view src/share/vm/runtime/advancedThresholdPolicy.cpp @ 9040:f43f77de876a

8145096: Undefined behaviour in HotSpot Summary: Fix some integer overflows Reviewed-by: jrose, kvn, kbarrett, adinn, iklam
author aph
date Fri, 01 Feb 2019 10:47:30 +0100
parents 600c44255e5f
children bb44c0e88235
line wrap: on
line source
/*
 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "runtime/advancedThresholdPolicy.hpp"
#include "runtime/simpleThresholdPolicy.inline.hpp"

#ifdef TIERED
// Print an event.
void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
                                             int bci, CompLevel level) {
  tty->print(" rate=");
  if (mh->prev_time() == 0) tty->print("n/a");
  else tty->print("%f", mh->rate());

  tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
                               threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));

}

void AdvancedThresholdPolicy::initialize() {
  // Turn on ergonomic compiler count selection
  if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
    FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  }
  int count = CICompilerCount;
  if (CICompilerCountPerCPU) {
    // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
    int log_cpu = log2_intptr(os::active_processor_count());
    int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
    count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
  }

  set_c1_count(MAX2(count / 3, 1));
  set_c2_count(MAX2(count - c1_count(), 1));
  FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());

  // Some inlining tuning
#ifdef X86
  if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    FLAG_SET_DEFAULT(InlineSmallCode, 2000);
  }
#endif

#ifdef SPARC
  if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    FLAG_SET_DEFAULT(InlineSmallCode, 2500);
  }
#endif

  set_increase_threshold_at_ratio();
  set_start_time(os::javaTimeMillis());
}

// update_rate() is called from select_task() while holding a compile queue lock.
void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
  // Skip update if counters are absent.
  // Can't allocate them since we are holding compile queue lock.
  if (m->method_counters() == NULL)  return;

  if (is_old(m)) {
    // We don't remove old methods from the queue,
    // so we can just zero the rate.
    m->set_rate(0);
    return;
  }

  // We don't update the rate if we've just came out of a safepoint.
  // delta_s is the time since last safepoint in milliseconds.
  jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
  // How many events were there since the last time?
  int event_count = m->invocation_count() + m->backedge_count();
  int delta_e = event_count - m->prev_event_count();

  // We should be running for at least 1ms.
  if (delta_s >= TieredRateUpdateMinTime) {
    // And we must've taken the previous point at least 1ms before.
    if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
      m->set_prev_time(t);
      m->set_prev_event_count(event_count);
      m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
    } else {
      if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
        // If nothing happened for 25ms, zero the rate. Don't modify prev values.
        m->set_rate(0);
      }
    }
  }
}

// Check if this method has been stale from a given number of milliseconds.
// See select_task().
bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
  jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  jlong delta_t = t - m->prev_time();
  if (delta_t > timeout && delta_s > timeout) {
    int event_count = m->invocation_count() + m->backedge_count();
    int delta_e = event_count - m->prev_event_count();
    // Return true if there were no events.
    return delta_e == 0;
  }
  return false;
}

// We don't remove old methods from the compile queue even if they have
// very low activity. See select_task().
bool AdvancedThresholdPolicy::is_old(Method* method) {
  return method->invocation_count() > 50000 || method->backedge_count() > 500000;
}

double AdvancedThresholdPolicy::weight(Method* method) {
  return (double)(method->rate() + 1) *
    (method->invocation_count() + 1) * (method->backedge_count() + 1);
}

// Apply heuristics and return true if x should be compiled before y
bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
  if (x->highest_comp_level() > y->highest_comp_level()) {
    // recompilation after deopt
    return true;
  } else
    if (x->highest_comp_level() == y->highest_comp_level()) {
      if (weight(x) > weight(y)) {
        return true;
      }
    }
  return false;
}

// Is method profiled enough?
bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
  MethodData* mdo = method->method_data();
  if (mdo != NULL) {
    int i = mdo->invocation_count_delta();
    int b = mdo->backedge_count_delta();
    return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
  }
  return false;
}

// Called with the queue locked and with at least one element
CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
  CompileTask *max_task = NULL;
  Method* max_method = NULL;
  jlong t = os::javaTimeMillis();
  // Iterate through the queue and find a method with a maximum rate.
  for (CompileTask* task = compile_queue->first(); task != NULL;) {
    CompileTask* next_task = task->next();
    Method* method = task->method();
    update_rate(t, method);
    if (max_task == NULL) {
      max_task = task;
      max_method = method;
    } else {
      // If a method has been stale for some time, remove it from the queue.
      if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
        if (PrintTieredEvents) {
          print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
        }
        compile_queue->remove_and_mark_stale(task);
        method->clear_queued_for_compilation();
        task = next_task;
        continue;
      }

      // Select a method with a higher rate
      if (compare_methods(method, max_method)) {
        max_task = task;
        max_method = method;
      }
    }
    task = next_task;
  }

  if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
      && is_method_profiled(max_method)) {
    max_task->set_comp_level(CompLevel_limited_profile);
    if (PrintTieredEvents) {
      print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
    }
  }

  return max_task;
}

double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
  double queue_size = CompileBroker::queue_size(level);
  int comp_count = compiler_count(level);
  double k = queue_size / (feedback_k * comp_count) + 1;

  // Increase C1 compile threshold when the code cache is filled more
  // than specified by IncreaseFirstTierCompileThresholdAt percentage.
  // The main intention is to keep enough free space for C2 compiled code
  // to achieve peak performance if the code cache is under stress.
  if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
    double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
    if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
      k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
    }
  }
  return k;
}

// Call and loop predicates determine whether a transition to a higher
// compilation level should be performed (pointers to predicate functions
// are passed to common()).
// Tier?LoadFeedback is basically a coefficient that determines of
// how many methods per compiler thread can be in the queue before
// the threshold values double.
bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
  switch(cur_level) {
  case CompLevel_none:
  case CompLevel_limited_profile: {
    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
    return loop_predicate_helper<CompLevel_none>(i, b, k);
  }
  case CompLevel_full_profile: {
    double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
    return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
  }
  default:
    return true;
  }
}

bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
  switch(cur_level) {
  case CompLevel_none:
  case CompLevel_limited_profile: {
    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
    return call_predicate_helper<CompLevel_none>(i, b, k);
  }
  case CompLevel_full_profile: {
    double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
    return call_predicate_helper<CompLevel_full_profile>(i, b, k);
  }
  default:
    return true;
  }
}

// If a method is old enough and is still in the interpreter we would want to
// start profiling without waiting for the compiled method to arrive.
// We also take the load on compilers into the account.
bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
  if (cur_level == CompLevel_none &&
      CompileBroker::queue_size(CompLevel_full_optimization) <=
      Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
    int i = method->invocation_count();
    int b = method->backedge_count();
    double k = Tier0ProfilingStartPercentage / 100.0;
    return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
  }
  return false;
}

// Inlining control: if we're compiling a profiled method with C1 and the callee
// is known to have OSRed in a C2 version, don't inline it.
bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
  CompLevel comp_level = (CompLevel)env->comp_level();
  if (comp_level == CompLevel_full_profile ||
      comp_level == CompLevel_limited_profile) {
    return callee->highest_osr_comp_level() == CompLevel_full_optimization;
  }
  return false;
}

// Create MDO if necessary.
void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
  if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
  if (mh->method_data() == NULL) {
    Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
  }
}


/*
 * Method states:
 *   0 - interpreter (CompLevel_none)
 *   1 - pure C1 (CompLevel_simple)
 *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 *   3 - C1 with full profiling (CompLevel_full_profile)
 *   4 - C2 (CompLevel_full_optimization)
 *
 * Common state transition patterns:
 * a. 0 -> 3 -> 4.
 *    The most common path. But note that even in this straightforward case
 *    profiling can start at level 0 and finish at level 3.
 *
 * b. 0 -> 2 -> 3 -> 4.
 *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
 *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 *
 * c. 0 -> (3->2) -> 4.
 *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
 *    without full profiling while c2 is compiling.
 *
 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 *
 * e. 0 -> 4.
 *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 *    the compiled version already exists).
 *
 * Note that since state 0 can be reached from any other state via deoptimization different loops
 * are possible.
 *
 */

// Common transition function. Given a predicate determines if a method should transition to another level.
CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
  CompLevel next_level = cur_level;
  int i = method->invocation_count();
  int b = method->backedge_count();

  if (is_trivial(method)) {
    next_level = CompLevel_simple;
  } else {
    switch(cur_level) {
    case CompLevel_none:
      // If we were at full profile level, would we switch to full opt?
      if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
        next_level = CompLevel_full_optimization;
      } else if ((this->*p)(i, b, cur_level)) {
        // C1-generated fully profiled code is about 30% slower than the limited profile
        // code that has only invocation and backedge counters. The observation is that
        // if C2 queue is large enough we can spend too much time in the fully profiled code
        // while waiting for C2 to pick the method from the queue. To alleviate this problem
        // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
        // we choose to compile a limited profiled version and then recompile with full profiling
        // when the load on C2 goes down.
        if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
                                 Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
          next_level = CompLevel_limited_profile;
        } else {
          next_level = CompLevel_full_profile;
        }
      }
      break;
    case CompLevel_limited_profile:
      if (is_method_profiled(method)) {
        // Special case: we got here because this method was fully profiled in the interpreter.
        next_level = CompLevel_full_optimization;
      } else {
        MethodData* mdo = method->method_data();
        if (mdo != NULL) {
          if (mdo->would_profile()) {
            if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
                                     Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
                                     (this->*p)(i, b, cur_level))) {
              next_level = CompLevel_full_profile;
            }
          } else {
            next_level = CompLevel_full_optimization;
          }
        }
      }
      break;
    case CompLevel_full_profile:
      {
        MethodData* mdo = method->method_data();
        if (mdo != NULL) {
          if (mdo->would_profile()) {
            int mdo_i = mdo->invocation_count_delta();
            int mdo_b = mdo->backedge_count_delta();
            if ((this->*p)(mdo_i, mdo_b, cur_level)) {
              next_level = CompLevel_full_optimization;
            }
          } else {
            next_level = CompLevel_full_optimization;
          }
        }
      }
      break;
    }
  }
  return MIN2(next_level, (CompLevel)TieredStopAtLevel);
}

// Determine if a method should be compiled with a normal entry point at a different level.
CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
  CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
                             common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
  CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);

  // If OSR method level is greater than the regular method level, the levels should be
  // equalized by raising the regular method level in order to avoid OSRs during each
  // invocation of the method.
  if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
    MethodData* mdo = method->method_data();
    guarantee(mdo != NULL, "MDO should not be NULL");
    if (mdo->invocation_count() >= 1) {
      next_level = CompLevel_full_optimization;
    }
  } else {
    next_level = MAX2(osr_level, next_level);
  }
  return next_level;
}

// Determine if we should do an OSR compilation of a given method.
CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
  CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
  if (cur_level == CompLevel_none) {
    // If there is a live OSR method that means that we deopted to the interpreter
    // for the transition.
    CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
    if (osr_level > CompLevel_none) {
      return osr_level;
    }
  }
  return next_level;
}

// Update the rate and submit compile
void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
  int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
  update_rate(os::javaTimeMillis(), mh());
  CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
}

// Handle the invocation event.
void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
                                                      CompLevel level, nmethod* nm, JavaThread* thread) {
  if (should_create_mdo(mh(), level)) {
    create_mdo(mh, thread);
  }
  if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
    CompLevel next_level = call_event(mh(), level);
    if (next_level != level) {
      compile(mh, InvocationEntryBci, next_level, thread);
    }
  }
}

// Handle the back branch event. Notice that we can compile the method
// with a regular entry from here.
void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
                                                       int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
  if (should_create_mdo(mh(), level)) {
    create_mdo(mh, thread);
  }
  // Check if MDO should be created for the inlined method
  if (should_create_mdo(imh(), level)) {
    create_mdo(imh, thread);
  }

  if (is_compilation_enabled()) {
    CompLevel next_osr_level = loop_event(imh(), level);
    CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
    // At the very least compile the OSR version
    if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
      compile(imh, bci, next_osr_level, thread);
    }

    // Use loop event as an opportunity to also check if there's been
    // enough calls.
    CompLevel cur_level, next_level;
    if (mh() != imh()) { // If there is an enclosing method
      guarantee(nm != NULL, "Should have nmethod here");
      cur_level = comp_level(mh());
      next_level = call_event(mh(), cur_level);

      if (max_osr_level == CompLevel_full_optimization) {
        // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
        bool make_not_entrant = false;
        if (nm->is_osr_method()) {
          // This is an osr method, just make it not entrant and recompile later if needed
          make_not_entrant = true;
        } else {
          if (next_level != CompLevel_full_optimization) {
            // next_level is not full opt, so we need to recompile the
            // enclosing method without the inlinee
            cur_level = CompLevel_none;
            make_not_entrant = true;
          }
        }
        if (make_not_entrant) {
          if (PrintTieredEvents) {
            int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
            print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
          }
          nm->make_not_entrant();
        }
      }
      if (!CompileBroker::compilation_is_in_queue(mh)) {
        // Fix up next_level if necessary to avoid deopts
        if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
          next_level = CompLevel_full_profile;
        }
        if (cur_level != next_level) {
          compile(mh, InvocationEntryBci, next_level, thread);
        }
      }
    } else {
      cur_level = comp_level(imh());
      next_level = call_event(imh(), cur_level);
      if (!CompileBroker::compilation_is_in_queue(imh) && (next_level != cur_level)) {
        compile(imh, InvocationEntryBci, next_level, thread);
      }
    }
  }
}

#endif // TIERED