view src/share/vm/c1/c1_ValueStack.hpp @ 0:a61af66fc99e

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children c18cbe5936b8
line wrap: on
line source
/*
 * Copyright 1999-2006 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

class ValueStack: public CompilationResourceObj {
 private:
  IRScope* _scope;                               // the enclosing scope
  bool     _lock_stack;                          // indicates that this ValueStack is for an exception site
  Values   _locals;                              // the locals
  Values   _stack;                               // the expression stack
  Values   _locks;                               // the monitor stack (holding the locked values)

  Value check(ValueTag tag, Value t) {
    assert(tag == t->type()->tag() || tag == objectTag && t->type()->tag() == addressTag, "types must correspond");
    return t;
  }

  Value check(ValueTag tag, Value t, Value h) {
    assert(h->as_HiWord()->lo_word() == t, "incorrect stack pair");
    return check(tag, t);
  }

  // helper routine
  static void apply(Values list, void f(Value*));

 public:
  // creation
  ValueStack(IRScope* scope, int locals_size, int max_stack_size);

  // merging
  ValueStack* copy();                            // returns a copy of this w/ cleared locals
  ValueStack* copy_locks();                      // returns a copy of this w/ cleared locals and stack
                                                 // Note that when inlining of methods with exception
                                                 // handlers is enabled, this stack may have a
                                                 // non-empty expression stack (size defined by
                                                 // scope()->lock_stack_size())
  bool is_same(ValueStack* s);                   // returns true if this & s's types match (w/o checking locals)
  bool is_same_across_scopes(ValueStack* s);     // same as is_same but returns true even if stacks are in different scopes (used for block merging w/inlining)

  // accessors
  IRScope* scope() const                         { return _scope; }
  bool is_lock_stack() const                     { return _lock_stack; }
  int locals_size() const                        { return _locals.length(); }
  int stack_size() const                         { return _stack.length(); }
  int locks_size() const                         { return _locks.length(); }
  int max_stack_size() const                     { return _stack.capacity(); }
  bool stack_is_empty() const                    { return _stack.is_empty(); }
  bool no_active_locks() const                   { return _locks.is_empty(); }
  ValueStack* caller_state() const;

  // locals access
  void clear_locals();                           // sets all locals to NULL;

  // Kill local i.  Also kill local i+1 if i was a long or double.
  void invalidate_local(int i) {
    Value x = _locals.at(i);
    if (x != NULL && x->type()->is_double_word()) {
      assert(_locals.at(i + 1)->as_HiWord()->lo_word() == x, "locals inconsistent");
      _locals.at_put(i + 1, NULL);
    }
    _locals.at_put(i, NULL);
  }


  Value load_local(int i) const {
    Value x = _locals.at(i);
    if (x != NULL && x->type()->is_illegal()) return NULL;
    assert(x == NULL || x->as_HiWord() == NULL, "index points to hi word");
    assert(x == NULL || x->type()->is_illegal() || x->type()->is_single_word() || x == _locals.at(i+1)->as_HiWord()->lo_word(), "locals inconsistent");
    return x;
  }

  Value local_at(int i) const { return _locals.at(i); }

  // Store x into local i.
  void store_local(int i, Value x) {
    // Kill the old value
    invalidate_local(i);
    _locals.at_put(i, x);

    // Writing a double word can kill other locals
    if (x != NULL && x->type()->is_double_word()) {
      // If x + i was the start of a double word local then kill i + 2.
      Value x2 = _locals.at(i + 1);
      if (x2 != NULL && x2->type()->is_double_word()) {
        _locals.at_put(i + 2, NULL);
      }

      // If x is a double word local, also update i + 1.
#ifdef ASSERT
      _locals.at_put(i + 1, x->hi_word());
#else
      _locals.at_put(i + 1, NULL);
#endif
    }
    // If x - 1 was the start of a double word local then kill i - 1.
    if (i > 0) {
      Value prev = _locals.at(i - 1);
      if (prev != NULL && prev->type()->is_double_word()) {
        _locals.at_put(i - 1, NULL);
      }
    }
  }

  void replace_locals(ValueStack* with);

  // stack access
  Value stack_at(int i) const {
    Value x = _stack.at(i);
    assert(x->as_HiWord() == NULL, "index points to hi word");
    assert(x->type()->is_single_word() ||
           x->subst() == _stack.at(i+1)->as_HiWord()->lo_word(), "stack inconsistent");
    return x;
  }

  Value stack_at_inc(int& i) const {
    Value x = stack_at(i);
    i += x->type()->size();
    return x;
  }

  // pinning support
  void pin_stack_for_linear_scan();

  // iteration
  void values_do(void f(Value*));

  // untyped manipulation (for dup_x1, etc.)
  void clear_stack()                             { _stack.clear(); }
  void truncate_stack(int size)                  { _stack.trunc_to(size); }
  void raw_push(Value t)                         { _stack.push(t); }
  Value raw_pop()                                { return _stack.pop(); }

  // typed manipulation
  void ipush(Value t)                            { _stack.push(check(intTag    , t)); }
  void fpush(Value t)                            { _stack.push(check(floatTag  , t)); }
  void apush(Value t)                            { _stack.push(check(objectTag , t)); }
  void rpush(Value t)                            { _stack.push(check(addressTag, t)); }
#ifdef ASSERT
  // in debug mode, use HiWord for 2-word values
  void lpush(Value t)                            { _stack.push(check(longTag   , t)); _stack.push(new HiWord(t)); }
  void dpush(Value t)                            { _stack.push(check(doubleTag , t)); _stack.push(new HiWord(t)); }
#else
  // in optimized mode, use NULL for 2-word values
  void lpush(Value t)                            { _stack.push(check(longTag   , t)); _stack.push(NULL); }
  void dpush(Value t)                            { _stack.push(check(doubleTag , t)); _stack.push(NULL); }
#endif // ASSERT

  void push(ValueType* type, Value t) {
    switch (type->tag()) {
      case intTag    : ipush(t); return;
      case longTag   : lpush(t); return;
      case floatTag  : fpush(t); return;
      case doubleTag : dpush(t); return;
      case objectTag : apush(t); return;
      case addressTag: rpush(t); return;
    }
    ShouldNotReachHere();
  }

  Value ipop()                                   { return check(intTag    , _stack.pop()); }
  Value fpop()                                   { return check(floatTag  , _stack.pop()); }
  Value apop()                                   { return check(objectTag , _stack.pop()); }
  Value rpop()                                   { return check(addressTag, _stack.pop()); }
#ifdef ASSERT
  // in debug mode, check for HiWord consistency
  Value lpop()                                   { Value h = _stack.pop(); return check(longTag  , _stack.pop(), h); }
  Value dpop()                                   { Value h = _stack.pop(); return check(doubleTag, _stack.pop(), h); }
#else
  // in optimized mode, ignore HiWord since it is NULL
  Value lpop()                                   { _stack.pop(); return check(longTag  , _stack.pop()); }
  Value dpop()                                   { _stack.pop(); return check(doubleTag, _stack.pop()); }
#endif // ASSERT

  Value pop(ValueType* type) {
    switch (type->tag()) {
      case intTag    : return ipop();
      case longTag   : return lpop();
      case floatTag  : return fpop();
      case doubleTag : return dpop();
      case objectTag : return apop();
      case addressTag: return rpop();
    }
    ShouldNotReachHere();
    return NULL;
  }

  Values* pop_arguments(int argument_size);

  // locks access
  int lock  (IRScope* scope, Value obj);
  int unlock();
  Value lock_at(int i) const                     { return _locks.at(i); }

  // Inlining support
  ValueStack* push_scope(IRScope* scope);         // "Push" new scope, returning new resulting stack
                                                  // Preserves stack and locks, destroys locals
  ValueStack* pop_scope();                        // "Pop" topmost scope, returning new resulting stack
                                                  // Preserves stack and locks, destroys locals

  // SSA form IR support
  void setup_phi_for_stack(BlockBegin* b, int index);
  void setup_phi_for_local(BlockBegin* b, int index);

  // debugging
  void print()  PRODUCT_RETURN;
  void verify() PRODUCT_RETURN;
};



// Macro definitions for simple iteration of stack and local values of a ValueStack
// The macros can be used like a for-loop. All variables (state, index and value)
// must be defined before the loop.
// When states are nested because of inlining, the stack of the innermost state
// cumulates also the stack of the nested states. In contrast, the locals of all
// states must be iterated each.
// Use the following code pattern to iterate all stack values and all nested local values:
//
// ValueStack* state = ...   // state that is iterated
// int index;                // current loop index (overwritten in loop)
// Value value;              // value at current loop index (overwritten in loop)
//
// for_each_stack_value(state, index, value {
//   do something with value and index
// }
//
// for_each_state(state) {
//   for_each_local_value(state, index, value) {
//     do something with value and index
//   }
// }
// as an invariant, state is NULL now


// construct a unique variable name with the line number where the macro is used
#define temp_var3(x) temp__ ## x
#define temp_var2(x) temp_var3(x)
#define temp_var     temp_var2(__LINE__)

#define for_each_state(state)  \
  for (; state != NULL; state = state->caller_state())

#define for_each_local_value(state, index, value)                                              \
  int temp_var = state->locals_size();                                                         \
  for (index = 0;                                                                              \
       index < temp_var && (value = state->local_at(index), true);                             \
       index += (value == NULL || value->type()->is_illegal() ? 1 : value->type()->size()))    \
    if (value != NULL)


#define for_each_stack_value(state, index, value)                                              \
  int temp_var = state->stack_size();                                                          \
  for (index = 0;                                                                              \
       index < temp_var && (value = state->stack_at(index), true);                             \
       index += value->type()->size())


#define for_each_lock_value(state, index, value)                                               \
  int temp_var = state->locks_size();                                                          \
  for (index = 0;                                                                              \
       index < temp_var && (value = state->lock_at(index), true);                              \
       index++)                                                                                \
    if (value != NULL)


// Macro definition for simple iteration of all state values of a ValueStack
// Because the code cannot be executed in a single loop, the code must be passed
// as a macro parameter.
// Use the following code pattern to iterate all stack values and all nested local values:
//
// ValueStack* state = ...   // state that is iterated
// for_each_state_value(state, value,
//   do something with value (note that this is a macro parameter)
// );

#define for_each_state_value(v_state, v_value, v_code)                                         \
{                                                                                              \
  int cur_index;                                                                               \
  ValueStack* cur_state = v_state;                                                             \
  Value v_value;                                                                                 \
  {                                                                                            \
    for_each_stack_value(cur_state, cur_index, v_value) {                                      \
      v_code;                                                                                  \
    }                                                                                          \
  }                                                                                            \
  for_each_state(cur_state) {                                                                  \
    for_each_local_value(cur_state, cur_index, v_value) {                                      \
      v_code;                                                                                  \
    }                                                                                          \
  }                                                                                            \
}


// Macro definition for simple iteration of all phif functions of a block, i.e all
// phi functions of the ValueStack where the block matches.
// Use the following code pattern to iterate all phi functions of a block:
//
// BlockBegin* block = ...   // block that is iterated
// for_each_phi_function(block, phi,
//   do something with the phi function phi (note that this is a macro parameter)
// );

#define for_each_phi_fun(v_block, v_phi, v_code)                                               \
{                                                                                              \
  int cur_index;                                                                               \
  ValueStack* cur_state = v_block->state();                                                    \
  Value value;                                                                                 \
  {                                                                                            \
    for_each_stack_value(cur_state, cur_index, value) {                                        \
      Phi* v_phi = value->as_Phi();                                                      \
      if (v_phi != NULL && v_phi->block() == v_block) {                                        \
        v_code;                                                                                \
      }                                                                                        \
    }                                                                                          \
  }                                                                                            \
  {                                                                                            \
    for_each_local_value(cur_state, cur_index, value) {                                        \
      Phi* v_phi = value->as_Phi();                                                      \
      if (v_phi != NULL && v_phi->block() == v_block) {                                        \
        v_code;                                                                                \
      }                                                                                        \
    }                                                                                          \
  }                                                                                            \
}