch (iid) {
  case vmIntrinsics::_invokeBasic:
    {
      // Get MethodHandle receiver:
      Node* receiver = kit.argument(0);
      if (receiver->Opcode() == Op_ConP) {
        input_not_const = false;
        const TypeOopPtr* oop_ptr = receiver->bottom_type()->is_oopptr();
        ciMethod* target = oop_ptr->const_oop()->as_method_handle()->get_vmtarget();
        guarantee(!target->is_method_handle_intrinsic(), "should not happen");  // XXX remove
        const int vtable_index = Method::invalid_vtable_index;
        CallGenerator* cg = C->call_generator(target, vtable_index, false, jvms, true, PROB_ALWAYS, NULL, true, true);
        assert(cg == NULL || !cg->is_late_inline() || cg->is_mh_late_inline(), "no late inline here");
        if (cg != NULL && cg->is_inline())
          return cg;
      }
    }
    break;

  case vmIntrinsics::_linkToVirtual:
  case vmIntrinsics::_linkToStatic:
  case vmIntrinsics::_linkToSpecial:
  case vmIntrinsics::_linkToInterface:
    {
      // Get MemberName argument:
      Node* member_name = kit.argument(callee->arg_size() - 1);
      if (member_name->Opcode() == Op_ConP) {
        input_not_const = false;
        const TypeOopPtr* oop_ptr = member_name->bottom_type()->is_oopptr();
        ciMethod* target = oop_ptr->const_oop()->as_member_name()->get_vmtarget();

        // In lamda forms we erase signature types to avoid resolving issues
        // involving class loaders.  When we optimize a method handle invoke
        // to a direct call we must cast the receiver and arguments to its
        // actual types.
        ciSignature* signature = target->signature();
        const int receiver_skip = target->is_static() ? 0 : 1;
        // Cast receiver to its type.
        if (!target->is_static()) {
          Node* arg = kit.argument(0);
          const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr();
          const Type*       sig_type = TypeOopPtr::make_from_klass(signature->accessing_klass());
          if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
            Node* cast_obj = gvn.transform(new (C) CheckCastPPNode(kit.control(), arg, sig_type));
            kit.set_argument(0, cast_obj);
          }
        }
        // Cast reference arguments to its type.
        for (int i = 0; i < signature->count(); i++) {
          ciType* t = signature->type_at(i);
          if (t->is_klass()) {
            Node* arg = kit.argument(receiver_skip + i);
            const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr();
            const Type*       sig_type = TypeOopPtr::make_from_klass(t->as_klass());
            if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
              Node* cast_obj = gvn.transform(new (C) CheckCastPPNode(kit.control(), arg, sig_type));
              kit.set_argument(receiver_skip + i, cast_obj);
            }
          }
        }

        // Try to get the most accurate receiver type
        const bool is_virtual              = (iid == vmIntrinsics::_linkToVirtual);
        const bool is_virtual_or_interface = (is_virtual || iid == vmIntrinsics::_linkToInterface);
        int  vtable_index       = Method::invalid_vtable_index;
        bool call_does_dispatch = false;

        ciKlass* speculative_receiver_type = NULL;
        if (is_virtual_or_interface) {
          ciInstanceKlass* klass = target->holder();
          Node*             receiver_node = kit.argument(0);
          const TypeOopPtr* receiver_type = gvn.type(receiver_node)->isa_oopptr();
          // call_does_dispatch and vtable_index are out-parameters.  They might be changed.
          target = C->optimize_virtual_call(caller, jvms->bci(), klass, target, receiver_type,
                                            is_virtual,
                                            call_does_dispatch, vtable_index);  // out-parameters
          // We lack profiling at this call but type speculation may
          // provide us with a type
          speculative_receiver_type = receiver_type->speculative_type();
        }

        CallGenerator* cg = C->call_generator(target, vtable_index, call_does_dispatch, jvms, true, PROB_ALWAYS, speculative_receiver_type, true, true);
        assert(cg == NULL || !cg->is_late_inline() || cg->is_mh_late_inline(), "no late inline here");
        if (cg != NULL && cg->is_inline())
          return cg;
      }
    }
    break;

  default:
    fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
    break;
  }
  return NULL;
}


//------------------------PredictedIntrinsicGenerator------------------------------
// Internal class which handles all predicted Intrinsic calls.
class PredictedIntrinsicGenerator : public CallGenerator {
  CallGenerator* _intrinsic;
  CallGenerator* _cg;

public:
  PredictedIntrinsicGenerator(CallGenerator* intrinsic,
                              CallGenerator* cg)
    : CallGenerator(cg->method())
  {
    _intrinsic = intrinsic;
    _cg        = cg;
  }

  virtual bool      is_virtual()   const    { return true; }
  virtual bool      is_inlined()   const    { return true; }
  virtual bool      is_intrinsic() const    { return true; }

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
};


CallGenerator* CallGenerator::for_predicted_intrinsic(CallGenerator* intrinsic,
                                                      CallGenerator* cg) {
  return new PredictedIntrinsicGenerator(intrinsic, cg);
}


JVMState* PredictedIntrinsicGenerator::generate(JVMState* jvms, Parse* parent_parser) {
  GraphKit kit(jvms);
  PhaseGVN& gvn = kit.gvn();

  CompileLog* log = kit.C->log();
  if (log != NULL) {
    log->elem("predicted_intrinsic bci='%d' method='%d'",
              jvms->bci(), log->identify(method()));
  }

  Node* slow_ctl = _intrinsic->generate_predicate(kit.sync_jvms());
  if (kit.failing())
    return NULL;  // might happen because of NodeCountInliningCutoff

  SafePointNode* slow_map = NULL;
  JVMState* slow_jvms;
  if (slow_ctl != NULL) {
    PreserveJVMState pjvms(&kit);
    kit.set_control(slow_ctl);
    if (!kit.stopped()) {
      slow_jvms = _cg->generate(kit.sync_jvms(), parent_parser);
      if (kit.failing())
        return NULL;  // might happen because of NodeCountInliningCutoff
      assert(slow_jvms != NULL, "must be");
      kit.add_exception_states_from(slow_jvms);
      kit.set_map(slow_jvms->map());
      if (!kit.stopped())
        slow_map = kit.stop();
    }
  }

  if (kit.stopped()) {
    // Predicate is always false.
    kit.set_jvms(slow_jvms);
    return kit.transfer_exceptions_into_jvms();
  }

  // Generate intrinsic code:
  JVMState* new_jvms = _intrinsic->generate(kit.sync_jvms(), parent_parser);
  if (new_jvms == NULL) {
    // Intrinsic failed, so use slow code or make a direct call.
    if (slow_map == NULL) {
      CallGenerator* cg = CallGenerator::for_direct_call(method());
      new_jvms = cg->generate(kit.sync_jvms(), parent_parser);
    } else {
      kit.set_jvms(slow_jvms);
      return kit.transfer_exceptions_into_jvms();
    }
  }
  kit.add_exception_states_from(new_jvms);
  kit.set_jvms(new_jvms);

  // Need to merge slow and fast?
  if (slow_map == NULL) {
    // The fast path is the only path remaining.
    return kit.transfer_exceptions_into_jvms();
  }

  if (kit.stopped()) {
    // Intrinsic method threw an exception, so it's just the slow path after all.
    kit.set_jvms(slow_jvms);
    return kit.transfer_exceptions_into_jvms();
  }

  // Finish the diamond.
  kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
  RegionNode* region = new (kit.C) RegionNode(3);
  region->init_req(1, kit.control());
  region->init_req(2, slow_map->control());
  kit.set_control(gvn.transform(region));
  Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
  iophi->set_req(2, slow_map->i_o());
  kit.set_i_o(gvn.transform(iophi));
  kit.merge_memory(slow_map->merged_memory(), region, 2);
  uint tos = kit.jvms()->stkoff() + kit.sp();
  uint limit = slow_map->req();
  for (uint i = TypeFunc::Parms; i < limit; i++) {
    // Skip unused stack slots; fast forward to monoff();
    if (i == tos) {
      i = kit.jvms()->monoff();
      if( i >= limit ) break;
    }
    Node* m = kit.map()->in(i);
    Node* n = slow_map->in(i);
    if (m != n) {
      const Type* t = gvn.type(m)->meet(gvn.type(n));
      Node* phi = PhiNode::make(region, m, t);
      phi->set_req(2, n);
      kit.map()->set_req(i, gvn.transform(phi));
    }
  }
  return kit.transfer_exceptions_into_jvms();
}

//-------------------------UncommonTrapCallGenerator-----------------------------
// Internal class which handles all out-of-line calls checking receiver type.
class UncommonTrapCallGenerator : public CallGenerator {
  Deoptimization::DeoptReason _reason;
  Deoptimization::DeoptAction _action;

public:
  UncommonTrapCallGenerator(ciMethod* m,
                            Deoptimization::DeoptReason reason,
                            Deoptimization::DeoptAction action)
    : CallGenerator(m)
  {
    _reason = reason;
    _action = action;
  }

  virtual bool      is_virtual() const          { ShouldNotReachHere(); return false; }
  virtual bool      is_trap() const             { return true; }

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
};


CallGenerator*
CallGenerator::for_uncommon_trap(ciMethod* m,
                                 Deoptimization::DeoptReason reason,
                                 Deoptimization::DeoptAction action) {
  return new UncommonTrapCallGenerator(m, reason, action);
}


JVMState* UncommonTrapCallGenerator::generate(JVMState* jvms, Parse* parent_parser) {
  GraphKit kit(jvms);
  // Take the trap with arguments pushed on the stack.  (Cf. null_check_receiver).
  int nargs = method()->arg_size();
  kit.inc_sp(nargs);
  assert(nargs <= kit.sp() && kit.sp() <= jvms->stk_size(), "sane sp w/ args pushed");
  if (_reason == Deoptimization::Reason_class_check &&
      _action == Deoptimization::Action_maybe_recompile) {
    // Temp fix for 6529811
    // Don't allow uncommon_trap to override our decision to recompile in the event
    // of a class cast failure for a monomorphic call as it will never let us convert
    // the call to either bi-morphic or megamorphic and can lead to unc-trap loops
    bool keep_exact_action = true;
    kit.uncommon_trap(_reason, _action, NULL, "monomorphic vcall checkcast", false, keep_exact_action);
  } else {
    kit.uncommon_trap(_reason, _action);
  }
  return kit.transfer_exceptions_into_jvms();
}

// (Note:  Moved hook_up_call to GraphKit::set_edges_for_java_call.)

// (Node:  Merged hook_up_exits into ParseGenerator::generate.)

#define NODES_OVERHEAD_PER_METHOD (30.0)
#define NODES_PER_BYTECODE (9.5)

void WarmCallInfo::init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor) {
  int call_count = profile.count();
  int code_size = call_method->code_size();

  // Expected execution count is based on the historical count:
  _count = call_count < 0 ? 1 : call_site->method()->scale_count(call_count, prof_factor);

  // Expected profit from inlining, in units of simple call-overheads.
  _profit = 1.0;

  // Expected work performed by the call in units of call-overheads.
  // %%% need an empirical curve fit for "work" (time in call)
  float bytecodes_per_call = 3;
  _work = 1.0 + code_size / bytecodes_per_call;

  // Expected size of compilation graph:
  // -XX:+PrintParseStatistics once reported:
  //  Methods seen: 9184  Methods parsed: 9184  Nodes created: 1582391
  //  Histogram of 144298 parsed bytecodes:
  // %%% Need an better predictor for graph size.
  _size = NODES_OVERHEAD_PER_METHOD + (NODES_PER_BYTECODE * code_size);
}

// is_cold:  Return true if the node should never be inlined.
// This is true if any of the key metrics are extreme.
bool WarmCallInfo::is_cold() const {
  if (count()  <  WarmCallMinCount)        return true;
  if (profit() <  WarmCallMinProfit)       return true;
  if (work()   >  WarmCallMaxWork)         return true;
  if (size()   >  WarmCallMaxSize)         return true;
  return false;
}

// is_hot:  Return true if the node should be inlined immediately.
// This is true if any of the key metrics are extreme.
bool WarmCallInfo::is_hot() const {
  assert(!is_cold(), "eliminate is_cold cases before testing is_hot");
  if (count()  >= HotCallCountThreshold)   return true;
  if (profit() >= HotCallProfitThreshold)  return true;
  if (work()   <= HotCallTrivialWork)      return true;
  if (size()   <= HotCallTrivialSize)      return true;
  return false;
}

// compute_heat:
float WarmCallInfo::compute_heat() const {
  assert(!is_cold(), "compute heat only on warm nodes");
  assert(!is_hot(),  "compute heat only on warm nodes");
  int min_size = MAX2(0,   (int)HotCallTrivialSize);
  int max_size = MIN2(500, (int)WarmCallMaxSize);
  float method_size = (size() - min_size) / MAX2(1, max_size - min_size);
  float size_factor;
  if      (method_size < 0.05)  size_factor = 4;   // 2 sigmas better than avg.
  else if (method_size < 0.15)  size_factor = 2;   // 1 sigma better than avg.
  else if (method_size < 0.5)   size_factor = 1;   // better than avg.
  else                          size_factor = 0.5; // worse than avg.
  return (count() * profit() * size_factor);
}

bool WarmCallInfo::warmer_than(WarmCallInfo* that) {
  assert(this != that, "compare only different WCIs");
  assert(this->heat() != 0 && that->heat() != 0, "call compute_heat 1st");
  if (this->heat() > that->heat())   return true;
  if (this->heat() < that->heat())   return false;
  assert(this->heat() == that->heat(), "no NaN heat allowed");
  // Equal heat.  Break the tie some other way.
  if (!this->call() || !that->call())  return (address)this > (address)that;
  return this->call()->_idx > that->call()->_idx;
}

//#define UNINIT_NEXT ((WarmCallInfo*)badAddress)
#define UNINIT_NEXT ((WarmCallInfo*)NULL)

WarmCallInfo* WarmCallInfo::insert_into(WarmCallInfo* head) {
  assert(next() == UNINIT_NEXT, "not yet on any list");
  WarmCallInfo* prev_p = NULL;
  WarmCallInfo* next_p = head;
  while (next_p != NULL && next_p->warmer_than(this)) {
    prev_p = next_p;
    next_p = prev_p->next();
  }
  // Install this between prev_p and next_p.
  this->set_next(next_p);
  if (prev_p == NULL)
    head = this;
  else
    prev_p->set_next(this);
  return head;
}

WarmCallInfo* WarmCallInfo::remove_from(WarmCallInfo* head) {
  WarmCallInfo* prev_p = NULL;
  WarmCallInfo* next_p = head;
  while (next_p != this) {
    assert(next_p != NULL, "this must be in the list somewhere");
    prev_p = next_p;
    next_p = prev_p->next();
  }
  next_p = this->next();
  debug_only(this->set_next(UNINIT_NEXT));
  // Remove this from between prev_p and next_p.
  if (prev_p == NULL)
    head = next_p;
  else
    prev_p->set_next(next_p);
  return head;
}

WarmCallInfo WarmCallInfo::_always_hot(WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE(),
                                       WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE());
WarmCallInfo WarmCallInfo::_always_cold(WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE(),
                                        WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE());

WarmCallInfo* WarmCallInfo::always_hot() {
  assert(_always_hot.is_hot(), "must always be hot");
  return &_always_hot;
}

WarmCallInfo* WarmCallInfo::always_cold() {
  assert(_always_cold.is_cold(), "must always be cold");
  return &_always_cold;
}


#ifndef PRODUCT

void WarmCallInfo::print() const {
  tty->print("%s : C=%6.1f P=%6.1f W=%6.1f S=%6.1f H=%6.1f -> %p",
             is_cold() ? "cold" : is_hot() ? "hot " : "warm",
             count(), profit(), work(), size(), compute_heat(), next());
  tty->cr();
  if (call() != NULL)  call()->dump();
}

void print_wci(WarmCallInfo* ci) {
  ci->print();
}

void WarmCallInfo::print_all() const {
  for (const WarmCallInfo* p = this; p != NULL; p = p->next())
    p->print();
}

int WarmCallInfo::count_all() const {
  int cnt = 0;
  for (const WarmCallInfo* p = this; p != NULL; p = p->next())
    cnt++;
  return cnt;
}

#endif //PRODUCT